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Realistic theoretical approximation schemes for the calculation of phonon and vibrational-
rotational (triatomic) molecule-crystal-surface inelastic scattering were derived from the formula-
tion in the preceding paper. These schemes can be adopted to a flexible input potential and are at
the same time capable of yielding effective ab initio computation. An iterative coupled-integral-
equation method thus obtained is much more tractable than its counterpart of the coupled
differential equation when phonons in the solid and vibrations and rotations of the molecular pro-
jectile are taken into account. This approach is further useful for the triatomic projectile case
where multiphonon transitions become more probable compared to the light atom and/or diatom

projectile, since it yields calculational procedures of DWBA of any higher orders as a byproduct. A
rotationally impulsive integral-equation scheme appropriate for the triatomic molecular projectile
(and basically applicable to the polyatomic case) with simplification of the rotational states of the
molecule in the calculational procedures is also derived from this method. For the purpose of
studying direct (nonresonant) inelastic scattering of the simultaneous diffraction, phonon, and
vibrational-rotational transitions, angular, velocity, and vibrational-rotational state distribution of
the scattered molecule, a coupled-diffractive-channel transition-matrix (CDCTM) method and a
coupled-molecular-state transition-matrix (CMSTM) method with an exponential unitarization
scheme are obtained. The former may be used when the corrugation of the molecule-crystal-
surface interaction potential is significant as in nonmetallic crystals and the latter could be used
when the dependence on the internal coordinates of the molecule or the anisotropy is considerably
large in the interaction potential. As an application of the present scattering formulation, a bound-
state resonance scattering method for a (triatomic) molecule-surface system is presented within the
framework of a Feshbach-type internal excitation approach. Our emphasis here is on a systematic
and unified treatment of the mediations of the diffraction, phonon, and vibration-rotation in selec-
tive adsorption and desorption, which are analogous to compound nucleus theory in nuclear reac-
tion studies. The present method describes such trapping-desorption processes for inelastic (in-

direct) resonance scattering. Our method is adoptable again to arbitrary input potentials, and even

with inclusion of phonons and vibrations and rotations, it yields eScient ab initio calculational pro-
cedures from which the resonance energies, the energy shift, width function, line shapes, and the in-

tensities of the simultaneous diffraction, phonon, and vibrational-rotational transitions can be ob-
tained. Among other effective calculational schemes, we discuss a method where the bound-state
resonance scattering amplitude is computed from our explicit expressions with simplified wave func-
tions. They are obtained as products of the spatial wave function generated from the elastic
diffraction potential and vibrational-rotational and phonon states. The nonresonant potential
scattering amplitude is obtained within open channels from, e.g., a coupled-diffractive-channel
transition-matrix approach. Finally, a method of obtaining the quantal trapping or physisorption
probabilities of the molecule, which deals with a half-collision process, is presented as another ap-
plication of our scattering formulation.

I. INTRODUCTION

In the preceding paper, ' which will be referred to here
as paper I, we have developed a systematic formulation of
the triatomic-molecule —crystal-surface scattering dynam-
ics including the vibrational states of the atoms or ions in
the solid (phonon) and vibrational-rotational states of the
projectile. The triatomic projectile case has more appli-
cabilities than its atom or diatom counterpart. The for-
mulation is based on the total (projectile+ phonon)

momentum representation parallel to the surface using
time-independent scattering theory. The scattering equa-
tion in differential and integral forms as well as the corre-
sponding Green's functions were obtained. It is desirable
to have theoretical schemes that are realistic and at the
same time amenable to practical ab initio calculation for
the interpretation of the experimental measurements on
the simultaneous vibration-rotation (mainly rotation) and
phonon inelastic scattering, the energy transfers between
translations, vibrations, rotations, and phonons, and an-
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gular, velocity, and rotational state distributions of the
scattered molecules, and rotation- and phonon-mediated
resonances (selective adsorption and desorption). In this
paper, we obtain such theoretical schemes suitable for the
triatomic-molecular-projectile case (which can be essen-
tially applied to the general polyatomic case) based on the
formulation in paper I.

An iterative coupled integral equation is derived from
the distorted-wave Green function with phonons and vi-
brations and rotations of the triatom. It is much more
tractable than the corresponding coupled differential
equation (CDE) and capable of yielding an efficient ab ini
tio calculational scheme when suitable truncation of the
phonon states is made. The CDE could be replaced by
this equation in the future when phonons and vibrations
and rotations are included. Compared to atom or dia-
tomic molecular projectile, phonon transition probabili-
ties are large for the triatomic or polyatomic molecule
case. Moreover, multiphonon inelastic scattering and the
participation of bulk phonons become probable in addi-
tion to the elastic and single-Rayleigh-phonon inelastic
scattering. The present iterative integral approach is
further useful for studying multiphonon processes since it
yields calculational procedures of any higher-order
DWBA. From iterative coupled integral equations, we
derive a rotationally impulsive iterative equation method
that is appropriate for the triatomic-molecular-projectile
case and basically can be applied to the general polya-
tomic case again. This method reduces the complexity of
the calculation arising from the rotational states of the
triatomic molecule.

Simultaneous rotation and phonon inelastic scattering
was experimentally studied. ' Employing laser-induced
fluorescence, multiphonon ionization, infrared (IR) ex-
citation with bolometric detection, and IR emission, '

the vibrational and rotational state distributions of the
scattered molecules have been measured. An experiment
on vibrationally inelastic scattering for a triatom-surface
system was also performed with IR spectroscopy. Based
on these state selective detection methods with angular
and velocity distributions of the scattered molecules, the
energy transfers among translations, vibrations, rotations
and phonons are investigated. Angular distribution is
used to separate direct scattering from indirect trapping-
desorption (Feshbach-type resonance) inelastic scattering.

Depending on the incident angles or energies„direct or
indirect (resonance) processes are dominant. We develop
in this paper theoretical schemes for the simultaneous
diffraction, vibration-rotation and phonon transitions
with direct inelastic-scattering processes: the coupled-
diffractive-channel transition-matrix method (CDCTM)
and coupled-molecular-state transition-matrix method
(CMSTM) incorporated with an exponential unitarization
scheme. The former may be used when corrugation of
the molecule-surface potential is significant. The cou-
pling between the reciprocal lattice points due to the
molecule-surface interaction is taken into account in the
incident and the scattered wave functions of the projec-
tile. When the dependence of the molecule-surface po-
tential on the internal coordinates of the projectile is
significant, in particular, when the anisotropy of the po-

tential is considerably large, the latter method could be
employed. The dynamic coupling between the
vibrational-rotational states of the projectile through the
interaction potential is included in the incident and scat-
tered wave functions. The two theoretical schemes might
be used for studying angular, velocity, and vibrational-
rotational state distributions of the scattered molecule
and energy transfers among vibrations and rotations and
phonons.

The experimental measurements have been carried out
on the phonon or rotational transition resonance scatter-
ing for the molecule-surface system with improved time-
of-flight techniques and resolutions. The selective ad-
sorption of the molecule mediated by phonon, '

diffraction, or rotation" was observed from the angular
distribution measurements. The lifetime of such tem-
porarily bound state of the molecule on the surface or the
width of the resonance depends on the (selective) adsorp-
tion and desorption probability upon transition of the
phonon, rotation, or vibration. Theoretical methods
describing such resonance phenomena have been
developed based on the simple-potential model with im-
pulsive or sudden approximation, optical-potential mod-
el, ' and hard corrugated wall model' with eikonal ap-
proximation derived from the elastic-diffractive-
resonance scattering case. ' These methods could give
reasonable results for certain cases, but are somewhat
phenomenological and the applications are limited since
the potentials employed are not Aexible. Again ab initio
computational schemes of the lifetime, theoretical inten-
sities, and line shapes of such diffraction-, phonon-, and
rotation-mediated resonance processes, which can be
adopted to a general (triatomic) molecule-surface input
potential, are desired as noted in paper I for the interpre-
tation of the measurements so that it can be applied to
the assessment of the precise nature of the potential.

The selective adsorption with diffraction, phonon, or
vibration-rotation assistance results from the effect of the
closed channels at the energies where the molecular pro-
jectile is temporarily bound to the surface. The coupling
between the closed channel and open diffraction (or
reflection) channel results in the resonance scattering. In
other words, the projectile is temporarily trapped to the
surface and after a certain lifetime it is desorbed again
from the surface upon transition of phonon, rotation, and
vibration. This is basically the (indirect) trapping-
desorption inelastic scattering in contrast to the direct in-
elastic collisions and also analogous to the compound nu-
cleus theory in the nuclear reaction study. It is consistent
with the principle of the Feshbach-type approach. ' For
the atom or diatom —surface elastic diffraction case,
close-coupling studies' ' have been quite useful for
describing the selective-adsorption phenomena. It was
also useful for studying rotation-mediated selective ad-
sorption of the diatom-surface scattering case. ' Compu-
tations, however, are complex due to the large number of
closed channels included. When phonons and vibrations
and rotations are taken into account, the close-coupling
calculations are almost impossible. For these reasons, the
Feshbach-type approach which describes the trapping-
desorption scattering is most suitable for ab initio
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theoretical study of the phonon- and vibration-rotation-
mediated bound-state resonance scattering (selective ad-
sorption and desorption). Nevertheless, there exists no
such systematic treatments for molecule-surface scatter-
ing, although the method was suggested in the atom-
surface diffraction case' with the hard corrugated poten-
tial model.

Therefore, we present the phonon-, and vibration-
rotation-assisted bound-state resonance scattering
method suitable for the triatomic-molecule —surface sys-
tern within the framework of the Feshbach approach
based on our formulation in paper I. Some approxima-
tion schemes for computations are also described. Com-
pared with the other related theoretical works including
those with the Feshbach approach, whereas they have
their own merits, our method is adoptable to an arbitrary
molecule-surface interaction potential, takes into account
simultaneous diffraction, vibration-rotation, and phonon
mediations in a systematic and unified manner, and de-
scribes the trapping-desorption mechanism explicitly.
The present method is ab initio in nature and yields an
effective calculational scheme (see Sec. III for more de-
tails).

As another application of the present triatomic-
molecule-surface scattering dynamics, we present a
method of obtaining the quantum-mechanical physisorp-
tion or trapping probabilities. This phenomenon arises
mainly from the long-range attractive (van der Waals) po-
tential and can be described basically by the half-collision
processes. Most of these quantities have so far been com-
puted employing the classical stochastic trajectory
method with the generalized Langevin equation or (the
one-dimensional) semiclassical method with the harmonic
oscillator. ' The classical stochastic trajectory or semi-
classical approaches may be efficient but have somewhat
limited applicabilities due to the quantum-mechanical
effects (e.g., tunneling) that are important in the thermal
energy range.

In the next section, the approximate theoretical
schemes for the calculation of the simultaneous phonon,
vibrational-rotational inelastic scattering suitable for the
triatomic-molecular-projectile case are derived from the
formulations presented in paper I. The phonon- and
vibration-rotation-mediated bound-state resonance
scattering method is presented in Sec. III within the
framework of the Feshbach approach. A method of ob-
taining the quantum-mechanical trapping or physisorp-
tion probabilities is presented in Sec. IV. In the last sec-
tion, the present work is summarized. An exponential
unitarization scheme of the transition-matrix method of
molecule-surface scattering is described in the Appendix.
Some numerical results obtained from the theoretical
schemes presented in this paper will be reported in later
publications. Equation (n) of paper I will be indicated as
Eq. I (n). We will use the same notations as in paper I
unless specified otherwise.

II. APPROXIMATION SCHEMES
FOR TRIATOMIC-MOLECULE- SURFACE

INELASTIC-SCATTERING THEORY

Many computations of the atom-surface phonon inelas-
tic scattering have been developed based on the simple
distorted-wave Born approximation (DWBA). For
the present triatomic-molecule —surface vibrational-
rotational, phonon inelastic scattering case, this approxi-
mation is given by

4K .0(r S s)=8K, . 0(r S s)
(I)

X~K „G(r,S,s)=y+z, „o(r,S,s)5G p

in Eqs. I (76) and I (73) of the integral expressions of T
and S matrices, respectively, obtained from the
distorted-wave Green function. The normalization con-
dition of the S matrix elements, which is a special case of
the unitarity condition of the matrix, is usually taken into
account in this approximation. The normalization of the
S matrix is not sufficient to obtain reliable values of the
matrix elements. Therefore, we present a unitarized
DWBA 5-matrix method in the Appendix. In any case,
the diffraction effect to the vibrational-rotational and
phonon inelastic scattering cannot be studied with
DWBA, because the wave functions given by Eq. (l) are
distorted only from vo(z) which does not contain any
diffraction part. The corrugation of the potential is
significant in the interaction between the gas phase and
nonmetallic crystalline surface or adsorbate covered sur-
face. Therefore, the inclusion of the diffractive part in
the scattering wave function should be important. Furth-
ermore, the dynamic coupling of the internal
(vibrational-rotational) states of the projectile should be
included when the anisotropy of the interaction potential
is significant. Higher-order distorted-wave effect should
be more important in the collision processes of the
triatomic-molecule-surface case than the light atom or
diatom projectile case. In this section, we intend to de-
velop more realistic theoretical schemes than DWBA as
previously mentioned which are suitable for the
triatomic-molecule-surface system in treating the
vibrational-rotational and phonon inelastic scattering.

A. Iterative coupled-integral-equation method

The inclusion of a tremendously large number of pho-
non and vibrational-rotational states, in particular, those
states from the many closed channels makes the integra-
tion of the coupled differential equation (CDE) an un-

manageably complex task as mentioned before. The
iterative coupled-integral-equation approach, to be dis-
cussed later, does not require as many fine mesh points of
integration as those of the CDE and is tractable with a
certain limited choice of the phonon states. The follow-
ing iterative integral equation is derived from the integral
equation given by I(64) obtained from the distorted-wave
Green function

y."„'G".+„',(z) =y."„o'.„,(z)+, g f dz'Q". „o'(z,z') V„„-..„,(z')q.",'„+,o, .„,(z ) (k =O, l, 2, . . . ) .
p

It is seen from the preceding that y" '+ '(z) is the kth-order approximate wave function for f'+ '(z). Since
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V „„.(z)

~
&&

~ Va„„(z)~
for (an G)W(a'n'G') and Uo(z) is chosen such that

iu (z)i )) i V „„(z)—U (z)i,

the convergence of the iteration should be relatively fast. The kth-order (distorted-wave) S matrix S"„'o' „o is obtained

from

anO, a n. O a, a n, n. G, OS' O~+C G~, .O g f dZ y 'aOn~'(Z)V an an(Z)y" ane,
~ +'a

nO

a'n'G'
(3)

with k =0, 1,2, . . . . In the limit as k goes to infinity,
S"„G' n o approaches the exact S matrix S'+„G

Many closed channels can be included in the present
iterative method without affecting numerical accuracy.
This is different from the CDE case where instability of
the numerical solution is known to arise from the closed
channels. Therefore, realistic results could be obtained
for the vibrational-rotational and phonon inelastic reso-
nance scattering as well using the present iterative
method. In a practical computation, n ~n' in Eq. (2) is
to be limited to the elastic scattering or the one-phonon
creation or annihilation, that is, to the cases where the
number g&, ~n&, n&—, ~

is 0 or l. One method of trun-
cating the phonon states ~P„) is to consider the collec-
tions I n&, } of the occupation numbers such that

g&, ~n+, no, ~

&m—where m could be 2 or 3. Here
n &, is a certain fixed occupation number, which, for in-
stance, may be chosen to be the closest integer to n& „
the thermally averaged phonon number. Many pairs of
the phonon states in the truncated set are connected
through higher-order processes due to the restrictions on
n and n' in Eq. (2). Thermal averages over the initial
phonon states for the intensities thus obtained may be
made using the normalization of the (thermal) distribu-
tions within the truncated set. The higher-order distort-
ed waves can be efhciently computed with the present
method as intermediate steps. At the same time the mul-
tiphonon transition intensities are obtained since the
higher-order effects of the potential Vis conveniently tak-
en into consideration in the method. Multiphonon tran-

sition becomes more probable for the triatom-surface col-
lision compared to the light atom or diatom case. There-
fore, the present method is certainly useful for the case
with triatomic (or polyatomic) projectile. It should be
pointed out that when the Rayleigh surface phonon mode
and the laterally averaged part V (z) of the stationary
interaction potential are dominant, one could further ap-
proxirnate Eqs. I (57) and I (62) of the phonon elastic and
one-phonon emission potential matrix elements with
vibrational-rotational transition (a~a') by

Vo„„(z)=e V .(z)5

V „„.(z)=-
t

~q, ~

2¹oz(Q)

1/2

sg (Q)

(4)

X V ( ) 5

The subscript R denotes the Rayleigh mode, c.z is the z
z

component of the polarization, and e is the phenome-
nological Debye-&aller factor.

For computational purposes, g& may be replaced by
(L/2m)f dQ. and 5&&. by (2mlL) 5(Q —Q'), noting
that the Q's are consistent with the two-dimensional
Born —von Karman boundary condition.

One can obtain alternative expressions of the iterative
processes employing a complete set of the eigenfunctions
of H . The continuum eigenfunctions gK+„'G were nor-
ma'. i"ed such that

(yK+'„.G(E')~yK+„'G(E)) = fdrdSdsy»+'„G(r, S,s;E')yK+„'o(r, S,s;E)

2mL A
an G 5K, K'5a, a'5 n, n '5G, G'5( E

with E and E being the total energies. Strictly speaking, 5K K 5G G on the right-hand side of this equation is true only
when the K s lie in the first (two-dimensional) Brillouin zone. This can always be satisfied since Q„and Q„+G have
the same physical properties for the phonons [see Eq. I (70)]. Excluding the bound state for simplicity, we have the ap-
proximate closure property

M
2~L A

X f dE k.'o~&»,"G«)&(&K,+.'G«)~ = I .
KanG

From Eqs. I (76) and I (73), we then obtain
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=k „o5 ~ 5„„5oo5(E' —E)+ M
2mL A

P, m—i 5(E —E')1

X g J dE "k",.„~ ~ (g .„. .(E')
l
I IX'„".,',„„o„(E") ) (y'„".,',„„„(E")lyK'."„o(E)),

A:(+) (+)SanGa, n, ,o 5a, a, 5n, n, 5G, (P anG

~(+)
CanG, a,. n, O

+ 2''
L fdE'k ' „'o (y'„' „'o(E) ~ly'„', „,o,(E') ) (y'„'+,„,G.(E')

l y~, ",.+o'(E) )
a'n'G'

corresponding to Eqs. (2) and (3). Here

k"„G= (E" E ——6„)—(K—Q„+G)2,

(pter'.
+—'„o(E)l VlyK+'„o (E') ) =L f dz y '„o'"(z;E)V „„(z)y+~„+,o!(z;E') .

0

It should be pointed out, however, that the preceding
methods are more complex than those given by Eqs. (2)
and (3) for practical purposes, since the eigenfunctions of
H should be computed for all energies E.

B. Rotationally impulsive iterative integral equation

Inclusion of a large number of rotational states
specified by the quantum numbers J,M, I( would make
the computation of the iterative coupled-integral-
equation method quite complex. Therefore, we present in
the following a rotationally impulsive integral-equation
approach. In the molecular Hamiltonian given by I (31),
the rotational energy operators fi 1 /2p „pc and
A' j /2@pc with 1=(1/i)(SXVs), j=(1/i)(sXV, ) are
neglected. Thus we can approximate H „(S,s) bya, a

2 as asP~,ac ~

1 8 28
S

2@pc s as as

+ V „(S,s, cosg)=—H, ~(S, sc sop) .

The vibrational wave functions Fp satisfying the eigenval-
ue equation

H „(S, scosg)F (p,Ssc so()=EpFp(s, s, cosg)

constitute a complete set. Ep is the normal-mode vibra-
tional energy. The total Hamiltonian of the triatomic-
molecule-surface system is then approximated as

V' +H +H +V
2M

H is a function of the phonon operators p'(R&), u'(Ro)
and the variables r, r, Q, where (r)=(s, s, cosg) and
Q=(q&, 8,y). Note that H does not contain any
differential operators with respect to the Euler angles Q.
Therefore, we need to solve the following Lippmann-
Schwinger equation:

[E H(r, r, Q )—+i e]f&+p „o(r,&, Q)

=ice '
Fp (r)lP„) (5)

with 0 as parameters. More specifically, we solve the
equation for all fixed Q's. For this purpose, we set [K is
given by Eq. I (10)]

yK'p'. o(r, r, Q) = y qp'G, p. o(z, Q)Fp(r)l(t„&
PnG

i(K —Q +G).R
Xe

Equation (5) results in a CDE with the asymptotic bound-
ary condition

gp'+„o' p „o(z,Q)-

Here

' 1/2
kP n,.O

kPnG
[e P"

5p p 5 5o o SpI+o p o(Q)e e" ]

kp„o = (E Ep 6'„)—(K—Q„—+G)—2
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Employing the distorted-wave Green function Q +'(z, z') defined in Eqs. I (65) to I (68), the CDE can be transformed
into the integral-equation form

PpnG p no(Z, Q) =gp G p n 0(Z)+ g f dZ'Qp'„G'(ZZ') V pn pn(Z', Q)f&n'G' p O(Z', Q)
p

where
I I

Vp„g„(Z,Q)= Vp„p„(z,Q) vo—(z)5p p5„,5G G. ,

Vp„p„(z,Q) = fdrFp(r)U„„(z, r, Q)Fp (r),

U„„(z,r, Q) = V„„(z,S,s) (dr= S dS s ds sing dg)

Therefore, we have

SP+„G P n 0(Q) —~P P „„GOSPna+ P+„G P n 0 g f 'yP'na" '
Pn Pn. ') QPn'G P n 0

n'G'
(8)

from Eq. (6). C'+' is defined as in paper I. The vibrational and rotational states a and a; are used to denote
a =JMpKP, a; =J;M~p;K;P;. The corresponding wave function is, e.g., given by

4 (S,s)=Fp(r)Dpi'(Q) .

The rotation-parity eigenfunction Dfir(Q) was defined in Eq. I (41). The rotationally impulsive S matrix for the
vibrational-rotational transition from a; to a is then computed from

S'+„G „0=f dQDgz(Q)Sp+„& p „p(Q)DM x (Q) (dQ=dydy sin8d0) .

From Eqs. (7) and (8), we have an iterative integral equation

gpna p „p(z, Q) =ypna'p „0(Z)+ 2 g f dZ'Qpna'(Z)Z') Vpn pn (z') Q)ypn G p „p(Z', Q)
P G 'P

for k =0, 1,2, . . . , and

Sp„'G'p „p(Q)=5p p 5„„5Gosp«+ Cp«p „0 g f dz'gp'na" (z') V pn Pn (z') Q)yp n4.+p'n 0(z') Q)
7 ) 7 ] ')

t t Zp

(9)

(10)

for k =1,2, . . . . The kth-order impulsive S matrix for
the vibrational-rotational transition from a; to a is then
calculated from

J,p,S"'a,' ...o = f d Q DsL'(Q)Sp'a, p...o(»DM' x, «) .

tial is included in the distorted wave when the corruga-
tion is sufficiently large in the (triatomic-)
molecule —(nonmetallic) crystal surface. Substituting the
approximation

, S, s) =y'„+.' „,(r, S,

We solve the iterative integral equation for each parame-
ter O. Approximation for the inclusion of the phonon
states is made in the same manner as in Sec. II A. The
present iterative integral-equation method substantially
reduces the complexity due to the rotational states of the
triatomic molecule.

or equivalently,

(+) (+)
Panaa, n, o( ) , X.anaa, n, p(Z),

C. Coupled-diÃractive-channel transition-matrix method

In this subsection, we discuss a method where the cor-
rugation effect of the molecule-surface interaction poten-

into Eq. I (97) of the integral expression of the S matrix
obtained from the diffraction-wave Green function, the
diffraction, vibrational-rotational and phonon transition
(afnfGfAa, n, O) matrix is given by

drdSdsg~ ' „G (r, S,s)V(r, S,s)y~ ' „0(r,S,s)
L

X &' n*a', G (z)V (z)Xa+n'G —ao(z) . (12)
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In the present approach, the coupling between the re-
ciprocal lattice points due to the molecule-surface in-
teraction is taken into account in the incident and scat-
tered wave functions. In other words, the initial- and the
final-wave functions of the projectile contain diffractive
distortions that arise from the periodic part (or the corru-
gation) of the potential. This is the coupled-difFractive-
channel transition-matrix method (CDCTM). It should
be suitable to describe the effect of the diffraction on the
simultaneous vibrational-rotational and phonon inelastic
scattering. From the expression of the potential matrix
elements given by Eq. I (62), we obtain the diffractive in-

tensity of the present approximation for the (simultane-
ous) one-phonon emission and vibrational-rotational
transition. From the energy and momentum conserva-
tion, y' „' G G (z) and y'+„'G p(z) satisfy the same CDEf f ' f i

given by Eq. I (83) with the (same) total energy

E =Et'+E +6„=EJ+E +6„
I

and the (same) parallel momentum

K=K;+Q„=Kf+Q„—Gf
i

but different boundary conditions given by Eq. I (114).
For simplicity, the diffractive potential u(r) is chosen to
be independent of the initial and final vibrational-
rotational and phonon states, a; n; and af nf. Then, for a
given energy and phonon momentum transfers, %co and
fiQ, and incident energy Ef', the dependence of the elastic
diffractive wave functions y' +—

„G.G(z) on a;, af, n;, nf, E,
and K is replaced by those on Ef, K;, firu, and fiQ.
Denoting the wave functions by yG

—'G(z) in that case, we

carry out the thermal average analytically and obtain the
diffractive intensity for the (simultaneous) one-phonon
emission and vibrational-rotational transition as

0

dpi, dEfi'
f

kf nq, +1
5(pi, (Q)+ pi)

X g j dz gG G (z)go+ G p(z)
GG

2

Xg [kG s, '(Q)]( Vi', )~, exp[i(k, z —kG r, )
—W, (kG)]

ak

(13)

Here, fi~=Ef+E —EI' —E is the energy transfer of
)

the projectile, the brackets ( ) denote the thermal aver-
age over the initial phonon states, kG=k, z+G —Q, n&,
is the thermal average of the phonon occupation number
for the mode (Q, s). The polarization and energy disper-
sion, e,'(Q) and co, (Q), of the single phonon are comput-
ed from diagonalization of the dynamic matrix in a semi-
infinite slab model or using the Green-function technique.

namic distortion of the molecular internal states, denoted
by the superscript m, is included in the wave functions as
mentioned before. Note that m is not an integer. The
Hamiltonian H and corresponding Lippmann-
Schwinger equation are, respectively, given by

fi
H = — V„+H „+H,„+u (z, S,s),

2M

(E H~ i e)gK —„G(r, S,s) =—+i eyK '„G ( r, S,s)

D. Coupled-molecular-state transition-matrix method

If the molecular-surface interaction potential V(r, S,s)
depends significantly on the internal coordinates S,s of
the molecule or the anisotropy of the potential is
significant, the dynamic distortion of the vibrational-
rotational states of the projectile should be included in
the (approximate) scattering wave functions. More
specifically, the effect of the dynamic coupling between
the internal (vibrational-rotational) states of the projectile
through the interaction potential should reflect the
scattering wave function. For this purpose, we consider
the potential u (z, S,s) by laterally averaging V(r, S,s)
over R and then thermally averaging over the phonon
states. The u (z, S,s ) is basically a molecule —flat- and
rigid-surface interaction potential. The gz' —„'G(r, S,s)
are the outgoing and incoming scattering wave functions
distorted from the potential u (z, S,s). That is, the dy-

Expanding the wave function as

m(+) m(+)G(r, S,s) —g y „G „G(z)
o;nG

we have

„G(z)—5„„5oGy „G (z),

( ) (z)anG, a'

1 /2

anG

k „G

gm(+) anG
)anG, a'nG (14a)

for an open channel, and

and y „'&',(z) satisfies a CDE and the boundary condi-
tion
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(+)
( )anG, a'

1/2
k .nG

~an6
P m(+) e anG~ anG, a'nGe (14b)

u ~„G .„,G,(z,z') =v (z)5„„5GG 5(z —z'),

[gm (+ ) ] [go(+ ) ]+ [go( k ) ][—m
][gm( k ) ]

(16)

for a closed channel. The eV
'*' is the vibrational-

rotational transition scattering matrix for the
molecule —flat-surface collision. The column matrix
[y .„' —.G, ] is defined to have elements y „'G' „.G (z). Then,
we have

(15)

—[go(+)]+ [gm(+)][u m][go(+)]
f2

Here u (z)=v (z) —uo(z)5 with v (z) the ma-
trix element of v (r, S,s) between the molecular states a
and a'. [g '*'] =[g ' '] since [V ] =[u ]. Since
[u ] is in a block diagonal form, [g ' +—'] is also block di-
agonal, that is,

ganG u n'G''(Z~ ) 5n n 5G G''ganG 0'(

with We de6ne the Green operator as

g»' +—'(r, S,s;r', S', s')= g (R,S,s~anG)g „'G' „G(z,z')(a'n'G'~R', S',s'),
anG

a'n'6'

where ( R, S,s
~
an G ) was defined in Eq. I (75b). It is seen that

g»' —' (r, S,s;r', S', s') = g»' '(r', S', s', r, S,s) .

Employing the Green operator and a similar method as in Sec. IV B of paper I, we obtain

g»*' „G (r, S,s)=y»' —„'G (r, S,s)+
z

Jdr'dS'ds'g»' +—'(r, S,s;r', S', s')V (r', S', s')1()»+' „G (r', S', s'),

(17)

with

afnfGf, a n G Gf, G nf, n. afn G. ,a.n G

(18)(+)
af nf Gf, a, n,, G,

drdSdsy»'+ „' G (r, S,s)V (r, S,s)$»—' „G (r, S,s)
L 2 f f f

V (r, S,s)= V(r, S,s) —v (z, S,s)= g ~{t)„) V „'„ (z, S,s)( P„.~e
nn'G

Making the approximation

g(+ ' „o(r,S,s) =y»'+„' (r, S,s )

in Eq. (18), we have the simultaneous diffraction, phonon and vibrational-rotational transition matrix (Gf%0, nfAn;,
GfWCK; ) as

with

aa'
(19)

—m, Gf —G' Gf —6'
V '„n „(z)= Vn « „.(z) —u - (z)5„„.5Gf i a nf, an fi fi

This is the coupled-molecular-state transition-matrix method (CMSTM). As previously mentioned, the dynamic distor-
tion of the vibrational-rotational states of the projectile due to the molecule-surface interaction has been taken into ac-
count in the incident and scattered wave functions in Eq. (19). y „' G' (z) and y .„' o' (z) are solutions to the samef f'f
CDE with the (same) total energy and parallel momentum

E=E/'+E +A„=EfI'+E +A'„, K=K;+Q„=Kf+Q„—Gf,
but satisfy the incoming and the outgoing boundary conditions, respectively. As long as the potential u (z, S,s) is
chosen to be independent of the initial and anal states, the dependence of the wave functions g ' —' on n;, nf, K and E
can be replaced by those on E, , K, , fico, and fiQ Doing this an. d denoting the wave functions by y G

—'(z), we carry out
a thermal average over the initial phonon states. The resulting expression of the diffractive intensity derived from the
present method for the simultaneous vibrational-rotational transition a,- ~af and one-phonon emission is given by the
following expression:
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0

dQ~ dEII'f

M2 i)f kf nQ +1
5(co, (Q)+co)

X X "dz&.G-."(zh. o,". ( )
Zp I' Jaa'

2
x g [ko .a,'"(Q)](V)', ), exp[i(k, z —kG .r, ) —W, (kG )]f G~

(20)

Here the energy transfer of the projectile is again given
by Aco=E&~+E —E,~ —E . The computational pro-

cedure developed for the coupled-channel T-matrix ap-
proximation of gas-phase reactive collisions will be
quite useful for the present method of molecule-surface
scattering. The 5 matrices obtained from DWBA,
CDCTM, or CMSTM are, in general, not unitary. A
simple normalization condition for the S matrix is not
sufficient. We will briefly discuss the unitarized schemes
for these approximations in the Appendix. The CDCTM
and CMSTM methods of the molecule-surface scattering
could be best suited for studying the (nonresonant) direct
process of the simultaneous diffraction, phonon and
vibrational-rotational transitions, angular and velocity
distribution of the scattered molecule, and the energy
transfers among translation, phonons and vibrations and
rotations. A theoretical method for the (indirect) reso-
nance processes wil1 be presented in the following section.

III. BOUND-STATE RESONANCE SCATTERING
METHOD FOR SELECTIVE ADSORPTION

The selective adsorption and desorption phenomena
arise from the effects of the closed channels at the ener-
gies where the molecule is temporarily bound to the sur-
face. Here the closed channels are defined to be the
(anG)'s with k „&(0 for the molecule-surface scatter-
ing with the inclusion of the phonon degrees of freedom.
The open channels correspond to k „G & O. The selective
adsorption and desorption are basically resonance
scat terings originated from coupling between closed
channels and open diffraction (or refiection) channels.
They are indirect scattering processes where the molecu-
lar projectile is temporarily trapped to the surface. After
a certain lifetime elapses, the molecule is desorbed again
upon transition of the phonons and vibrations and rota-
tions. This is analogous to the compound nucleus theory
in the nuclear reaction. The CDE describing such
scattering includes a large number of closed channels. It
becomes a quite complex numerical problem to solve the
CDE. When the phonons are taken into account, the
close-coupling calculations are almost impossible. There-
fore, a Feshbach-type approach should be quite efficient
for the resonance scattering, in particular, when the pho-
nons and vibrations and rotations are included. The S
matrix derived from the Feshbach-type approach de-
scribes the trapping-desorption mechanism [see Eq. (34)].
Nevertheless, no systematic treatments exist for the

molecule-surface scattering case. In what follows, we
briefly outline the Feshbach approach modified for the
present purpose. Specific application to the molecule-
surface scattering will be made subsequently.

Based on whether we are dealing with the open
(anG)'s or the closed ones, the basis states are divided
into two groups, the open and the closed states. This
division depends on the total energy E, but we fix the
division in a certain range of E such that most of the
channels in the former group are the open channels and
those in the latter group are the closed ones. We will

simply call "open" and "closed" channels which belong
to the former and latter groups, respectively, unless
specified further. The corresponding projection opera-
tors will be denoted by P, and P„respectively. Thus,
P, =P„P,=P„P,P, =P,P, =O, P, +P, =1. The total
molecule-surface scattering wave function g';+' deter-
mined by the initial condition i in P',

' satisfies the
Lippmann-Schwinger equation

(E H+ie)P;'—'=i'm/;' (21)

Multiplying both sides of Eq. (31) by P, and P„we have

(E H„+i e )P;',+—'=i e(t),
' '+ H„g,,+ ',

(E a„+(—~)q(,+)=H„q(',+ ',
where

(22)

(23)

(E H„+u )q(—+)=i~y( ). -
(24)

Here H,z is the effective Hamiltonian given by

H,~=H„+8'„
with

W =H a'+'H 1
00 OC co 7 E —H +iscc

It is in general difficult to obtain a realistic solution of Eq.
(24) for a nonlocal potential unless a phenomenological
(local) optical potential is introduced. Therefore, we em-

Hoo =Po HPo Hcc PcHPc & Hoc PoHPc

—p Hp q(+ ) —p q(+ ) q(+ ) —p q(+ )

To obtain Eqs. (22) and (23), the relations P, P(

and P,P;''=0 were used. If we solve Eq. (23) for g,',+'

and substitute it into Eq. (22), we obtain the Lippmann-
Schwinger equation for the open-channel component
g';,+' of the total wave function,
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ploy a slightly different approach. If one defines the wave
functions y',.

+—' from

(E H—+ie}y(*"=+ieItI;'*',

then Eq. (22) can be rewritten as

(E H—+i e)g;',+ ' = (E H—+i e)y;'+ "+H

(25a)

(25b)

where

(I(+)o= . , + W =H O'+'H1

E —0~+i e
' OC

(26b)

Equation (25a) holds only for the atom or
molecule-surface scattering case. The wave function' is needed to obtain the S matrix from Eq. (26a). All
scattering information is contained in Eq. (26a), since

We solve Eq. (25b) for g(;,+) and substitute it into Eq. (23).
This yields g(;,

+' in terms of y';+ ". Substituting the result-
ing P(',+' into Eq. (25b) again, we have

y(+ ) +( +) +og(+ )oH H +( +)o1
io i "E—0 —8' +'

CC CC

(26a)

P(,,+) has the same asymptotic boundary conditions as
that of tj', ', the full wave function. This equation con-
tains the essence of the Feshbach method for our pur-
pose. The spectrum of the Hamiltonian H„may include
both the discrete and continuum energies. Only the
discrete states are considered here because the discrete ei-
genvalues from the bound states of H„are important in
resonance scattering.

In the following, the above formalism is applied to the
molecule-surface resonance collision with the inclusion of
the phonon degree of freedom. As seen in the subsequent
discussions, it is best suited for the simultaneous molecu-
lar and phonon inelastic resonance scattering. The
present approach is adoptable to an arbitrary molecule-
surface interaction potential, treats diffraction,
vibration-rotation, and phonon mediations in resonance
systematically, describes the explicit trapping-desorption
mechanism, and results in an effective calculational pro-
cedure, while it is ab initio in character. The H is the full
Hamiltonian given previously by

H= — V,+H„+H „+V(r, S,s} .
2M

The wave function tj'I(+ ' and y( +—' are expanded as

)((z+'„0(r,S,s)= g g'+„' „(z)C& (S,s)lg„)e
anG

(27)

yK '„o(r,S,s)= g 'y —
„G „o(z)4 (S,s}lg. &e

anG
(28)

with K=K;+Q„being the total parallel momentum of the system. The g' denotes the summation over the open

(anG}'s. Replacing g by g' in Eq. (27), we have the open-channel component of g(~+'.„0(r,S,s). The asymptotic
boundary condition of the wave functions (for the open channels with k „o)0) are

o(z}-(+) k'o
kanG

' 1/2

(e " 5 .5„„.5 0
—S „& „.De

" ),

(k)o
Zan G, a'n 'G'(

1/2
I IGI

(e '" 5 5 .5GG —4 G Ge "
) .

(29)

The wave function y( —"and the scattering matrix 4'
could be obtained from the integral-equation method
presented in Sec. II in the subspace of the open (anG)'s
and within the subset of the phonon states mentioned
there. However, as previously mentioned, computation
of g'+„G .„.0(z} with the CDE is quite complex since
many closed (anG)'s are involved for the resonance
scattering. Elimination of the closed channels results in a
complicated coupled integro-differential equation due to
the nonlocal potential as seen in Eq. (24). Therefore, the
present approach presented later based on Eq. (26a)
should be efficient.

By setting the ith bound eigenfunction g&(r, S,s) of the
Hamiltonian H„ for a given K with eigenvalue EK in the
following form:

g~(r, S,s}=—g g'„o(z)4 (S,s)lg„)
1

anG

i(K —Q +G).R
Xe (30)

we obtain the eigenvalue equation

(31)

with

I(. „o,=(K—Q„+G) — (E~ E —(o„) . —

anG, ' ganG(Z} 2 y ~an a' n'( }ga nG (''
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For convenience, we normalize the eigenfunctions as

g f dzg,"„o(z)g'„o(z)=5,,
anG

In Eqs. (30) and (31), the (anG)'s are limited to the
closed ones. Some truncated set of such (an G)'s may be
used in practical calculations. Since we are interested in
the bound eigenfunctions, tr „o,)0 for all (anG)'s. The
differential eigenvalue equation given by Eq. (31) is in
general not tractable. If g,'„G(z) is expanded in terms of
a complete set of certain known basis functions tf (z) I

which satisfy
r

d
2

+u(z) f (z) =F~f (z),2~ dz'

dz z z

then Eq. (31) becomes an algebraic eigenvalue equation
which can be solved without difficulty. More specifically,
employing the following expansion:

G(z)= g Ctt„o f~(z),

Eq. (31) is transformed into an algebraic eigenvalue equa-
tion

It should be recalled here that, since

I v...„' (z)l «I v'....„(z)l = IU (z)l

for (anG)W(a'n'G'), the potential u(z) may be chosen
to be, e.g. ,

u (z) =Uo(z, )+—,
'

uo (z, )(z —z, )

in order to achieve fast convergence of the eigenvalue.
Here z, is the point such that vo(z, )=0. It should also
be noted that not all eigenvalues of Eq. (32) are those of
Eq. (31}. By letting the number of basis functions f (z)
increase, a suitable convergence test should be applied to
determine the proper eigenvalues. In practice, the diago-
nalization of the matrix (H „G „G ) in Eq. (32) could
be made in the subset of the phonon states as discussed in
Sec. II for the computational efficiency.

The Green function components are

1I',+nn, ,„zz(z,z'i= nnG n'n'G')
E —H +Is

with

&R, S,slanG &
=—4 (S,s)l{t)„&e

Here the (an G)'s are all open channels. It is seen that

HanGm, a'n'G'm' ~ a'n'G'm' EK.~ anGm
a'n'G'm'

where

H„o „G = E +E+6„+ (K—Q„+G)

X5 5„„,5G o,5~

(32) [V„,P, ]= [V'„,P, ]=0

from the representation

P, = g ' I{znG&&anGI, P, =l P, —
anG

with lan G & given above and g' denoting the summation
over the open (anG)'s. Thus

H„=P, VP„H„=P,VP, .
+(V o ~ o ~

—u 5 5 5oG),

V«G~ G,„o~.= f dz f*(z)V „G„(z)f (z) .

Using the Green-function components and Eq. (26b), the
energy shift and width function matrix 5+1', I is comput-
ed from

( b, + 1' I );; =
& g

'
I w„ I g

'

f f dzdz'&gK
I
VIanG&0'+„G „G(z,z')&a'n'G'Ivlg~ & .

anG
a'n'G'

Note that in Eq. (33), matrix elements are evaluated by integrating over R, S,s only and thus

&gKI VlanG& = y g'*„-o ~ (z) V „„(z},
It IIGIIa n

&«G
I VlgK &

— g V...-.- (z }g - -o- (z ) .
III lttGIIIa n

(33)

It should be recalled here that (a"G")and (a'"G"') belong to the closed channels, but (aG} and (a'G') belong to the
open channels. From Eq. (26a), the diffractive resonance scattering matrix for the simultaneous vibrational-rotational
and phonon transition is given by

g{+) —g{+)o
af nf Gf, a.n. O af nf Gf, a n. O

( (+)
Qfnfof Q n 0 1

(34)

where, e.g. ,
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&XQ, ~ g 6 I Vlgx ) = drdSdsy'„~"„6 (r, S,s)v(r, S,s)g~(r, S,s)' f"f f ' fnf f
=I. g dzy'„6' „6 (z)V „„(z)g'„6(z) .f f f

a'n'G'

The matrix (E EK—) is defined from

(E EK—),,'=(E E'K—)5,,-,
and ( I/2), , =( A ');;. The 4'+„'6 ~ „o is the nonresonant potential scattering matrix contained in y'+„'6 „0(z).fnf f' af nf Gf, a, n, 0

The bound-state resonance scattering amplitude is the second term in Eq. (34). The second matrix element of V
represents a trapping and the first one indicates a desorption. The i'th and ith bound states are connected through a
propagator.

We discuss some approximation schemes which are used in practical computations. Since
I
V „„(z)« I

V „„(z)I
for (anG)%(a'n'G') and Ivo(z) —V „„(z)I« Ivo(z)I, the Hamiltonian H derived from uo(z) could be used to obtain
the Green function, and bound and continuum eigenfunctions. Then

Gn„G(z, z ) —5a a5„n 5G 6 Q~„G (z, z )

~ 6 (z) =5 5 56 Gy 6(z)(~)o 0(+ )

from Sec. IV of paper I. Here, (a'n~G') is some (anG) determined from the eigenfunction index i (cf. next section).
Thus

(S+ir)„.,=, y„dz dz g",, (z) V,'-, 6 (z)Q."„+'(z,z') VG-G.", (z')g", , (z') .
2M

anG
(35)

The 4'+„'6 „0may be evaluated from the simple DWBA. However, we retain the full potential V in the matrix cle-f f f
ments in Eqs. (33) and (34). Since the truncations of channels (anG) within each group are inevitable, we have

P, +P, =1. For evaluating yK+—"„6(r, S,s), git(r, S,s), and S'+„'6 „0,more refined approximation than the preced-
1 fnf f'

ing may be used. We could employ, e.g., the Hamiltonian 8' derived from U(r) for that purpose and note that
I vG(z) —V „„(z)I « I vG(z) I. Since this is basically the approximation

V „„(z)=5 5„„UG(z)

for computing the bound and continuum eigenfunctions, they are obtained as simple products of the continuum or
bound spatial eigenfunctions of the stationary diffractive potential and molecule-phonon wave functions within the open
or closed channels. The S',+„"6 „o may be computed from the CDCTM approach employing the scattering wavef f f
function g~& '„6(r, S,s) thus obtained within the open channels. Alternatively one may employ the Hamiltonian H
for 4'+", and y'*' from the CMSTM within the open channels when the anisotropy of the potential is large.

The preceding approximations make the present bound-state resonance (Feshbach-type) approach quite efficient
when the molecular internal states and phonons are included.

An alternative expression of the energy shift and width function is given by

(a+ir). ..= y IdE'k' „' P, i5(E E'—) &g'
I V I/'+—"„(E')) &y'+'„(E')I vIg'' )

2mL A

using the continuum eigenfunctions yK
—'„6(r,S,s;E) of H~. This equation was obtained from the normalization and

closure property of the (continuum) eigenfunctions of 0
2ml&y'„+'„(E)Iy'„+"„(E'))= k „5„„5 5„„5 5(E E'), —

y JdE k.-„' Iq'„+.'„(E))&q'„'."„(E)I=12' A

with the bound eigenfunctions being neglected for simplicity. The summation gtc is over the first (two-dimensional)
Brillouin zone. Conservation of the total parallel momentum K (up to G) was also used. The total energy E or E'
dependence in y~z+'„6 is explicitly indicated. The matrix element of V(r, S,s), e.g. , is given by
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&g):1)'lyz",
z,

)E))= Jdrdsdsgz*)r, s, s))'(r, s, s)yt~;„~(r, s, s;E)
IIf dz g', o (z) V,„, „„„(z)y'~ "o- o(z E) .

Since the wave functions need to be evaluated for all en-
ergies E', Eq. (36) is more complex than Eq. (33).

It should be recalled here that the relation between S
and T matrix elements is given by Eq. I (78). The simul-
taneous molecular and phonon transition resonance
diffraction coefficient is given by Eq. I (80) with the
present S matrix element of Eq. (34). The selective ad-
sorption and desorption processes upon transition of the
phonons and molecular internal states are basically con-
tained in Eq. (34). Therefore, the present method is best
suited for investigating the diffraction, phonon, and rota-
tional mediations in resonance scattering (selective ad-
sorption and desorption). The theoretical intensities and
line shapes of the phonon-, vibration-rotation-assisted
resonance can be computed with the present scheme.

molecular states a. However, this assumption is not
essential in our scheme of obtaining adsorption rates be-
cause it is used only for conveniently indexing the
bound-state eigenvalues and eigenfunctions.

We begin our discussion with the simple Hamiltonian
H given before,

$2
H = — V„+H,i+ vo(z)+H„.

2M

This is a molecule —flat-surface Hamiltonian. The jth
bound eigenfunction g (z) and the eigenvalue E of the z
coordinate are obtained from

d
, +vo(z) g,'(z)=E,'g,'(z)

2M dz2

IV. ADSORPTION RATES

When molecules collide with a crystalline surface in
the thermal energy range, some of them are adsorbed to
the surface whereas others are scattered out. The adsorp-
tion takes place with or without dissociation of the mole-
cule. In this section, we discuss the adsorption rates of
the molecular projectile in the absence of any dissociation
using reasonable approximations. We are mainly con-
cerned with physisorption or trapping rather than chem-
isorption or sticking. In general the long-range attractive
behavior of the adiabatic molecule-surface interaction po-
tential, i.e., van der Waals force, is important in the phy-
sisorption or trapping processes. The adsorption rate (or
probability) refers to the physisorption or trapping rate in
this section unless specified further. This rate is basically
the transition rate between the incident wave and bound
wave function of the molecule to the surface. The in-
cident molecule is adsorbed to the surface by transferring
suSciently large energy to it so that the molecule does
not have the perpendicular component of the kinetic en-

ergy to be scattered out. The molecular projectile is
caught by the thermally averaged potential V(r, S,s).
Adsorption rate is generally given by a semiempirical
function of the coverage ratio 0 of the adsorbates with
the initial and final adsorption rates corresponding to
0=0 and 1, respectively. The central quantities to be
evaluated are thus the adsorption rates for the 0=0 case
for which it is easy to carry out measurements on the
rates. But the following theoretical scheme can also be
applied to the 8%0 case (partial or whole coverage) as
long as the adsorbates form ordered overlayers such that
the two-dimensiona1 periodicity of the crystalline surface
exists.

We assume that
~
V, (z)

~
&&

~
V (z)

~

for
(a, G)W(a', G') and (V (z) —vo(z)( « (vo(z)(, where
vp(z) is obtained by suitably averaging V (z) over the

with E &0, fdzg '(z)g (z)=5jj. The total bound-

state wave function of the molecule —Rat-surface system
can be written as

gz „o,(r, S,s)= —
g, (z)4 (S,s)~P„)e

with K being the total parallel momentum of the system
(modG). The wave functions satisfy

0 0 0 0H g K.,anoj ( r, S)s ) EK,anoj g—K, anoj ( r) S)s ) )

fdrdSdsgK „oj(r,S,s)gK „o;(r,S,s)0~ 0

(37)

(38)

with

EK „oj=Ejo+E +6„+ (K—Q„+G)~ .

H"= — ))'„+H,&+ V(r, S,s)+H„,
2M

Equation (38) of the orthogonality holds when the K's lie
again in the first (two-dimensional) Brillouin zone. This
is always possible by redefining the Q„'s (as a function of
n) up to G without affecting the physical consequences.
Note that E. & 0 for the bound state. By a suitable super-
position of states with different K's, the bound-state wave
functions can be localized in the R coordinates.

Thermally averaging the total molecular-surface in-
teraction potential over the phonon states, we obtain the
molecule —rigid-surface potential V( r, S,s ). Using
V(r, S,s), the bound-state wave function and eigenvalues
are generally obtained and indexed in the manner de-
scribed in Sec. III without restriction to the closed
(anG)'s here. But based on the assumption previously
mentioned, we discuss a suitable indexing scheme of the
wave functions and eigenvalues for the potential. We
define the molecule-surface Hamiltonian H" as
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where h " is an approximate Hamiltonian in the sense that
no coupling between the projectile and the phonons is in-
cluded. The superscript r refers to the molecule —rigid-
surface interaction in the Hamiltonian. The correspond-
ing (bound-state) eigenvalue equation for a given K,

H "g» «G, (r, S,s) =E» «G, g» „G,(r, S,s),
can be solved without difficulty by setting

(39a)

1
gx G~ (,S )= ggaG GJ ( } (S s)~p ), a 12 J & &

L a , a J

i(K —Q„,+G) R
Xe (39b)

(39c)
g f dzg"G .G.J'(z)g"G G. (z)=5 ~ 5o G 5J )- .
aG

Note that g "(r,S,s) is the product of the spatial wave
function and the phonon wave function ~P„). If we set

V .(z) = vp(z)5 .5G p+ V (z),

then the second term on the right-hand side of the above
equation is much smaller than the first in our assumption.
The subscripts (anGj) or (a'n'G'j'} in Eqs. (39a)—(39c)
are the indices suitable for the present potential, with the
property that as V(r, S,s)~vp(z), or equivalently, as
V G.,(z)-0,

~0EK,a'n'G'j ' EK,a'n'G'J'

g»a„o, (r, S,s)~g» „o) (r, S,s) .0

The latter is equivalent to

g G G. '(z)~g'(z)5 .5GG .

Other indexing scheme of the eigenfunctions and eigen-
values rather than the present (a' n' Gj')' msay be used
in general cases as indicated by the superscripts i or i' in
the bound-state eigenvalues or eigenfunctions in the pre-
vious section. But under the present assumption that

~
V(r, S,s) —vp(z)

~

((
~ vp(z) ~,

the number of eigenfunctions of H' for a given K is basi-
cally the same as that of the indices (a'n'G'j'). The
latter yield the number of the eigenfunctions of H and
are convenient for keeping track of the eigenvalues when
V(r, S,s)~vp(z). As usual, Eqs. (39a) and (39b) result in
the differential eigenvalue equation

with the following equivalent expressions of the ortho-
gonality condition:

fdrdSdsg» „GJ(r,S,s)g» „G~ (r, S,s)

5», »'5 . '5, 5o,G'5), ~'

G, =(K +G) — (E» G~
F—. ),

g2 pa l

K—K +Q ., F» ~,o, , E—» .o, , +8, .

This is essentially the same as Eq. (31) if the following re-
placements:

g "G o~'(z)5„„~g' „G(z),
2 2
aG, a'G'j ' an G, i'

EK,a'n'G'j ' EK

are made. Note that the present equation is solved
without any restriction to (aG)'s in contrast to Eq. (31).
Expanding g'G G (z) in terms of the basis functions

If (z) I with coeScients C G G 1', we obtain basically
the same algebraic eigenvalue equation given by Eq. (32)
with suitable replacements. This algebraic equation is
efficient in obtaining numerical results. Note that

EK,a'n'G'j ' EK+Go, a'n'G' —GOJ'

g» „,G (r, S,s)=g»+o „G G~. (r, S,s),

gaG aG J (Z;K)=g aGG aG G (z;K+Gp)

If other indexing scheme of the eigenfunctions and eigen-
values rather than the present (a'n'Gj'') is used, then the
preceding equation should read as for any index i', there
exists an i' satisfying

'I

EK =E'K+G,

g»(r, S,s)=g»+o (r, S,s),
g'o(z;K)=g'o G (z;K+Gp) .

If the index scheme is based on the ascending order of the
eigenvalues, we have i =i'. Therefore, this is basically
the band structure of the eigenvalue and eigenfunction of
the adsorbed molecule due to the corrugation.

The scattering wave function y», „p(r,S,s} is defined

from

(E H "+i@)y» a'—„p(r,S,s) =+i Elp» a & p(r, S,s) .

The coupled differential equation, asymptotic boundary
condition, and coupled integral equation satisfied by the
wave function can be inferred from Eqs. I (25), I (63), and
I (64). The dependence of the wave function and scatter-
ing matrix on the initial phonon state n; is due to the
total-energy representation employed here. If
y»+;'(r, S,s) is the incident wave function, then the ad-
sorption transition amplitude is given by

1
Cf', = d r d S d s g» f ( r, S,s ) U( ~, —~ }

d 2 T

dz
aG, a'G' j' g aG, a'G' j' (

Xy»I+, I(r, S,s) (40}

2M G G-g V „(z)g"-o.. .o. '(z)
a G

with f =afnfGf, i =a;n;0. The initial and final states
satisfy

with E (41}
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with their respective energies given by E, and Ef. The
U( 0(), —~ ) is the time evolution or S operator in the in-
teraction picture. Using the following forrnal definition:

Tf, (K,E)= drdSdsgKf(r, S,s)
1

XVl(r, S,s)p(K+ (r, S,s) . (47)
U(0, + ~)= lim U(O, t)=Q

5 is given by

S = U( 0(), —oo ) = U (0, ao ) U(0, —oo ) =0 Q+ .

Here

U(() t) (i ls)H(e —(ils)H")

with H being the full Hamiltonian. Thus

(42)

(43)

Here gK f and (tK+ have the same total energy E=E;.
The K=K;+Q„=K +Q„ is the total parallel momen-

t

turn of the system up to G. The conservation of the total
parallel momentum (up to G) has already been taken into
account. The total adsorption rate is then computed
from

g 5(Ef E; )
l

—Tf'; ( K,E) l

f
S= lim U (O, t)U(0, t)— p(E) Tf', ;(K E)l (48)

=1+f dt —[U (O, t)U(0, —t)] .
dt

(44)

X [1 2' 5(Ef—E; )Tvl]y—K+;'(r, S,s)

(45)

from Eq. (40), where

T„=n+nC(„+)e+ =n+T,„C(„+)n=e.+no(„+'T„

with

Employing Eqs. (41) and (44) with H H"= V——V—:'ll,
we obtain

1
Cf', = drdSdsgKf(r, S,s)

for given K, E, and a;n, Not. e that i =a;n;0, and p(E) is

the number of the adsorbed states per unit energy inter-
val, i.e., the density of the bound states.

As previously mentioned, some other projectiles are
scattered out without adsorbing to the surface. Since we
do not consider here dissociation or bond-breaking pro-
cesses of the molecule, we discuss only the scattering
rates in the following. The scattering transition ampli-
tude is

Cf, =, f drdSdsyKf' (r, S,s}U(~,—~ )
L 3

XyK+, (r, S,s)

fdrdSds g(K f (r, S,s)PK+, '(r, S,s) .

g(+ )—
r E —H "+ie

(49)

Since

fdr dS dsgK f(r, S,s)gK+;'(r, S,s) =0,
~r(+ ) ~y(+ )8 K, t K, i

we have

Cf; = 2ni5(Ef —E; )Tf;(K,E)—

with

(46)

Here f=af nf Gf, i =a; n;0 and

Hr+r( —
) E +r( —} Hr+r(+ } E +r(+ }

K,f f K,f ' K,i i K, i

~K, f f~K, f' ~K, i i~K, i

with respective incoming or outgoing boundary condi-
tions. The second equality of Eq. (49) is obtained from
Eqs. (42) and (43). The parallel momenta, K, and Kf, of
the incident and scattered molecules are given by
K; =K —Q„and Kf =K—Q„+Gf, respectively. With

t

the same techniques as adopted before, we obtain

Cf '

3 f drdSdsgK f'(r, S,s)( 1 2)ri5(Ef E, )—T+)yK+, '(r, S—, s)

fi
2mi5(Ef E}Tf;—(K,E)= —2m Q—kfk, 5(Ef E)Sf', '(K,E)— (50)

with E =E;. The Tf;(K,E) and Sf+;)(K,E) are the similar transition and scattering matrices as discussed in Sec. IV of
paper I. It should be noted that

3 fdrdSdsyKf' (r, S,s)yK —,. '(r, S,s)=2m Qkfk 5(Ef E)5 5 5o O',

2

3 fdrdSdsgKf' (r, S,s)gK+;'(r, S,s}= 2m "(rl kfk;5(—Ef —E)5„„$"'+„'z „0(K,E)

(51)
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with 4"I+' representing the scattering matrix from V contained in the asymptotic boundary condition of y"'+'. Fur-
ther note the minus sign on the right-hand side of the second equation. This indicates that the scattering theory being
studied here is different from the conventional scattering theory where the target is spatially localized. Equation (50}
thus can be rewritten as

Cf; = 2+—5(Ef E )

2

Qkfk, 5„„Ã'+„'o „0(K,E)+ ' f drdSdsy~fI (r, S,s}'M(r, S, s)PK'+, '(r, S,s)

(52)

Here, yz f ' and gz+, ' have the same total energy E. For given a, n, K and E, the total scattering rate is given by (after
5-function manipulation)

—1/2

R = ML 2M (E E ——6 )
—(K—Q )s g3 fi Qf Elf Elf

Af nf Gf
(53)

The adsorption and scattering rates should be thermally
averaged over n, using a surface temperature T, . It
should be noted that, in the average procedure, K and E
are not kept fixed because

K=K;+Q„, E =E; =Ef'+E +6'„

with

Further thermal averages over E~ and a; could be made
employing the translational and vibrational-rotational
temperatures of the gas, T, and T„„, respectively, We
also carry out the average over the incident direction,
that is, over k;. Denoting the averaged quantities by ( ),
we obtain the total adsorption and scattering rates as fol-
lows:

A, = ( R, ) =A, ( T„T„T„„),
R, =(R ) =A, (T„T„T„„).

These quantities can be measured experimentally and
are important in surface studies. If the average over k;
were omitted, we would have more detailed rates as func-
tions of the incident angles. In a practical computation
of the adsorption and scattering rates, we could make the
approximation /It+, '(r, S,s) =y~+;'(r, S,s) in Eqs. (47) and
(52).

V. SUMMARY AND DISCUSSIONS

We have obtained realistic theoretical approximation
schemes for the calculation of the phonon and
vibrational-rotational inelastic triatomic-molecule —sur-
face scattering based on the formulation in paper I. An
iterative coupled integral equation derived from the
distorted-wave Green function with the inclusion of pho-
nons in the solid and vibrations and rotations of the tria-
tom is much more tractable than its counterpart of the
coupled differential equation. Our method is capable of
yielding an efficient ab initio computational scheme when
a suitable truncation of the phonon states as discussed in
Sec. II is made. For the molecule-surface scattering

study including phonons and vibrations and rotations,
the coupled differential equation should be replaced by
the iterative integral equation. Considering the fact that
multiphonon transitions become more probable for a tria-
tomic (or polyatomic) projectile than the light atom or di-
atom projectile case, the present iterative-integral-
equation approach is also useful for studying these transi-
tions since it yields calculational procedures of DWBA of
any higher orders as a byproduct. A rotationally impul-
sive integral-equation scheme, which is appropriate for
the triatomic molecular projectile and is essentially appl-
icable to a general polyatomic case, is also obtained from
the present method. The complexity of the calculation
resulting from the rotational states of the triatomic mole-
cule is simplified in our approach.

Employing proper Green functions, we have obtained
theoretical approaches for the simultaneous diffraction,
phonon and vibrational-rotational transitions of the (non-
resonant) direct inelastic-scattering processes, CDCTM
and CMSTM, with an exponential unitarization scheme
(see the Appendix). The CDCTM may be used when cor-
rugation of the molecule-surface potential is significant.
The coupling between the reciprocal lattice points due to
the molecule-surface interaction is taken into account in
the incident and scattered wave functions of the molecu-
lar projectile. The CMSTM could be employed when the
dependence of the molecule-surface potential on the
internal coordinates of the projectile or the anisotropy of
the potential is considerably large. The dynamic cou-
pling between the internal (vibrational-rotational) states
of the projectile is included in the incident and scattered
wave functions of the molecule. These two theoretical
schemes may be used for studying the angular, velocity,
and vibrational-rotational state distribution of the scat-
tered molecule and energy transfers among translation,
vibrations and rotations, and phonons. Our method re-
sults in both the diagonal (elastic reliection) and nondiag-
onal (simultaneous diffraction, phonon, vibrational-
rotational transition) elements in the S matrix.

As an application of the present scattering formula-
tion, we have presented the bound-state resonance
scattering method of the (triatomic) molecule-surface sys-
tem within the framework of the Feshbach approach for
the purpose of studying the diffraction-, phonon-, and
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rotational-mediated selective adsorption and desorption.
The (indirect) resonance scattering results from coupling
between the closed channels and open diff'raction (or
reflection) channels. In other words, the projectile is tem-
porarily trapped to the surface. After a certain lifetime
elapses, it is desorbed again upon transition of phonons,
rotations, and vibrations. Thus, the resonance scattering
is basically the trapping-desorption scattering in contrast
to the direct collision processes (the bound-state reso-
nance is analogous to the compound nucleus model in the
nuclear reaction theory}. Selective adsorption or desorp-
tion upon creation and/or annihilation of phonons or ro-
tational transitions has been observed in some experi-
ments. The theoretical methods developed for the inter-
pretation of such processes are generally not ab initio in
character, but rather are either phenomenological or lim-
ited to certain potentials. The close-coupling calculation
becomes very complex due to the closed channels when
phonons, rotations, and vibrations are included. There-
fore, the Feshbach-type approach which describes the
trapping-desorption scattering mechanism should be
most appropriate for theoretical study of the phonon-,
rotation-, and vibration-mediated bound-state resonance
scattering (selective adsorption).

We have presented explicit expressions of the scatter-
ing matrix and (ab initio) calculational procedures from
which the resonances energies (with band structure due
to corrugation), the shift and width function of the ener-
gies, and resonance line shape and intensities of the
simultaneous phonon, vibrational-rotational transition,
and diffraction can be obtained. Some realistic approxi-
mation schemes of the phonon and vibrational-rotational
transition resonance scattering method which are
effective for computations are also discussed. Especially
included is a scheme where the bound-state resonance
scattering amplitude is computed from the expression
given in Eq. (34) with simplified wave functions. These
wave functions are obtained as products of the spatial
wave function generated from the elastic diffraction po-
tential and that of the phonon and vibrational-rotational
states. The nonresonant potential scattering amplitude in
the scheme is computed from CDCTM (or CMSTM) ap-
proach within the open channels. Compared to the other
related theoretical works mentioned in Sec. I including
those with Feshbach approach, while they have certain
merits, the present method is adoptable to an arbitrary
molecule-surface input potential, treats simultaneous
diffraction, vibration-rotation, and phonon rnediations in
resonance in a systematic and unified manner, and in-
cludes a transparent description of the trapping-
desorption mechanism. It should be pointed out here
again that our method is ab initio in nature and yields
efficient calculational schemes.

Finally, a method of obtaining the quantum-
mechanical trapping or physisorption probabilities of the
triatomic molecular projectile to the surface (without any
dissociation processes} was presented as another applica-
tion of our scattering formulation. As previously men-
tioned, most computations of the physisorption or trap-
ping probabilities were made by using classical stochastic
trajectory with a generalized Langevin equation or semi-

classical scheme where the band structure (due to corru-
gation) of the adsorbed atom and the diffraction part of
the incident wave were neglected. In the present method,
the approximation g'+'=y"'+' may be used in practice
for the computation between the transition amplitudes
expressed in Eqs. (47) and (52) for the trapping or phy-
sisorption and scattering probabilities, respectively.

In paper I and this paper, we have developed a sys-
tematic formulation of the triatomic-molecule —crystal-
surface scattering in the thermal energy range and ob-
tained theoretical schemes that are realistic and at the
same time amenable to efficient calculations. These
schemes are more ab initio in nature to a certain extent
compared to the other theoretical methods employed so
far. Further, the present treatment of rotations and vi-
brations of the projectile (in paper I and this paper) can
be basically applied to a general polyatomic case. Some
numerical results obtained from the theoretical schemes
presented in this paper will be reported in later publica-
tions.

As previously mentioned, one purpose of the present
scattering formulation is to obtain realistic theoretical ap-
proaches for the interpretation of the experimental mea-
surements on the phonon and vibrational-rotational in-
elastic resonance scattering with the best available poten-
tials. Another aim is to obtain the theoretical methods
that can be used to determine the precise nature of the
adiabatic- (triatomic-) molecule —surface potential using
the experimental information. Since the interplay be-
tween the experiment, the potential, and the theoretical
scattering dynamics is important and the computational
results on the potential are nonexistent, obviously an ac-
curate scattering dynamics is essential. We hope that the
present formulation and the theoretical schemes would
serve such a purpose.
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APPENDIX

The unitarity conditions of the S matrix for given K
and E were discussed in Eq. I (27) in Sec. II, paper I.
Since the simple normalization condition

g „o~S'„G „o ~

=1 is not sufficient for the unitariza-
tion for the approximate S matrices, we apply in this ap-
pendix the exponential unitarization scheme employed in
other fields of the scattering study to the 5 matrices ob-
tained from the DWBA, e.g., CDCTM method of Sec. II.

In DWBA, the S matrix is given by

(+3 anG
an 6,a'n'G' ~a, a'~n, n '~6, G'

( (+3
(A 1)

from Eq. I(73), where
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(XK, Gl &IXK, ''G &'I dr dS ds XK, G(r S

X V(r, S,s)yK+'„G (r, S,s) .

Defining the S matrix as S'+'=(S'+„G „.G ), we rewrite
Eq. (Al) as

Equation (A4) can be written as

S(+ ) elk( I + i g cc+lT cc)elk

with T"=(V'G"G5 5„„.). The matrix T" is defined
from the expression T "=

( T "„G .„.G ), where

S(+) ia( I+ 7 Dw)

with

(A2) CC

anG, a'n'G' 1

~(+)
anG, a n G —i.

banG

L2

7DW (7DW )
t

c'(+)
G, 'G

anG, a'n'G'

&«xK, a'. Gl I'lxK+, a'. G &e

For the same reasons as discussed previously, T" is close
to a Hermitian matrix. Therefore,

7 cc 1[7 cc+(Tcc), ] 7 cc

x &x"...' I
vip'„".,'„. . &

b —(b, „G „G)—(5 „G5 5„„5GG) .

The T is seen to be Hermitian, i e.,T,„,G. „G= T „G,„G.. Equation (A2) then yields a uni-D W'e DW

tarized S matrix as

S(+ ) elk[ I +) ( Qcc +7" cc)]eiA

Equation (A6) results in a unitarized S matrix

S(+) ib iT ' ih

with

(A6)

(A7)

S(+ ) id&i T id, (A3) 7 cc—Qcc+ 7 cc

The S matrix given by Eq. (A3) is unitary, since T is
Hermitian.

The CDCTM S matrix can be inferred from Eq. (12) as

~(+ ) p(+ )
SanG, a'n'G' ~anG, anG'5a, a'5n, n'

( (+)
+ (XK.'.GI I'lyK". ,„,G, & . (A4)

Since 4,'+„G „G is the exact S matrix elements obtained
from the stationary diffractive potential v (r), the matrix
eV'+„'=(O'+„G a„G ) iS unitary. Therefare, One Can deter-
mine the Hermitian matrix 'T"„=(TG"G ) such that

(+) lA l7 lk

with b, „=(5a,G5G G. ). Since lvo(z) » lvG(z) for

GAO, 4'+„'=e ' " that is, 7",„=0.

We introduce a further approximation within the
present exponential unitarization method of the CDCTM
S matrix for practical computation. Since only the tran-
sitions (a;n;0)~(anG) are of interest, the off-diagonal
elements of T" that do not involve (a;n;0) are neglected.
More specifically, we set T"„G „G =0 when
(an G)A(a'n'G') and (a' n' G)A(a;n;0), and (an G)
W(a;n;0), and all other matrix elements of T" are com-
puted as described above. The T" thus obtained is again
Hermitian and the unitarized S matrix is obtained from
Eq. (A7). The unitarized scheme in the present approxi-
mation is basically equivalent to the case where the tran-
sitions containing no initial channel (a;n;0) are neglected
in the first order. This scheme is computationally
efficient. The unitarization scheme for the CMSTM S
matrix can be easily inferred from the preceding discus-
sions.
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