
PHYSICAL REVIEW B VOLUME 42, NUMBER 7 1 SEPTEMBER 1990

Quasi-two-dimensional imperfect Bose gas adsorbed on a surface
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We study a submonolayer film adsorbed on a substrate surface as a quasi-two-dimensional (2Dj
imperfect Bose gas. The ground-state energy and the depletion fraction at zero temperature are cal-
culated. It is found that the depletion is independent of the 2D density (in contrast to the 3D case),
but is a monotonically increasing function of the substrate potential well depth. Qualitative con-
clusions are drawn about implications for superfluidity in the case of He on a weak-binding sub-

strate.

I. INTRODUCTION

The subject of superfluidity in He films on flat sub-
strates has a long history of surprising discoveries. An
intriguing question is the relation between the superfluid
properties and the phenomenon of Bose-Einstein conden-
sation (BEC).' In bulk liquid He, we believe that the
loss of superfluidity at the k transition coincides with the
disappearance of the condensate. The same is not true
for a film. While BEC is not possible at finite tempera-
ture T in a film of any finite thickness, superfluidity does
occur experimentally. This apparently contradictory sit-
uation is resolved by allowing the film to possess a lo-
cal condensate wave function which exhibits topological
long-range order, but not truly infinite long-range order
(equivalent to BEC). An open question is the "practical"
matter of knowing theoretical criteria for existence of
this superfluid state. Consider, for example, a Bose fluid
with such strong interactions that the condensate disap-
pears even at T=0. We do not know whether it will be a
superfluid at finite T.

This paper addresses the properties of a film of Bose
particles adsorbed on a surface. We determine the
ground-state properties as a function of the interactions
involved: He-He and He-surface. The former is ideal-
ized, for simplicity, but we believe the qualitative calcula-
tions to be generally accurate.

This paper is a sequel to a previous study, in which
the effects of substrate variation was found on the com-
plete monolayer's properties. The principle conclusion
was that certain weak-binding substrates have insufficient
attraction to nucleate a solid, so that the monolayer
phase is liquid. That study assumes the in-plane motion
of the He atoms to be strictly two-dimensional (2D). The
present paper directs attention to the fact that the mono-
layer is only quasi-2D, i.e., that the states are diffuse in
the direction z perpendicular to the surface. A conse-
quence is that the effective interaction between adatoms
weakens as the width m of the single-particle states

grows; as a result, the fraction fo of particles in the con-
densate grows:

fo =XoiX—

Here No is the number of particles with 2D momentum
equal to zero which lies in the lowest state i =0 of motion
perpendicular to the surface. The result, shown below, is
that the film becomes more ideal for a weak-binding sur-
face than for a strong binding one. The attendant in-
crease of fo with increasing w is explored herein. This
predicted behavior ought to be observable experimental-
ly. Indeed recent experiments have revealed novel behav-
ior in the properties of He on weak-binding surfaces;
these have prompted the present study. '

There exists a considerable literature of the 2D Bose
problem. This includes study of the case of hard-disk and
Lennard-Jones interactions and the role of heterogenei-
ty. " ' To our knowledge there has been no explicit as-
sessment of the effects on the condensate properties' of
the out-of-plane motion. In this paper, we use a
simplified model to study the quasi-2D imperfect gas, in-
corporating explicitly the influence of the substrate po-
tential.

II. MODEL CALCULATION

We assume that the substrate is a structureless contin-
uum occupying the region z (0. The He physisorption
potential can be described approximately in the analytical
form of a shifted-Morse (SM) potential. This has proved
to be a good approximation to the real potential near the
minimum. ' ' Since we are concerned here with only the
low-lying binding states, it is adequate here. The poten-
tial has the following form:

—2a(z —
zp ) —a(z —zp )

VsM(z)=D(e ' —2e ' —6) .

Its eigenvalues and eigenstates are
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where a; and a; are the creation and annihilation
operators of the state Iai &, respectively. The major task
here is the calculation of the adatom-adatom interaction
potential matrix elements. The complicated shape of the
realistic two-body interaction potential makes this calcu-
lation nontrivial. In order to simplify the problem, we
make the crude approximation of a contact interaction,
1.e.,

(8mD )' —a(z —z, )

y =be
gaia

(4)

where D(1+6, ) is the well depth, a is a parameter related
to the width of the potential well and zo is the position of
the potential minimum. In the case of a deep potential
well (large D), the low-lying states of the SM potential
will be similar to those of a simple harmonic (SH) one. It
is much easier to treat the SH potential than the SM one.
We present results for it in the Appendix.

The total Hamiltonian of the system can then be writ-
ten:

P? N N8= g + g u(Ir; —r I)+ g VsM(z;),
i=1 i(j i=1

where N is the total particle number and u ( Ir, —r, I ) is
the adatom-adatom interaction potential. Here we have
omitted many-body potential-energy terms, which are
generally small for He films. ' We use the formalism of
second quantization to study this system. We introduce
single-particle basis states which are solutions of the
noninteracting problem:

4m uo
2

(aiPj Iu IykAl &
= I, k)5 (K/A')

A

with K=P +P~—P~ —Pq and

(10)

u(Ir, —r, I)=uo5 (r, —r, ) . (9)

The parameter u0 provides a measure of the strength and
can be determined from the atom-atom scattering length,
as described in the following. An identical model is used
in the Bogoliubov theory of 30 Bose systems. '

Another diSculty is the complicated form of the eigen-
states of the SM potential. It is impossible to give a sim-
ple analytic result for all of the binding states which can
be involved. Fortunately, however, only very few low-
lying states arise in the scattering at low temperature and
small uo. Thus we make another approximation: that
only the contribution from the ground state yo and the
first excited state g, are important; these two wave func-
tions are given in Eq. (3). This approximation should be
a good one at very low temperature since the adatoms are
unlikely to be excited into higher excited states by
thermal excitation or scattering.

Under these approximations, the matrix elements can
be calculated as

Ipi &=Ip&l) &,

where
I p & is the 2D free particle state with a 2D momen-

tum P~:

IP& =, exp(ipse R/A') .
l

g 1/2

Here R is the 2D (x-y) position vector and A is the area
of the surface. The binding state Ii & in Eq. (6) is one of
the eigenstates of the SM potential. Now we can rewrite
the Hamiltonian in Eq. (5) in the second quantized
form

I,~),)
—=J dzRV, V

Ioooo = a I (2b —2)
2'b-' r'(b —1)

'

a I (2b —3)
(b 3))/z

22b —3 I 2(b 1)
a I (2b —4)

(b 3)(b 2)
1 ~(b —1)

I = — ' "
(b —3)'"(b —2),0)11 2zb —i ~z(b 1)

(12a)

(12b)

(12c)

(12d}

2

H=g +E, a;a,P
2@i

+ —,
' g g (aiPj Iu Iykk. l &a;a)i a kaz),

apyA, ij kl

(8)

The (approximate) proportionality of these matrix ele-
ments to a, the potential's inverse width parameter,
reflects the fact that broad potentials yield broad wave
functions and small matrix elements. The Hamiltonian
has now become:

Pi

p2 Qo
aP;aP; „~qI0000a, a, aP 0aP 0+INN, (a, a, ,aP 0aP 0+a, a, aP, a )

1 20 1 2 10 2 1 2 Plo P20 1 2
1' 2

Pl, P2

Ioo))(4a, a,
,az oaz i+a,

,
a,

,ap oap 0+a, a, az iap, )
1 2 I 2 I 2 1 2 10 P20 1 2

+ID)))(a, ,a, ,a& )az 0+a, a,
,az )az i}+I)i))a, a, ap )ap )] .

1 2 1 2 1 2 P11 P21
(13)
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The primed summation goes over those values of the mo-
menta that conserve the total 20 momentum of the parti-
cles: P, +P2=P&+Pz.

It is natural to expect that, in the ground state of a
slightly imperfect gas, the occupation number n& for
PWO would be small compared to the number no, which
would be close to the total number N. This enables us to
use the method of Bogoliubov. ' To lowest order, we
have:

and

Q poapo "o— (14)

Qpoa =aooapp .

All the operators in Eq. (13) which involve states other
than ~00) will give higher order contributions. The
lowest-order result for the ground-state energy of the sys-
tem can be calculated to be:

SMEo=N Ep + I~
2A

(15)

Now we calculate the next order of approximation. To
simplify the calculation, we omit terms involving inter-
layer scattering operators: ap, ap p and appap, . Since the
probability of interlayer scattering is very low, the effect
of this omission should be negligible. Furthermore, a
correction to Eq. (14) from the lowest-order term
a ooa ooaooaoo should be included

Other contributions come from PAO terms. Finally we
have [see Eq. (11.2.9) in Ref. 18]:

aooaooaooaoo =N —2Nao, a01 2N —g (al oaIO+ai, 1aJ, , )
2

PWO

(16)

H=EO+e01a01a01+ g [Ko(P)azoa~o+So(azoa zo+azoa &0+2a~oazo)]
PWO

+ g [K1(P)a&1az, +S1(a+1a 1„+a~1a z1+2S01a&1az, )],
PWO

(17)

where Eo is defined in Eq. (15) and

gEsM E™EsM 4D(b 2)Ib2
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u ON u ON Ioooo
0000 1 0011 012~ 2

(22)

wherei =0 and 1 and:

y ro [Ko(P }+2So eo(P. )]/2SO ~

eo(P ) = [Ko (P ) +4SOKO(P ) ] '

yp =1[ K(1P) +2 S1S01 e(P1)]I2 S1

e1(P ) = [ [K,(P )+ 2S1S01] —4S1 I
'

(23}

(24)

(25)

(26)

The diagonalized Hamiltonian now becomes

H=EO+&01a 01a01+ 2 [&0(P»~to40+&1(P )b~1bs» l .
PWO

In order to diagonalize the Hamiltonian in Eq. (17},we

apply the Bogoliubov linear transformation to both the
~PO) and ~PI ) states:I„=,I„=Qp +Pp Q p.

~
Qp +Pp.a p.

(1 2 )1/2 ' ~'
(1 2 )1/2

plus the energy of a gas of independent quasiparticles.
We calculate the depletion number Nd, i.e., the number
of particles which are not in the single-particle ground
state. Since the occupation number of any single excited
state is very small compared to that of the ground state
( -N ), we can omit the contribution from ~01 ) state.
The summation over all of the excited states with
nonzero lateral momentum P, however, will give a finite
result. We define here Ndo and Nd, as the total numbers
of particles in the surface-normal states ~0) and ~1) hav-

ing PWO, respectively. These numbers can be calculated
as follows

2 2
}po A fdgp 1 po

p~o &
—

Xpo ~ &
—

Xpp

mA S aa I (b —1I2)
2~2 27rl/2 I (b —1 )

Eq. (27) is just the ground-state energy

(27) xp =b E /Si +2Spi .

Here we have introduced a (3D) scattering length a

(31)
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m Plop

4' fdr u(r)exp(ip r/fi)=
4M

(32)

Nd Ndp+ Nd )
(33}

aa Pb —1/2)
2 1/2 I'(b 1 )

(34)

It is very interesting that this depletion fraction is in-
dependent of the (2D) density N//I of the system. We
may contrast this with the 3D for which case the result is
a function of the (3D) density n3n.'

The major contribution to the depletion is Ndp. Nu-
merical calculations shown below indicate that Nd, is less
than 10% of Ndp. Hence the depletion fraction of this
2D imperfect gas can be approximated as

dent of the 2D density, Nd& is a function of N/A [see
Eqs. (30) and (31)]. We calculate Nd &

at different densities
(N/A =0.03 A and 0.077 A ) and find that the re-
sults are always less than 10% of Ndo. This result is
confirmed by a calculation of SH potential in the refer-
ence. It is very reasonable since most particles stay in the
surface-normal ground state. This is consistent with the
neglect of contributions from states higher than the first
excited state.

In Fig. 1, we show the depletion fraction calculated
from Eq. (34) as a function of the well depth D. A mono-
tonically increasing function is observed. At large D, the
value is larger than one. The small depletion assumption
is obviously responsible for this erroneous behavior. It is
also interesting to note the asymptotic behavior of the de-
pletion in the limit of very large D. In such a case we
have:

Nd 8 3 1/2
1/2

3Q 3v
(35) aae ' (b —1/2)

2m (b —1)1/2

The origin of this different dependence can be seen from
the following heuristic argument. The characteristic in-
teraction energy per particle is roughly

s=2manfi /m (36)

[see Eq. (11.2.22) in Ref. 18]. An estimate of the de-
pletion fraction can be obtained by dividing by N the to-
tal number of single-particle states with energy less than

Nd 1

N N p

=——f deg(e) . (37)

Hence

This would be exact if states with energy less (greater)
than e were singly occupied (unoccupied}. Let the nonin-
teracting single-particle density of states g(e) be

g(s) ~c,

(40)

where Eq. (4) has been used. This asymptotic dependence
is the same as that of a simple harmonic potential, as ex-
pected; see the Appendix.

The monotonic increase of the depletion fraction with
D is expected. Large D corresponds to highly localized
single-particle states; hence the two-body scattering is
large enough to excite relatively many particles to excited
states. This means a large depletion. On the other hand,
adatoms are less confined in the case of a shallow poten-
tial well. By spreading over a large z domain, this
scattering and the depletion are much reduced.

The spreading of the adatoms rejects the fact that our
system is not exactly a 2D gas. The spatial extent of the
wave functions can be estimated from a width parameter

' 2 1/2f dz z yo f dz ztpo

(39)
=—[g(2,b —1)]'1

(41)
Thus the power of n is just that of c in the density of
states. y=0 in 2D so there is no dependence on n. In
3D, y= —,', consistent with Eq. (35}. In 1D, y =

—,'; there-
fore BEC is destroyed with even infinitesimal interactions
and small n.

The depletion fraction in Eq. (34}, however, is not a
universal constant. It is actually a function of the shape
and depth of the substrate potential. While the width
a is not a very sensitive parameter for different sub-
strates, the weil-depth ranges from several K to of order
100 K. The well-depth dependence of the depletion frac-
tion is complicated by the gamma functions in Eq. (34).
A numerical calculation is needed to reveal the ~hole be-
havior.

We choose the following parameters in our calculation:
the potential well width a=2 A ' and scattering length
a=2.2 A. ' Equation (35) then yields for 3D He a de-
pletion of 35 percent, compared to the 90 percent found
from more accurate calculations. ' While Ndp is indepen-

where g(a, b) is the Riemann's zeta function. A 3D
density can then be defined as

N
n3o:—

Am
(42)

This is determined by both the 2D density and the po-
tential well. The depletion is seen in Fig. 2 to be correlat-
ed with n3&, but not a function of it alone.

We may summarize our results as follows. We have
treated a submonolayer film by applying the quasi-2D
analog of the Bogoliubov approximation. We find that
the depletion fraction is independent of the 2D density,
but strongly dependent on the substrate potential; small
D corresponds to small depletion. The qualitative impli-
cations for real He films are similar; z-wise delocalization
leads to an attenuated He-He interaction. The effect on
the fragile 2D liquid-vapor condensation (binding energy
one tenth of the 3D result) has been previously noted. ' If
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FIG. 1. The depletion fraction Xd/X, calculated from Eq. {34}{solid circle) and Eq. {AS) {open circle}, as a fonction of the sub-

strate potential well-depth D. The fraction is sometimes larger than 1 is due to the crudeness of our model; see the text.

C
Os~I
Q.I

. Oh. O

0.0
0.00

I

0.10 0.1 5 0.20

3D Density (A )

FIG. 2. The depletion fraction Nd/N, calculated from Eq. (34), as a function of the eff'ective 3D density, defined as in Eq. (42).
Diferent data sets are calculated at constant 20 densities p: squares are at p=0.026 A, triangles are at p=0.051 A, and circles
are at p=0.077 A
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the D value is quite small, the liquid-vapor coexistence
region may disappear, leading to a weakly interacting
Bose gas of considerable fundamental interest. Particu-
larly ideal substrates are alkali or H2 surfaces. Indeed
Shirron et al. found that the nonsuperfluid (inert} layer
of He on H2 was unprecedentedly small, consistent with
the present idea. The alkali surfaces should be even more
interesting because the D values are even smaller ( ( 15 K
versus 30 K for Hi). '

Note added in proof. Quantitative estimates are
presented in a forthcoming publication we have written.
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The matrix elements I;Jk& can be calculated in terms of
length b, which is (2ir)'~ times the root-mean-square dis-
placement of an isolated atom. The result of 2' bI are
1(ijkl =0000), —,'(0011), 3(1111),and zero (if there is an
odd number of excited states). The energy and depletion
calculations are the same as in the text.

The formula for depletion in this case are the same as
in Eqs. (29)—(31), with different expressions for So and

S1, and particularly, So1 =0. We have

Ndo

N

Nd

N

21 /2b

a 2
2' 'b (x' —4)' '+1

(A5)

(A6)

where H„(x) is the Hermite polynomials. In order to
compare with the SM potential used in the text, we chose
the parameter of the SH potential so that they give the
same ground state energy. This yields

co —D
4o. 2Am =4a(D/8m )' . (A4)

(8mD )" 8mD

APPENDIX: RESULTS FROM A SIMPLE
HARMONIC POTENTIAL

AE N
X

51 A

2b
(A7)

Vs„(z ) = D( 1+b —) + —,
' m co (z —zo )

E; =(i+ ,')fico D(1+—b,), —

%, (z)=(2'bi!) '~ H, (z/b)exp( z /2b ),—
b =(mfi/mto)'.

(Al)

(A2)

(A3)

Instead of the complicated SM potential Eq. (1), we
can also use a simple harmonic (SH) model to approxi-
mate the substrate potential. It should give the same
qualitative results when only the low-lying states are con-
cerned. The potential, eigenvalues and eigenfunctions are

With Eq. (A4) and typical values for He films cited in
text, we have xo —15; hence Nd, is less than ten percent
of Ndo. With Eq. (A4), we also have

a ~1/2D 1/4

N
(A8)

This is the same dependence as in the asymptotic behav-
ior of the SM potential, Eq. (40). The results of the SH
potential are also shown in Fig. 1. The same qualitative
behavior is observed. Compared to the SM potential, of
course, the SH potential is simpler to use.
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