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Theory of vibrational, rotational, and phonon inelastic collisions of a triatomic molecule
by a crystal surface. I. A quantum-mechanical treatment of the scattering dynamics
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Based on time-independent scattering theory, we present a systematic formulation of triatomic-
molecule-crystalline-surface scattering dynamics including the vibrational states of the solid (pho-
nons) and the vibrational and rotational states of the molecular projectile. The vibrational and rota-
tional motions of the triatomic molecule are treated by separating out the motion of the center of
mass of the molecule in a manner that is suitable for treating the surface collisions with a molecular

projectile. This method can be essentially applied to a general polyatomic projectile case. From the
translational invariance of the full Hamiltonian, we employ the total (projectile+phonon) momen-

tum representation parallel to the surface to derive the properties of the total scattering wave func-

tion of the triatomic-molecule-crystalline-surface system, a representation of the simultaneous pho-
non and vibrational-rotational transition potential matrix, and the characteristics of the indepen-

dent physical solutions for a given energy and momentum of the system. The scattering equation in

differential and integral forms as well as the related Green functions are also obtained. In particu-
lar, the explicit configurational expression of the Green function of the molecule-surface system

presented here, including phonons and vibrations and rotations, is quite different from those of con-
ventional scattering theory where the collision partners are spatially localized. Several important
versions of the integral expressions of the scattering and transition matrices that are useful for intro-
ducing approximation schemes are also presented. The time-reversal invariance and microscopic
reversibility of the triatom-surface scattering are discussed. The equations relating the incoming
and outgoing scattering wave functions, which are satisfied in the present molecule-surface system
and are important in the transition-matrix scheme, are also obtained. Further, the relation between
the scattering matrix elements that describes the microscopic reversibility in the present scattering
system is presented. Since phonon annihilation and creation are mutually time-reversed phenome-

na, this relation of microscopic reversibility can be tested by experiment. From the present forrnu-

lation, some specific theoretical schemes for simultaneous diffraction and phonon or vibrational-

rotational transitions, a bound-state resonance inelastic-scattering method for phonon-mediated and
rotation-mediated selective adsorption and desorption, and a method of obtaining quantal phy-
sisorption probabilities are derived in the following paper. These results are suitable for the
triatomic-molecular-projectile case —quite realistic compared to what has been employed so far,
and at the same time capable of yielding effective ab initio calculations.

I. INTRODUCTION

Collision between gas-phase atoms or molecules and
surfaces in the thermal-energy range is important in un-
derstanding the nature of the energy transfer between the
gas and surface. The energy-transfer processes include
the transfer of translational or internal energy of the pro-
jectile to the surface phonons, accommodation of these
energies, and transfer of the energy from one site on the
surface to the other sites. A complete knowledge of these
processes is essential in the reactions taking place near or
on the surface and in the heterogeneous catalysis. '

Study of the scattering of atoms and molecules by a
surface is also useful in determining the characteristics of
the adiabatic gas-phase —surface interaction potential for
a clean or adsorbate-covered crystalline surface including
alkali halides, metals, and semiconductors. The informa-
tion of the (gas-phase —surface) potential is necessary in
the adsorption-desorption calculations. Ab initio calcula-

tions of gas-phase —surface potentials that take into ac-
count the surface ionic or atomic motion are extremely
difficult and almost nonexistent. Even the computation
of the gas-phase —rigid-surface potential which is not
sufficient for the above practical application is a very
complex task. Therefore, the determination of the poten-
tials eventually depends on the theoretical results of the
scattering dynamics. Employing collision dynamics, one
can compute the elastic and inelastic scattering intensities
from a certain set of possible potentials and the results
are compared with experiments. A potential which yields
the best agreement with measurements of the intensities
can then be selected. Therefore, it is highly desirable to
develop accurate collision dynamics.

There has been considerable theoretical activity with
respect to the study of gas-surface collisions, such as the
quasiclassical ' and classical trajectory approaches,
the stochastic trajectory method with the generalized
Langevin equation, ' ' the quantum-mechanical
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Cabrera-Celli-Goodman-Manson (CCGM) theory for
elastic diffractive scattering, ' ' the semiclassical S-
matrix method, ' ' the diffractional sudden-
approximation method, ' the diffractive eikonal approxi-
mation, the wave-packet calculation, the bound-
state resonance (selective adsorption) for elastic
diffraction, ' the inclusion of the Debye-Wailer-type
factor in the elastic scattering probability to take into ac-
count the inelastic effect, the local optical potential
model, the nonlocal energy-dependent self-energy
scheme, ' and quantum-mechanical close-coupling calcu-
lations for the selective-adsorption study of elastic
diffraction, etc.

Experimental measurements have been made of pho-
non inelastic scattering for a variety of atom or
molecule-surface systems with improved time-of-flight
techniques and resonances. ' ' ' ' ' The quantum-
mechanical phonon inelastic calculations have been car-
ried out employing distorted-wave Born approximation
(DWBA), ' semiclassical schemes, the impulsive-
collision or sudden-approximation method, ' the opti-
cal model, higher-order phonon processes with a "gold-
en rule" approach, ' improved DWBA with the inclusion
of corrugation, and the unitary one-phonon approxima-
tion. Inclusion of the phonon degrees of freedom in the
gas-phase-surface collision is important as manifested in
the temperature effects of diffractive and inelastic scatter-
ing intensities.

The bound-state-resonance method derived from the
elastic-diffractive-resonance method and based on the
eikonal approximation with hard corrugated walls has
been theoretically studied for inelastic scattering as
well. Extension of the quantum-mechanical close-
coupling calculations, which is in principle the most real-
istic theoretical approach, to the cases where the phonon
degrees of freedom are included is very difficult due to
the extremely large number of phonons states involved.
An attempt to carry out the close-coupling calculations
in the phonon inelastic scattering employing a discretiza-
tion method was only partly successful. The close-
coupling approach is not useful for the practical compu-
tations in phonon transition diffractive scattering, but it
serves as a starting point to develop further a scattering
formulation and to introduce approximations. It should
be pointed out that there are some general formulations
of gas-surface scattering, ' but they are again based on
a simple model Hamiltonian or interaction potential.

All of the theoretical works previously mentioned are
concerned with collisions between atoms or diatomic
molecules and a surface. Interactions of the polyatomic
molecules, in particular, triatomic molecules with sur-
faces, are of much importance since the dynamics and
mechanisms of the triatomic molecular collision and re-
action processes with surfaces have many practical appli-
cations. Among all the processes, inelastic triatomic-
molecule —surface scattering is the simplest one. This
process involves the energy transfer among translational,
vibrational, rotational, and phonon degrees of freedom
and provides essential knowledge for understanding ca-
talysis and complex reactions on the surface. Further,
the rotational degrees of freedom are found to affect the

physisorption. Experimental measurements on the angu-
lar distribution of triatomic molecules such as CO2, N20,
NO& scattered from clean or adsorbate-covered surfaces
were performed for the purpose of studying energy
transfer between surface vibrations (surface phonons) and
the rotation of the projectile. Laser-detection tech-
niques or time-of-flight methods were used to determine
the final-state distribution of the molecules scattered
from the surface.

Theoretical studies on the triatomic-molecule —surface
collisions are mainly confined to the semiclassical trajec-
tory calculations. There exists an effective-mass theory
on the polyatom-surface scattering where the inelastic
scattering problem is treated within the first order in the
distorted-wave expansion. The first-order distorted-wave
method can yield reasonably good results for one-phonon
processes but it is not suitable for interpreting the experi-
mental measurements on, for example, selective adsorp-
tion (resonance) or multiphonon transitions. Moreover,
most of the theoretical work on atom or molecule-surface
collisions previously mentioned are based on time-
dependent scattering theory. It is necessary to develop a
realistic quantum-mechanical formulation of the
triatomic-molecule —nonrigid-surface collision dynamics
and an ab initio theoretical scheme that can be adopted to
a flexible input potential based on the time-independent
scattering theory. This would enable us to assess the pre-
cise nature of the triatomic-molecule —surface interaction
potential and interpret the experimental measurements
on resonances, etc. Such a formulation exists for the sim-

ple case of atom-surface collision. However, its applica-
bilities are limited because the atomic projectile was em-

ployed in the formulation. It is desirable to extend the
formulation to the triatomic-molecule —surface-collision
case. We find that the task is not straightforward.

In the present work, we extend our previous work for
the atom-surface scattering to develop a systematic
quantum-mechanical formulation of the triatomic-
molecule —crystal-surface scattering dynamics that takes
into account the internal degrees of freedom of the pro-
jectile (vibration and rotation), dilfraction, phonons, and
the resonances. Our work uses time-dependent scattering
theory in contrast to most of the theoretical works previ-
ously mentioned where time-dependent theory was em-

ployed for the atom or diatom —surface system. The total
(projectile+phonon) momentum representation parallel
to the surface obtained from the translational symmetry
is employed in our formulation, analogous to the total an-
gular momentum representation obtained from the rota-
tional symmetry used in gas-phase scattering. The vi-
brational and rotational motions of the molecule are
properly treated for the collision dynamics with the
center-of-mass motion separated out. This method can
be basically applied to the general polyatomic projectile
case. The formulation turns out to be somewhat different
from the cases such as, e.g. , atom or molecule —molecule
system, where collision partners are spatially localized.
From the formulation, specific theoretical schemes suit-
able for the triatomic molecular projectile are also de-
rived. They are more realistic, systematic and at the
same time amenable to ab initio computation compared
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to some theoretica1 schemes employed so far. The
present formulation and theoretical schemes can be ap-
plied to both clean and adsorbate-covered crystalline sur-
faces as long as the adsorbates form ordered overlayers
such that two-dimensional periodicity of the crystal sur-
face exists. In practice, there are no perfect two-
dimensional translational symmetries, but small deviation
from the symmetry can always be treated as a perturba-
tion from the present case.

In the next section, we first derive the properties of the
total scattering wave function of the triatomic-
molecule —crystal-surface system with the internal (vibra-
tion and rotation) degrees of freedom of the projectile and
phonons in the solid. Then we present a representation
of the phonon and internal-state transition potential with
translational symmetry, the coupled differential equa-
tions, and independent physical solutions for given ener-

gy and momentum. Triatomic vibrational-rotational
wave functions appropriate for the collisions and the (tri-
atomic) molecule-surface interaction potential matrix are
discussed in Sec. III. Various versions of the integral
equations, explicit expressions of Green functions of the
molecule-surface system with phonons and vibrations and
rotations, and corresponding integral representation of
the scattering and transition matrices are presented in
Sec. IV. These are necessary for obtaining approximate,
realistic computational schemes for higher-order DWBA,
multiphonon processes, and a coupled-channel
transition-matrix method (see the following paper). In
Sec. V, the time-reversal invariance and microscopic re-
versibility in the triatomic-molecule-crystal-surface sys-
tern are discussed. A summary is provided in the last sec-
tion. As applications of the present formulation, we will
present in the following paper specific theoretical
schemes for simultaneous phonon and vibrational-
rotational transitions suitable for the (triatomic) molecu-
lar projectile, the bound-state resonance scattering ap-
proach for phonon- and rotation-mediated selective ad-
sorption and desorption, and a method of obtaining
quantum-mechanical physisorption probabilities.

II. INELASTIC-SCATTERING DYNAMICS
OF A TRIATOMIC-MOLECULE- SURFACE SYSTEM

We first briefly review some attributes of the phonons
in the presence of a crystal surface for the purpose of ex-
plaining the relevant notations adopted in the present
work for the triatomic-molecule —nonrigid-crystal-surface
scattering. We consider only the cases where the two-
dimensional translational symmetry exists. Thus, the fol-
lowing formulations are applied to both clean and
adsorbate-covered surfaces that form periodic overlayers
in such a way that the solid surfaces have the same
periodicity. More specifically, we assume that the surface
layer and the substrates have a common periodicity re-
gardless of whether the surfaces have the structures of re-
laxation or reconstruction.

The displacement u'(Ro) with a =li from the equilib-
rium position of the ith basis atom of the Gth two-
dimensional unit cell in the lth layer is written in the
form

in the classical picture. Here RG is the two-dimensional
direct lattice vector parallel to the surface with Gr being
the corresponding two-dimensional reciprocal lattice vec-
tor, that is, Rz=g, A, +g2 A2, G=g, B,+gz82 with
A;*s, B s being the two-dimensional direct and recipro-
cal primitive lattice vectors satisfying A, -B.=2m.6,. and

g s being integers. Thus, if G'=g', B,+g2B2, then
G' R&=2irm with m an integer. Q denotes a single-
phonon momentum parallel to the surface; fico, (Q) and
e,'(Q) are the phonon energy and polarization, respective-
ly, with s denoting the phonon modes. Thus, s includes
the perpendicular component of the momentum for the
bulk phonon case, and the Rayleigh modes, etc., for the
surface phonon case. The classical equation of motion is
transformed into an algebraic eigenvalue equation
through the unitary transformation RG~Q.

The two-dimensional Born —von Karman boundary
condition with the boundary determined by the number
of two-dimensional unit cells on the surface, N =N&N2,
is employed. Then, we can write

iQ RG J iQ RGpe 5qo pe =5o0
N

Q

when the Q's lie in the first two-dimensional Brillouin
zone. It should also be noted that

1 J dReiG R

UC

where J' „, denotes the integration over the two-

dimensional unit cell and A is the area of the cell.
The polarization and the eigenvalue relations,

e,"(Q)=e,'( —Q) and co, (Q) =m, ( —Q), are obtained
from the properties of the dynamic matrix. In addition,
we have the orthogonality and completeness relations

g M'e,"(Q).e,'(Q) =5.. .

aa' i i'5 5

with the subscripts i and i being the Cartesian com-
ponents, and M' being the mass of the ith basis ion in the
1th layer.

The interaction potential V between the triatomic
molecular projectile and the crystal surface is a function
of all the u'(Ro)'s and r„, rii, and rc, the position vec-
tors of A, B, and C atoms with respect to a fixed origin
O. These three position vectors can be transformed into
another set of three vectors, r, S, and s, ~here r is the po-
sition vector of the center of mass of the triatomic mole-
cule from the origin 0, and S,s are any two independent
internal relative vectors of the triatomic system as shown
in Fig. 1. Specific choices of S and s will be discussed
later. It is sufBcient to note here that the rotational and
vibrational wave functions of the molecule are described
by the six variables associated with the internal vectors S
and s. Therefore, Vmay be written as

V = V(r, S,s, u'( RG ) )
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including all a and G. Since V essentially depends on the
relative vectors between the projectiles and the ions in
the solid, it is invariant under the transformations
r~r+RG, S~S, s~s, and u'(R~)~u'(Ro —Ro ).

0 0
Note that RG —RG =R~

0 0

The crystal Hamiltonian is given by

H„= H,„(p'(Ro), u'(Ro))

with

p'(Ro) =M' —u'(Ro) .~ d

It is also invariant under R&~Ro —Ro in p'(R&) and
0

u'(R&). Using the creation and annihilation operators
ciQ, , aQ, of a single phonon with momentum Q and
mode s, we obtain the second-quantization formalism.
These operators satisfy the boson commutation relations
[aQ „aQ, ]=5Q Q'5, , The u'(Ro) and p'(Ro) are now
Hermitian operators,

u'(Ro) = I A'

v'N Q, 2', (Q)

1/2

(ciQ, +ci Q, )

or eC X e,'(Q)e
1/2

irido, (Q)
p'(Ro) = —g M'

&NQ, 2
(aQ, —a Q, )

(2)

X e', (Q)e

The Cartesian components of these operators satisfy the
canonical commutation relations

(a)

[[u'(RG)], , [p' (RG )],']=ifi5, , 5, , 5o o .

The operators u'(Ro, t) and p'(Ro, t) in the interaction
picture (Dirac picture) are obtained from the replace-
ments

—ice, (Q)t
aQ, ~aQ, e

ice, (Q)t
aQ, ~aQ, e

of BQ

(b)

FIG. 1. Scattering geometry of the triatomic-
molecule —surface system. The (x,y, z) is the space-fixed coordi-
nate system with the x,y plane being the plane of the crystal sur-
face. The z axis is chosen to be the outward normal to the crys-
tal surface, and r is the position of the center of mass of the tria-
tomic molecule ABC; (a) nonlinear molecule; S and s are the
relative vectors from the center of mass of diatom BC to atom
A and from 8 to C, respectively and g is the angle between S
and s; (b) linear molecule; S and s are the relative vectors from
atom B to atom C and from the center of mass of diatom BC to
atom A, respectively and g is the angle between S and s.

in Eq. (2). Then u'(R&) =u'(Ro, 0), p'(Ro) =p'(Ro, 0)
are the operators in the Schrodinger picture and one sees
that

p'(Ro, t ) =M' —u'( R&, t ) .a ad a

dt

The phonon state ~p„) is specified by a set n =
I nQ, I

of the occupation numbers nQ, with Q and s being the
momentum and mode, respectively. The crystal Hamil-
tonian diagonal in this representation and corresponding
total phonon energy are given, respectively, by

H„= g i)ice, (Q)(aQ, aQ, + —,
' ),

Q, s

8„=g iiico, ( Q )( n Q, + —,
'

) .
Q, s

We thus have H„~P„)=6„~P„).The phonon states are
orthonormalized such that (P„~P„.) =5„„.The poten-
tial V becomes a second-quantized operator through Eq.
(2) as well.

The center-of-mass momentum operator of the projec-
tile (which is also the total linear momentum of the pro-
jectile) and parallel phonon momentum operator are, re-
spectively, given by

p= —V„, %',,= QQciQ, aQ, .
Q, s

Thus A', „~$„)=Q„~p„) with Q„= QQ, QnQ, . One sees
that
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(i /fi)p-RG —(i/A') p RG
r+RG =e "re

RG —i%,.R~
u'(R& —RG ) =e 'u'(R&)e

p'(Ro —Ro ) =e 'p'(Ro)e

(4)

We also have

if' -R —i%' -Rcr GH e cr G Hcr cr

Using these translation operators, we have the invariance
of V previously mentioned,

(&/fi)P. RG Igt' RG RG )/A)P RG
e 'e 'V(r, S,s, u'(RG))e 'e '= V(r+R&, S,s, u'(Ro —RG ))

= V(r, S,s, u'(Ro)) .

The operator P=(fi/i)Vz is the projection of p onto the
surface, and R the projection of r onto the surface. Note
that p RG=P RG. The total Hamiltonian H of the
whole system is given by

k „G= (F. F. ——8„)—(K—Q„+G)2

We also define outgoing or incoming free-particle wave
functions of the molecular-surface system from

H, i= — Vs — V, + V,i(S,s),
2P A ac 2Pac

with

P A, ac
1 1 1

Ma+Me Pac

and V „ is the molecular potential of an ABC system.
Equations (5)—(7) then yield

UGHU~ =H (8)

for all G, where

(i /A)P. RG i%' „RG
UG —e e

i%' RGSince [P,%'„]=0,UG =e with A'=P/1+%'„.
From the translational invariance previously discussed

we study the properties of the scattering wave function.
We use k;, a;, and n; to denote the initial momentum of
the projectile, the initial internal (vibrational-rotational)
state of the molecule ABC, and the initial phonon state of
the crystal surface, respectively. The total energy of the
system and the total momentum parallel to the surface
are given, respectively, by

M being the sum of MA, Ma, and Mc, i.e., the masses of
atoms A, B, and C, respectively. If S is chosen to be the
relative position vector from the center of mass of atom B
and C to atom A, and s the relative position vector from
8 to C as in Fig. 1(a), then the molecular Hamiltonian is
given by

pe
+—' „o (r, S,s)=e ' ' ' 4 (S,s)i(()„)

I(K —Q„+0.) R
Xe

iK RG (+)ice g„.„G(r Ss). (12)

If the solution of Eq. (11) is unique, then Eq. (12) results
ln

where 4, (S,s) is the molecular vibrational and rotation-
I

al wave function with H, i 4 =E 4 and
(4 i4, )=5, . More details of the molecular wave
function will be discussed in Sec. III. The total scattering
wave function of the system gK

+— „&(r, S,s) with outgo-

ing or incoming asymptotic boundary condition satisfies
the following differential form of Lippmann-Schwinger
equation:6'

(E H+ie)P'z—
~ „o(r, S,s)=+ieyK+'„G (r, S,s) . (11)

In Eq. (11) e )0 with the understanding e~0 and
g'tc

' „o(r, S,s) is not simply the spatial wave function.

for G, =0 is equal to e ' 4 iP„) and thus

g&+' „0corresponds to the well-known physical solution.

Equation (11) is different from that of the ordinary
scattering theory where the collision partners are spatial-
ly localized. Proof of the equation will be omitted here.
Its validity will be seen in the subsequent discussions.
Applying the operator UG to both sides of Eq. (11) and
using Eq. (8), we have

(F. H+ie)UGQ~—+'
„G (r, S,s)—

Q2k2
E = +E +@„, K=K;+Q„ (10)

e t(K
' „o(r, S,s)= UG1(»

—' „G (r, S,s}
where K,- is the projection of k; onto the surface and E

I

is the internal vibrational and rotational energy of the
ABC molecule. K is a good quantum number up to G as
seen From Eq. (8). We define the perpendicular wave
number from

=e " f~—' „G (r+Ro, S,s),

(13}

which shows that the wave function it&
' „o is the
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eigenfunction of the translation operator UG with the ei-
iK R~

genvalue e for arbitrary G. Expanding the total
wave function in terms of the basis states

l P„),

VG„,„,(z)=(e lv„„,(z, S,s)lC . &

= f fdSds@*(S,s)v„„.(z, S,s)4 (S,s) .

0~, '.G (r, S,s)= gf.', K „o (r, S,s)lg„&,

and using Eq. (13), we have

(14) Since the displacement vector u (Ro) is a Hermitian
operator and Vis a real function of r, S, s, and u'(Ro), V
is Hermitian too, i.e., V = V. From this property we can
show that

f„'+K' „G (r+RG, S,s)=e " f„'K „o (r, S,s} .

(15)

V„„.(z, S,s) = V„.„(z,S,s),
(21)

'(K —Q„+G) R
Xe (16)

Here the subscripts (a;n;G;) correspond to the initial
condition, a=a, , n =n, , G=G, . We choose the unit
vector z to be the outward normal to the crystal surface.
The position vector of the center of mass is given by
r =zz+ R with z R=0. The total wave function

is a linear combination of the phonon states

lP„) with c-number coefficient functions. Thus 1(t~z '"„o
l l t

can be written as

1 K~~& «( 'S's) X canaan G (z)@
anG

—i(K —Q +G) Rx(y„le
The total interaction potential of the triatomic-

molecule-crystal-surface system is then expressed as

V= V(r, S,s, u'(Ro))

= y ly„) v„„(r,S,s)(p„.l,
nn'

where V„„.(r, S,s) = ( P„ l Vlf„) . Applying the transla-
tional invariance, Eq. (6), to V, we have

V„„(r+RG,S,s)=e " " V„„.(r, S,s) . (19)

i(Q„,-Q„) R
Therefore, V„n. is a product of e " " and a wave
function that has two-dimensional periodicity with
respect to r, and thus we have the following representa-
tion for the interaction potential of the
molecule —crystal-surface system:

V= g lP„) V„„(z,S,s)(g„ le
nn'G

nn'G
aa'

(20)

Here,

(+) i(K —Q ) R
Therefore, f„K,„o is a product of e " and a

wave function that has the two-dimensional periodicity
with respect to r. The latter can be further expanded in
terms of the molecular wave functions 4 . Thus we have
the expression

g'„+-.' „G (r, S,s) = g 1('.'-„o.„o(z)e.(S,s)ly„)
anG

with k;, = k „o& 0. Equation (12) implies both
I

Schrodinger equation

Hg'r. ,' „o (r—,S,s) =EgIt—+'
„G (r, S, s) (22}

and the asymptotic boundary condition

K
—', „,o, (r, S,s)

~,'„G (r, S,s)

+(outgoing or incoming scattered wave) . (23)

The notation —is used to indicate the asymptotic behav-
ior as z goes to infinity. Substituting Eq. (16) into Eq. (22)
and using the orthogonalities, (P„lP„.) =5„„. and
(4 l4 ~ ) =5 ~, we have a coupled differential equation
(CDE},

2M V~„,„,(z)1(t —,„,G „o (z) .an, a n

The orthogonality

i(Kl —K&) R
Kl, K~

dRe

(24)

with the K s being the vectors parallel to the surface and
consistent with the (two-dimensional) Born —von Karman
boundary condition, and L, the area of the surface
within the boundary, were also employed to obtain Eq.
(24). The open channels are the ( an G )'s satisfying
k „G)0 with k nG) 0. The closed channels are the
(anG)'s satisfying k „&(0. For a closed channel it is
convenient to write ~ nG= —k nG with ~ „G)0. The in-
itial channel (0.;n;Cx, ) is an open channel by definition.
For practical purposes, we define zo as the smallest z
coordinate where the potential V „„(z}for z ~zo is very
large compared to the vertical component of the incident
energy of the molecule. Therefore, the wave functions
cannot penetrate beyond zo and we can write

„o(zo)=0. The asymptotic boundary condition

The initial momentum of the center of mass of the pro-
jectile is given by

k; = —k;,z+K, = —k „Oz+(K—Q„),
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of the total wave function [Eq. (23)] yields the condition
of vertical component,

III. MOLECULAR WAVE FUNCTIONS
AND POTENTIAL MATRIX ELEMENTS

(+)
Pano, a n G

k

for open channels and

' ]/2

(+) +'k Gz
ano, a, n G

(25)

In this section, we discuss the triatomic-molecular vi-
brational and rotational wave functions and the potential
matrix elements of molecular-surface interaction for the
simultaneous vibrational, rotational, and phonon
transitions. This is necessary for the present
molecule —nonrigid-surface scattering study. The vibra-
tional and rotational wave functions and the correspond-
ing energies are obtained from the eigenvalue equation,

(+)
Pano, a n G (Z)

' 1/2kanc

KanG

for a given total energy E and momentum K. For a given
E and K, the scattering wave functions /It+' „G(r,S,s)
are the eigenfunctions of the translation operator UG for
arbitrary initial conditions a'n'G' with the same eigen-

value e' G. More specifically, these eigenfunctions for
different a'n'G' are independent and span the eigenspace

iK.RG
determined by the simultaneous eigenvalues E and e
of the operators 8 and UG. The total parallel momen-
tum K is analogous to the total angular momentum J in
the gas-phase scattering where the rotational symmetry
exists. The S matrix and the component functions are
also functions of K. If we express the K dependence ex-
plicitly by

G(z) —g G G(z, K),(+)

for closed channels. Here S' +—' is the scattering matrix (S
matrix).

We have defined the scattering wave function

PIt
—' „o(r, S,s) with an arbitrary initial condition

(a'n'G') for giuen total energy E and parallel momentum
K. Matrix elements of the scattering matrix S'*' are
defined only for the open channels of columns and rows
and satisfy the following unitary conditions:

S Sc (+) e(+)+

(27)
S S"G" G~ " "G" ' 'G' ~ 'fi 'fio G' &

H „(S,s)4,(S,s)=E 4 (S,s) . (30)

If S is chosen to be the relative vector from the center of
mass of diatom BC to atom A, and s the relative vector
from B to C as in Fig. 1(a), then

H „(Ss)=—
2pa, ac

Vs — V, +V „(S,s, cosg),
2pgc

(31)

with cos(=S s. If atoms B and C are of the same
species, then S is the symmetry axis. Rotational wave
functions of the molecule are described by the three Euler
angles (A)=(y, 9,y) for a rotation from the (x,y, z)
space-fixed coordinate system to the (x',y', z') body-fixed
coordinate system of the molecule defined from

z'=S, x'=SX(s XS)/sing, y'=z'Xx' . (32)

The x' axis lies in the plane determined by the vectors S
and s. The vibrational wave functions are described by
the normal modes derived from the three variables
S,s, cosg.

Equation (30) can be solved employing the simultane-
ous eigenfunction of the square of the total angular
momentum J and its projection J, onto the z axis,
since [H „,J]=0. Here, J=l+ j, l =(1/i)S X Vs,
j= (1/i)s X V, . In terms of space fixed coordinates

4 (S,s)=4 (S,s)= g G, (S,s)5',, (S,s)
lj

with

(+) (+)
ano, a'n'G' anG, a'n'G'(

then one can show that

Sa„O a „G (K)—SanG —Go, a'n'G' —Go( 0) '

PanO, a n O (Z ~ K) Wan'Oi —O, ,a'n'O' —G,(Z i

K „G(r, S,s) =/~KEG, „,o, G (r, S,s)

(28)
Pij (Ss)= g (lmjm2lJM) Y, (S)Y, (s) .

mlm2

Here, YI (S)= Yl (Os, ys), e.g., are the spherical har-
monics. As usual, J, I, and j denote the eigenvalues
J (J+ 1), l ( l+ 1), and j (j+ 1) of the operators J, l, andj, respectively, and M is the eigenvalue of J, . The same
wave function can also be expressed in terms of the
body-fixed variables as

(S,s)= QF~(S,s, cosg)D JMnK(Q)

using the CDE and the asymptotic boundary condition of
the component functions.

The CDE is not quite useful for obtaining the numeri-
cal solutions, but it is used to further develop the scatter-
ing formulation and introduce approximation schemes as
discussed later. In what follows, V(r, S,s) will be used to
denote the full interaction potential V(r, S,s, u'(Ro)) un-

less specified further.

Here

2m. g F~&(S,s)Y&K ((,0)D Mx(Q) .
Kj

' 1/2
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where DMK(Q) being the well-known rotation matrix and
E the eigenvalue of the projection J, of J onto the z' axis.
The asterisk denotes the complex conjugation. It can be
shown that

6'(S,s}=g U,PFK, (S,s),
K

FK, (S,s)= g U($61 (S,s),
I

Q U1K ~(K 5K—
, K Q U1K Ui'K 51—, 1

I K

It is convenient to employ body-fixed variables for the
separation of vibration and rotation, since V „ is de-
scribed in terms of S,s, g. In what follows, we use the no-
tations

r=S, s, cosg, dr=S dS s ds singdg .

The ~ are the variables related to the vibrational degrees
of freedom. Since the coupling between diferent E's are
small, we use the following vibrational and rotational
basis functions:

using the relation between P& and Y,KD MK. Here
' 1/2

4(S,S) =FK(r)D MK(Q) . (33)

Zl +1
2J+1 (loJKIJK) . Employing the standard techniques of rigid rotor with

I = (J—j ) in suitable body-fixed frame, we obtain

(D MKll ID M K ) =IdQ D MK(Q)l D M*,K,(Q)

5J,J'5M, M'[5K, K AK(cosg) 5K, K'+18K (cosg)+5K, K' 18K (cosg—)] (34)

where

dQ=sin6P d811pdg, AK(cosg}=j +J(J+1}—2K

BK-(cosg) =&(J+K)(J +K + 1) + (K+ 1)cotg
a

1 c} . 8 Kj=— . sing +
sing c)g c)g

(35}

+HKK {r}l (36)

which divides the diagonal from the nondiagonal part.
Here,

HK(r) =— AK(cosg)

S
a, a

2pw, ac S c)S i)S 2p~, ac

1 8 2 c) fi js + 2+V,1(r),
IJac s s s 2IJac s

(37)

HK, K'{r} [5K,K' —I~K
2p g gpS

5K, K'+18K (COSg)]

Note that dSds=drdQ, . Using Eq. (34), the molecular
Hamiltonian matrix is given by

(D MK lHmol lD M'K' ) 5J J 5M, M I 5'K, K'H'K. {r}

HK K, (r) —(
—1) H K K. (r) . (40)

This is a consequence of the parity conservation
H, i(S,s)=H „(—S, —s}. One sees that Eq. (40) is also
satisfied for both the diagonal and nondiagonal parts sep-
arately and, in particular, HK =H K. Therefore,

E~~ =E K& and FK& =F K&. The basis functions
DM~K(Q) of the parity eigenfunction are defined from

for the solution of Eq. (30) with E =EK&. Thus
a=(JMKP) in this case. Although the vibrational and
rotational energy EK& is independent of M, we denote it

by F. . %e note that the J and K dependence in FK& are
negligible and P indicates a suitable normal mode. In or-
der to solve Eq. (38), the molecular potential
V „(S,s, cosg) is usually approximated up to the quadra-
tic order in the displacements from the equilibrium posi-
tion So,so, go, and the normal modes of the small oscilla-
tion should be computed by carrying out the transforma-
tion from S,s, g to certain normal coordinates q„qz, q3.
For a linear molecule ABC where displacement of B from
its equilibrium position is small from the linear axis AC,
the vector S is chosen to be the interatomic vector from
A to C, and s the vector from the center of mass of AC to
8. The E is then the rotational projection quantum num-
ber onto the linear axis AC [see Fig. 1(b)]. For example
in COz, B is the carbon atom.

Let HK K (r) be the expression inside square brackets
in Eq. (36). Then

The nondiagonal part HKK of the Hamiltonian is basi-
cally the Coriolis coupling term and in general is small.
If we neglect this term, the eigenvalue equation,

HK(r)FK13(r) =EKaFK&{r), with

X CK'~ DMK«»
K'= —J

(41)

for the vibrational wave function yields the molecular vi-

brational and rotational wave function
CJPK N (5 +( 1)J+K+P5

t

N (S,s)=FKa(r)D MK(Q) (39}
for J ~ K ~ 0. Here p =0 corresponds to the {+) parity
and p= 1 indicates the (

—
) parity. NK =1/&2 for K & 0
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and 2%K =
—,
' for K=0. It is understood that

(
—1) =( —1) for the K=O case. If P is the parity

operator defined as Pf (S,s) =f ( —S, —s), then
PDMi'x = (

—1) D~~x. Neglecting the nondiagonal term

Hx z (Coriolis coupling term), we see that the molecular
wave function

e', (S,s)= y Ugp'e', p(S, s)
KP

(43)

(30), the following linear combination of the wave func-
tions that are associated with the diagonal part of the
molecular Hamiltonian could be made:

with K ~0. Then, the equation
(42)4 (S,s)=4~/(S, s)=Fop(&)D~g(Q)

H „(S,s)4 ~(S,s)=E I'4 ~(S,s)

yields an algebraic eigenvalue equation

X Hdp, sc p Ud'jg =E
i

Ujp
K'P'

Here,

for K 0 again satisfies Eq. (30) with E~=Ez~. This is

from the relations HK =H'-K EKP =E Kp, and

Fop=F1 ~p. In Eq. (42), a=(JMpKP) with K ~0.
Including the Coriolis coupling term, the eigenvalue K

of J, is no longer a good quantum number in the molecu-

lar system. In order to obtain numerical solutions of Eq.

(44)

(45)

=Etcp5sc z 5p p + 2Nic Nx [HI'c p x g + (
—1 )

+ +~H
xp x,p, ], (46)

with

Hl'cp K p
= fdrFxp(r)H~x (r)Fic p(r) . (47)

In practice, the Coriolis coupling term is small and thus

Ulcc~
——5& Kp. In order words, the molecular wave func-

tion 4 ~ has in general a dominant component KI3.
Assuming that the bth atom is in the gas phase, the

molecular —bth-atom interaction potential is of the form

I

from those in the gas phase to the ones suitable to the
solid phase. We adopt the pairwise molecule-atom (with
suitably adjusted parameters for the solid) potential
summed over all the atoms in the solid to represent the
molecule-surface interaction potential, i.e.,

V= g V'(S, s, r i, ),
b

V'= V'(S, s, r b), (48)
= g V'(S, s, r —RG —r, —u'(Ro)) .

G, a
(49)

where the r b is the relative vector from the bth atom to
the center of mass of the molecule with b =liG, a =li.
The potential given by Eq. (48) is rotationally invariant in
the sense that simultaneous rotations of S, s, and r b

yield the same value. The expression for the
molecule —bth-atom interaction potential, where the bth
atom is in the solid is of the same form as in Eq. (48) ex-
cept that the empirical parameters should be adjusted

I

V'(S, s, r „)=,g Vi, (S,s)e
k

and the operator representation of u'(RG), we have

(50)

The vector RG+r, denotes the equilibrium position of
the ith basis ion in the Gth two-dimensional unit cell of
the 1th layer (a =li) From the .Fourier decomposition

where

(V„' ) = f f dSdscp'(S, s)Vi, (S,s)C& (S,s),
1/2

ea» (Q )e
G'ko=k, z+G+Q„—Q„, 5=i

2N co,

V „„(z)= 3 g (Vi', ) .exp[i [k,z+(Q„—Q„) R& —ko r, ]I ff (n&, lexp( —
5, a&, +5'aq, , )lnq, ), (5 )

G'ak, Q, s

It should be noted that the rotational invariance gives Vi', (S,s) = Vi', .(S', s') with the primes indicating the vectors ob-

tained from an arbitrary rotation. If we make the expansion

Va (S s) — y Va, J"M"K
( )D

I"»
( II )

JltMIIKIt

then from the rotational invariance, Vk' is of the form

V~' M (r) =( —l)M V~' (r, k) Y" -(k)

When a=(JMKP), a'=(J'M'K'P'),

(52)
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Vko )aa,
' Vko JMKP, J'M'K'P

( 1
M'+K'

=&(2J+1)(2J'+1) g „(JMJ' —M'l J"M")(JKJ' —K'l J"K")( V' K
)

JIIMIIKII

Here

JKIJ J K p J—drFKp(r)V„G (r)FKfr(r) .

(53)

(54)

When a=(JMpKP), a'=(J'M'p'K'13') for K,K'~0,

)JMp fJ, J'M' 'K'P'

~JpK a J' p'K'
K ko JMKP J'M'K'g K'

KK'

Finally, if a =(JMpy ), a =(J'M'p'y'), then

(55)

g &e., y„lvla. , y„)
u(r)=( V) = —(E + F~ )/kTa n

a=a'. The matrix element is given by Eq. (57) with
a =a'. Assuming that the gas-phase and the surface have
the same temperatures, the thermal average of the poten-
tial which will be used later is defined from

I I I

( Vk )a a
— g UK@ ( Vk )JMpKp J M p K p UK p

KP, K'P'

(56)
From

a, n

(59)

with

w, (k )= g (ng, + —,')ISI,'
Q, s

(nq, +-,')a
lkG s,"(Q)l

2N q, (u,
(58)

and kG=k, z+G. The simultaneous phonon, vibration-

al, and rotational elastic scattering is described as n =n',
I

%e consider here the potential matrix elements of ei-
ther the phonon elastic scattering (n =n') or the single-
phonon transitions. An extension of the present method
to the multiphonon transition potential matrix is
straightforward. In the following, we employ a scheme
that is different from the others for obtaining the matrix
elements. Applying the Baker-Hausdorf theorem to the
phonon creation and annihilation operators and using the
fact that l5l —0(1/N) «1, the matrix element of the
interaction potential for the phonon elastic but
vibrational-rotational inelastic scattering (n =n' case,
i.e., n&, =n'r, for all Q, s) is obtained as

u (r) = g uo(z)e'
6

with uG(z)=u o(z), we have
—( E + (~' „)jk T

Van, an

uG(z) = —(E +E„)lkT
e

a, n

(60)

—E /kT
e

—2Ha(kG) .
and e " is the Debye-Wailer factor.

The matrix element for one-phonon emission having
(Q, s) mode is obtained in a similar manner. Therefore,
when n&, n&, =5&—q.5... for all (Q's'),

With approximation l5l «1, uo(z) is given by Eq. (57)
with (Vk ) being replaced by ( Vk ) and IV, (ko) be-

ing replaced by IV, (ko), which is again given by Eq. (58)
Eco, (Q)/kT

with nq, being replaced by nq, = I/(e ' —1), the
thermally averaged phonon occupation number. Here,

g(Vk ),e

(V'„.)= (61)

A2Vn Q,„(z)=-
L ' 2(u, (Q)

1 /2

ak
G

z

(62)

with kG=k, z+G —Q. For the one-phonon annihilation
in (Q, s) mode, i.e., for the case n&., no, = ——5o &.5. ...
the expression of the matrix element can be inferred from
Eq. (62) using the Hermitian property V„„(S,s)
= V„„'(S,s). This property is obtained from the rela-
tion Vk(S, s) = V"k(S,s) using the fact that V'(S, s, r b )

is a real function of its arguments.
Thermal average of the molecular states results in the

J"=M"=I( "=0 component, that is, the spherically
symmetric component of the molecule-surface interaction
potential. This is seen as follows. Since the molecular vi-
brational and rotational energy E with a=(JMpK((3),
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for example, is independent of M, we get
—Z~ ykr

a JpK/3 M

From the relation

g (
—1) (JMJ —M~J"M") =( —1) v'2J+15J" 05M, . 0,

M

we have

)a, =(2J+ ') X ~ci""~' V)', }J)rp,i)rp
M K

=(2J+1)(V)', )pg

IV. INTEGRAL EQUATION
AND SCATTERING MATRIX

For the thermally averaged potential u(r), one might
use a certain molecule —rigid-surface potential. The com-
ponents of u (r) are given by

v „„(z)= ua(z)5 .5„„..
The criterion for selecting the potential is to make the
quantity

~
V „„(z)—ua(z)~ as small as possible for a cer-

tain range of the (an}'s of interest. Using the potential
u0(z) and u(r}, we present various Green functions, in-
tegral equations, and the scattering matrix formulations
for the molecule-surface system in the following.

A. Distorted-wave Green-function approach

since the J,K dependences in vibrational wave functions
are insignificant.

Employing the laterally averaged potential u0(z), the
CDE is transformed into

d 2 2M2
(+) 2M —G-6 (+q+k a 2 vo(z) P
—„a~ „a (z)=

2 X, V«~ „( z). ((~ „a—«'a (z),
dz fi

(63)

where

V '(z)= V ' '(z) u()(z)5 5 5a a ()

The number of coupled channels is determined from that of the ((2nG)'s The .inclusion of a tremendously large
number of phonon states n which are the collections (n&, I of the occupation numbers and many closed channels
makes the numerical integration of the CDE an unmanageably complex task. Therefore, the CDE is not useful for ob-
taining numerical solutions. Transforming the CDE to an integral equation which does not require as many fine mesh
points of the integration as those of the CDE, the scattering problem is tractable with a certain limited choice of the
phonon states. This integral equation is solved by iteration and enables us to obtain the numerical solutions effectively.
In what follows, the integral equation method is described. The CDE of Eq. (63) is transformed into a coupled integral
equation

fcznG a n a (z) gaPFa a „a (z)+ g f dz'0 '„a(z,z') V „„.(z')g, „.a „a (z')
G 'o

with

(64)

+~~a (z „a (z) —5~ ~ 5n ~ 5a a +~~a(z), Q~~a(z, z ) —+~~a(z ( )7I~~a(z ) ) (65)

where z, =min(z, z') and z & =max(z, z'). The g„a and g '„+a satisfy

d 2M+k „a— v0(z)
dz

with y '„a(z0)=0. They also satisfy the following asymptotic boundary conditions:

~0(+)(z)

+ik z (+) +ik z
e " —s' —„ae " (open channel),

e " —s „ae " (closed channel),
(67)

~0(+)(z)

+] +Ik Gz
(open channel),

2ik „G

(closed channel),
2KanG
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(+) —' Gwith s' +—

„G =e " . Here 5 „G is the phase shift from the potential v„(z). Although k „o,ga'„G(z), and 5 „o are in-

dependent of M, the eigenvalue of J„we will keep the notations as they are. From Eqs. (64)—(68), we have the S matrix

~'.o, ~ o =5,- 5..5G, G '.G+C'.o', ~ o X f d '&'.G*( '}V
~ .( 'O' .'G', ~ G ( '}

a'n 'G'

with

C(+ )
+iM

anG a n G, g2(k k )1/2
anG a, n, G,

p '„o'(z), 0 '„G'(z, z'), and s +„o are complex conjugates of z '„o'(z), 0 '„G'(z, z'}, and s' „G, respectively.
We define the distorted wave functions for arbitrary initial conditions (a'n'G') as

yK
—„G(r,S,s)= g y „o „'o'(z)4 (S,s)lp„)ep(+ ) — 0(+ )

i(K —Q„+G).R

anG

p(+) i(K —Q„,+G') R„o(z)4 (S,s) P„)e
The yK~

"—'„.G are distorted wave functions from the potential v0(z), that is, the eigenfunctions of the Hamiltonian

$2
H = — V„+H,i+H, „+v0(z) .

2M

More specifically, we have the following Lippmann-Schwinger equation:

(E H+i—e)yK+ I o(r, s—, s)=+ie'p~z '„G(r, S,s) .

Employing the orthogonality relations and Eqs. (17) and (70), we rewrite Eq. (69) as

C' —+G G
S'+—

„G „G =5 a 5„„5GG
s' —+„G+

2 fdrdsdsgK, +„'G(r, s, s)V(r, s, s)QK
—' „G (r, S,s)

(69)

(70)

(71)

(72)

(73)

with V(r, S,s)= V(r, S,s) —v0(z).
Defining the Green-function components as

„o(z,z ) —5 5„„.5G o 0 „o(z,z ),
we obtain the following Green operators:

Qz+—'(r, S,s;r', S', s')= g (R,S,slanG)Qa~& „.G(z, z')(a'n'G'lR', S',s')
anG

a' n 'G'

(74)

y a.(s,s)ly„)(y„lc.'(s, s )e".„+-,'(z, z )e'
L '

anG

The following orthonormal basis functions for a given K:

(75a)

(R,S,slanG):—+ „o(R,S,s)=——4 (S,s)lg„)e (75b)

were used. Note that (anGla'n'G') =5 .5„„5oo. The Green operators satisfy

Q~-' (r, s, s;r', S',s')=0 '*'(r', S', s', r, S,s) .

It is seen that

Using Eqs. (17), (70), and (75) with the orthogonality relations mentioned before, we rewrite Eq. (64) as

pK
—' „o(r, s, s)=yK —'„G (r, S,s)+ 2 fdr'ds'ds'@ —'(r, s, s;r', S', s'}V(r', S', s')fK ' „o(r', S', s'} . (76)

For (anG)W(a, n, 0), we define the transition matrix ( Tmatrix} as

T „G „0= 3 f drdsds&K „'G(rSs)V(rs, )aran' Ka, 0(rss) .
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Then from Eq. (73), we have

(+) —1 (+)
anG, a n. 0 ano, a n 0 ) ~ano, a n 0 (78)

d 0

dA~ dE~~

where the bracket denotes the thermal average over the initial phonon states n,-, i.e.,

Equations (77) and (78) also define the off-shell T or 5 matrix when y ' and g'+' are the solutions corresponding to
different total energies E. Including the (an G) =(a, n, O) case in general, Eq. (78) gives the definition of the T matrix for
the molecule-surface scattering.

The vibrational-rotational and phonon transition diffraction coefficient (a; n, Waf nf ) is given by

ML3 k„y(S(C, e,—+a~)~T. „G .„0~'&, (79)f f fi nf

Q„e
—6„ /kT

(o„&—= '

n,

—c' /kT
e

As we see from Eq. (79), the energy is conserved with

fg2k 2 g2k 2

Acu=Ef+E —E, —E ) Ef=, E, =

Here, kf =Kf+zkf, is the Anal scattered molecular momentum, with Kf being the projection of kf onto the surface
and given by Kf =K;+Q„—Q„+Gf =K —Q„+Gf. Conservation of the total parallel momentum has already been

taken into account in the T matrix. The vibrational-rotational and phonon transition diffraction coefficient can be writ-
ten using Eq. (78) as

d 0

dQk dEf~f

L g (5(@f—8, +fin))k, „G k „0 S'+„'
G „0~

l nf

(80)

B. Diffractive-wave Green-function method

In this subsection, we study the diffractive wave function from the thermally averaged potential v(r). The yK*' „.G
are the diffractive wave functions from v (r) with outgoing and incoming boundary conditions. The Hamiltonian H' for
the potential v (r) and corresponding Lippmann-Schwinger equation are, respectively, given by

H'= — V„+H ~m+H, „+v (r),r mal

(F. H"+ie)yK—
, a'n'G'(r S s) +1&pK, a'n'G'(r S s)

(81)

This equation is different from what was expected from the conventional scattering theory, where the collision partners
are spatially localized. The relations between the incoming and outgoing waves will be discussed in the next section.
Expanding the wave function as

yK
+—' „G(r,s, s)= g y' —

„G „G(z)e (S,s)ly„&e'
anG

we can see that

y.'+-„' .„,(z) =t'„„.S..qI+-„I,(z)

and Eq. (81) results in a CDE and asymptotic boundary condition for the open and closed channels as

(82)

and

d 2 2M
+kanG VO(Z) JanG G (Z) — g VG G (Z)ganG G (Z)(+) 2~ — (+)

dz2 Gll

' 1/2

(83)

anG G (Z)(+) + lk GZ (~) — ~Q
~G, G' ~ G, G'e
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y' —„oo(z)—
1/2

I anG

+anG
anG, anG' (84b)

Here, ()o o, (z)=Do o (z) —Uo(z)5o o.. The integral equation for the diffractive wave functions and the integral ex-
pression of the phonon and molecular elastic (n =n', a=a') diffractive scattering matrix ()' —' can be written as

y~„o o (z) 5o o y~„o(z)+ g f dz'Sl ~ o(z, z') Uo o(z, .')y~„o" o.(z'), (85)

I

C.o, .o =5o,o&'.o'+C"o-o X f d X."»o"(z»o o-(»'.=noo(
,

) .
Gll

(86)

In what follows, a matrix A „o „o (z, z') will be denoted as [A]. Here, (anGz) and (a'n'G'z') are regarded as the
row and the column indices, respectively, with z, z being continuous variables. With these definitions, matrix multipli-
cation then takes the following form:

([A][8]) „o „o(z,z')= g fdz" 3 „o „„.o„(z,z")B .„o „o.(z",z'),
It IIGII

and the Hermitian conjugation is expressed as

[ A ]cz„o a „o( z, z ) = A cz q o cz„o( z ', z )

We define the following matrices for bracket notation as

I „o,„o,(z, z') =5 5„„,5o o,5(z —z'),

L „o .„.o. (z, z')= (anG~E H i—e~a'n'G')

+k „o— uo(z)+ie 5 5„„5oo5(z—z') .
dz2

(87)

The Green-function matrices [P' —'] corresponding to [L —'

] have already been obtained in Eq. (74). It is seen that
[L"—

] =[L '], [0 ' —'] =[9 ( ]. Here the Hermitian conjugate is the same as the complex conjugate. Further-
more,

[LO( )][go( )] [ gO( )][L0( )]

The component wave function P „o „.o(z), y '„o' „o(z),g~„o „o.(z), etc. , are regarded as the elements of column
matrices [g'+.„o.(z)], [y~'„+,o (z)], [y'+„'o (z)], etc. We also define a column matrix [(p' „'o (z)] with the elements

+zk Gz„o(z)=e '" 5 5„„5oo .

Note that

(+] (+) z(K —Q +G) R
((()K

—' „o(r,S,s)= g ()()';„o „o.(z)4 (S,s) P„)e
anG

By iteration, Eq. (85) is rewritten in the following form:

(88)

with

U „o „o(z, z')=(vo o. (z) —Uo(z)5o o.)5,5„„,5(z —z'),
(89)

We have [U] =[0]and thus [0'—'] =[9' ']. The [U] is block diagonal and so is [Sl( -'], that is,

„o(z,z') =5 .5„„Q'-„oo (z,z') .

The Green-function matrix [9'—'] is useful for obtaining the approximation scheme, in particular, the coupled-channel
transition-matrix element to be discussed in the following paper.

Employing the following matrices:
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V „G,„,G (z,z') = ( V „„.(z) —
vG G. (Z)6, ,5„„.)5(z —z'), (90)

L' „G
—.„.G. (z,z')= (anG~E H—' ie a'n'G')

$2

d 2 . 2M+k'„G+le 6G G „vG G (z) 6 6„„5(z ), (91)

we obtain the matrix forms of differential Lippmann-Schwinger equations, Eqs. (72) and (81), as

[L '-'][x '„+—.G ]=+i e[g +„,'G ], [L'+'][xa-'„'G.]=+ie[v', „'G l (92)

and likewise the matrix form of differential Lippmann-Schwinger equation of the total wave function in terms of [L' — '],
[V], [g' +—], and [y' ' ]. Note that [V] =[V]. Using Eq. (89) and the relation [L' —'] —[L ' +—]= (2—Mle )[v], we
obtain

lL +'][~' l=[&'-"][L'-"']=[I] (93)

The matrix form of the diff'erential Lippmann-Schwinger equation of the total wave function is then transformed into a
matrix form of integral equation,

'o] [X
' 'o]+

z
[&' ']l Vllf'' 'o] (94)

by multiplying [0 —
] to the former. From Eq. (89), we have the asymptotic behavior

([&"- ][V][q."-„'0]).„G(z)- . e "'""[X.".'G 1 [V][0'..ol . (95)

From Eqs. (25), (94), and (95), we obtain the following integral expression of the S matrix:

aj n&Gf, a n 0 a&, a, n&, n, aj n& G, fanf& 0 a& nfG&, a, n, o Xa&n&G& 1 ''a, n, ol

with

(96)

Equation (29) is also satisfied by Xz „G,X,'„'G „G, and O'-„G .„.G as functions of K, G, and G'. Equation (96}can
be rewritten as

s'-" +
a& ~1&-G&,a, n, 0 af, a, n&, n, a& n& Gf, a& n&0

with

drdSdsX& „' „G (r, S, s) V(r, S, s)1(z+—' „0(r,S,s),
L 2

(97)

V(r, S,s)= V(r, S, s) —v(r)= g ~P„)V„„(Z,S,s)(g„~e
nn'G

The first term in Eq. (96) or (97) is the phonon and molecular elastic diffractive S matrix from v (r). The phonon transi-
tion (nfWn, ) matrix T „G „0 is given by the integral expression of Eq. (97) for S'+ multiplied by (O' 'L) ' as

seen from the relation between the S and T matrices given by Eq. (78). We write the Green operator 9&— as follows:

Qz+'(r, S,s;r', S', s')= g (r, S,s~anG)0„'„G „.G(z, z')(a'n'G' r'S's') .
anG

a' n 'G'

(98)

It is seen that 9K—' (r, S,s;r', S', s') = 9K+ '(r', S', s';r, S,s). Equation (94) can be written as an integral equation with the
help of the orthogonality relation of the basis function

hatt~
—' „0(r,S,s)=X&—' „0(r,S,s)+ fdr'dS'ds'QK—+ '(r, S,s;r', S', s'}V(r', S', s')1(K—' „0(r',S', s') . (99)

In the same manner as before, one can see that for any division of the full potential V = V'+ V,

a&nfGf, a, n 0 afnfG&, a, n, o a&n G, a n OIXa&nJGf] [ ][~'a n, o] (100)
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Here, I"—' and y" are the scattering matrix and
wave function from the Lippmann-Schwinger equation
for V'. Equations (73), (97), and (100) are the two-

potential method of S matrix theory in a molecule-
surface system. The first terms in these equations cannot
be expressed as matrix elements of V' between plane
wave and g"+—' in contrast to the conventional scattering
theory.

V. THE TIME-REVERSAL INVARIANCE
AND MICROSCOPIC REVERSIBILITY

FOR TRIATOMIC-MOLECULE-SURFACE SYSTEM

For each phonon state lP„&, there exists a unique (pho-
non) state lP„& such that r7+, =n &, . Thus Q„=—Q„
and n =n Th.e time-reversal operator T=O'C of the
present (spinless) molecule-surface system is defined such
that C is the complex-conjugate operation of c numbers
of 'Ills„& = lP„& for any n In oth. er words,

From Eq. (101) and using Eq. (89} or (93), we can show
that

This relation results in the equation

'TS~ '(r, S,s;r', S', s')T ' = 0' ~(r, S,s;r', S', s') .

The same relation holds for 9&—'(r, S,s;r', S', s'). So far
the factor e e ~ is redundant since it becomes 1 due to the
fact that the relevant quantities are zero for a%a'. In
what follows the factor has its own right since the
relevant quantities are not zero for aWa'. We can show
that

Ga&, 'M '=a
& „'Ma&, 'M '=a

Therefore,

T u'(R G)'T '=u'(RG), Tp'(RG)T '= —p'(RG),

'T Xz„(r,S,.) ly„&
' = y y„*(r,S,s }lp„&

n

'TH„'T '=H, „, Tp'T-'= —p,
'TR'T

(103)

vG(z)5~ 5„„=ee v* G(z)5 5„„,. (101)

Here, the phase factors e =( —1) +

e =( —1) + +~ are introduced to make Eq. (101) con-
sistent with the general expression of invariance dis-
cussed later, although e,e,. becomes 1 because of 5
This equation can also be obtained from the Hermiticity
vG(z)=v'G(z). Several physical quantities depend on
the total parallel momentum K. To show such depen-
dence explicitly, we will sometime use the notation
y' —„G,„G(z;K), k,„G(K), etc. , as we did before. Since

„G(z;K) and y'„G „G(z;K) satisfy the CDE of
Eq. (83) but have different boundary conditions given by
Eq. (84), we obtain

with the y„(r,S,s)'s being the c-number funcf. ions. The
operator Q is then unitary and T is antiunitary with

Obviously Tv(r)T '=v(r) since v(r) is real
and diagonal with respect to the molecular and phonon
states a, n. In this section, we consider the molecular
states with a definite parity. Therefore, a=(JMpKP) or
a=(JMpy). The molecular state —a is used to denote
—a=(J MpKI3) or (J——Mpy) for the a previously
given. The time-reversal invariance of v(r) mentioned
before is then equivalent to

+Hmol + Hmol &

'TH"'T '=H'

The time-reversal invariance of Vis seen to be equivalent
to

V+„(z,S,s) = V„G'(z,S,s},
(104)

Employing the same method as before with Eq. (104), we

obtain

Therefore,

'Tg'K '„.G (r, S,s)—=e f'+~,„, G,(r, S,s) .

Since the molecule-surface potential
V = V(r, $, s, u'( RG) ) is Hermitian, the Fourier com-
ponents in Eq. (50) satisfy Vk* = V' k. In other words, V

is a real function of u'(RG). Thus, from Eq. (103), we

also have

7V'T '= V, 'TH'T '=H .

(102)

using Eq. (101) and the relation k „o(K)
=k „G(—K). When a=(JMpKP) or a=(JMpy),
we have 4'(S, s)=e 4 (S,s) since the Ug&r's are real.
Thus, we obtain

'Ty~—' „G(r,S,s)=e y'+~, „, G, (r, S,s),
'Ty~ ' „G(r,S,s—)=.e. y'+~, , o,(r, S,s),
'Ty '

,'„, (r, S,s)=e g '—',„, ,(r, S,s) .

It is thus seen that differential or integral equations
satisfied by wave functions of incoming boundary condi-
tions having superscripts (

—} in Eqs. (11), (72}, (76), (81),
and (99) are obtained from those satisfied by the wave
functions of outgoing boundary conditions having super-
scripts (+) by operating T with subsequent replacement
( —K, —a, n; —G; )~(K,a;n; G; ) and vice versa. The re-
lations between the incoming and outgoing wave func-
tions obtained in this section are not trivial. These equa-
tions are different from those of the ordinary scattering
theory where the collision partners are spatially localized.
Equation (99) is expressed in matrix form as
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[0';.' 1=[x.'-.' 1+, [g'+-'][v][4';.' 1g2

(105) [11+,fg" 1[Vi [ .";o], (107)

where

[gi(+i] [g(+i]~ [g(+)][V][gite)]

with

]=[g'+'1+ [g" '1[vlfg"-+']

[g" 'll vlf g"+-'] (108)

=[g'+'1+ f g"-"][vlf g'-' ] .f2

Equation (76) can be rewritten as

(106)
One sees that the same Green function [g"—+'] is ex-
pressed in diff'erent forms, Eqs. (106) and (108). Note fur-
ther that [g"—"'] = [g" + ']. Defining

L"„Gi „G (z,z')= (anG~E H i—e)a'n'G')anG, a n 6

d
+kanG —is 5a a'5n n'56 G

2M
V „„(z)5(z —z') .

and employing the same method as before, we have

[L"'
ll g" ']=

f g""][I' +'1=[I]
and thus

(109)

E 0+I 6'

We can also show that

(110)

Equation (110) is equivalent to

'Tg» +—'(r, S,s;r', S', s')T '=g" »'(r, S,s;r', S', s') .

The Green operators g» +—'(r, S,s;r', S', s') were defined as before from g"„+G „o. These g" +—'s are the Green functions
of the full Hamiltonian H. It can be seen easily from Eqs. (105) and (106) that

f drdSdsy~z ' „o (r, S,s)V(r, S,s)g»+' „o.(r, S,s)= f drdSdsg'» "„o(r, S,s)V(r, S,s)y»+' „o (r, S, s) .

From Eqs. (107) and (108), we also have

, fdrdSdsy» '„G (r, S,s)V(r, S, s)g~»+' „G (r, S, s)

, fdrdSdsg» ' „o (r, S,s)V(r, S,s)y»+, '„G (r, S,s) .

Substituting the time-reversal invariance 'TV(r, S,s)T = V(r, S,s) into the first line of Eq. (112),we obtain

Ti„=—
& fdrdSds[Vf»+' „o (r, S,s)'] V(r, S,s)Ty» '„o (r, S,s)

=e, e,
& fdrdSdsg' » „G (r, s, s)V(r, s, s)g '»' „o(r, s, s) .

a 6 a a a
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Equations (112) and (113) with s +„o(K)=s'+ o( —K)
result in

=e e S'+' „o „o (
—K) . (114)

a a a'

This is the statement of the microscopic reversibility. We
consider now the reflection cases (G, =Gb =0) for sim-
plicity. The probability that a molecule with, e.g.,
(J,M,p, y, ) and parallel momentum K, collides with the
surface and is scattered with (JbMbpbyb) and K~ with
the creation of a single phonon in mode (Q, s) is the same
as the probability that the molecule is incident with
(Jb Mbpb—y„) and parallel momentum —Kb and scat-
tered with (J, —M,p, y, ) and —K, with the annihilation
of a single phonon having ( —g, s). The reversibility
could be tested by a measurement. For the atom-surface
system, the fact that the half-collision processes, adsorp-
tion and desorption, are related to each other through the
microscopic reversibility has been observed.

VI. SUMMARY AND DISCUSSIONS

We have developed a systematic (quantum-mechanical)
formulation of the triatomic-molecule-crystalline-surface
scattering dynamics that takes into account the vibra-
tional and rotational states of the projectile, diffraction,
and phonons in the solid by extending the previous work
on the atom-surface scattering. The vibrational and ro-
tational motions of the triatomic molecule are treated by
separating out the center of mass of the molecule, which
can be applied to general polyatornic molecules scattered
by a surface. The present formulation is derived based on
the time-independent scattering theory, in contrast to
most other work on atom or diatom-surface scattering
where time-dependent theory was employed. With the
translational symmetry of (triatomic) molecule-surface
system, total (projectile+phonon) momentum representa-
tion parallel to the surface was employed in the forrnula-
tion, which is analogous to the total angular momentum
representation of the gas-phase scattering where rotation-
al symmetry exists. This representation greatly simplifies
the triatom-surface scattering formulation. We presented
here the properties of the total scattering wave function
of the triatomic-molecule —crystalline-surface system with
the inclusion of phonons in the solid and vibrations and
rotations of the projectile, a representation of the simul-
taneous phonon and internal (vibrational-rotational) state
transition potential matrix, the coupled differential equa-
tion, and independent physical solutions for given energy
and momentum. These are all obtained based on the
translational invariance of the total Hamiltonian. The
coupled differential equation serves as a basis to further
develop scattering formulations and to introduce approx-
imation schemes, although it is not useful in practice for
computing the wave function and scattering amplitudes
because of the very large number of phonon and
vibrational-rotational states involved.

The scattering equations of the system in differential

and integral forms as well as the related Green functions
were also obtained. They are not the same as those from
the ordinary scattering theory where the collision
partners are spatially localized. In particular, explicit
configuration expressions of the Green function of the
molecule-surface system presented here including pho-
nons and vibrations and rotations are quite different from
those of the conventional collision theory. Several impor-
tant versions of the integral expressions of the scattering
and transition matrix are presented. They are useful for
obtaining realistic computational approximation
schemes, e.g. , higher-order DWBA and multiphonon
processes, as we shall see in the following paper.

The time-reversal invariance and the microscopic re-
versibility of the triatomic-molecule —surface scattering
have also been discussed. The equations between the in-
coming and outgoing scattering wave functions that are
important in the T matrix schemes were also obtained.
One notices that these nontrivial equations and the
scattering equation in differential form [see, e.g. , Eq. (11)]
are different from those of the ordinary scattering theory.
We have further obtained the relation between the
scattering matrix elements describing the microscopic re-
versibility in the present triatomic-molecule —surface sys-
tem. Our results have shown that the phonon annihila-
tion and creation are mutually time-reversed phenomena
which can be tested by experiments.

The ab initio results on the gas phase, in particular,
triatomic-molecule —surface interaction potential are
nonexistent as mentioned before. One aim of the
triatomic-molecule —surface-collision study is to obtain
the precise nature of the interaction potential for other
applications. The theoretical scattering dynamics is em-
ployed to assist the determination of an accurate poten-
tial by comparing the computational results with the ex-
periments. Therefore, an accurate collision dynamics is
desirable. We have developed a formulation of the
triatomic-molecule —surface scattering dynamics that can
be used for obtaining an ab initio calculational scheme
and a realistic approximation method, and at the same
time can be adopted to a general input potential. Thus
our formulation presented here and the calculation
schemes to be derived in the following paper should be
useful for extracting information regarding the gas-
surface potential and for interpreting the experiments.

Based on the present formulation, we present in the
following paper, specific theoretical schemes for simul-
taneous diffraction, phonon, and vibrational-rotational
transitions suitable for the triatomic molecular projectile,
the bound-state-resonance scattering approach for
phonon- and rotation-mediated selective adsorption and
desorption, and a method of obtaining the physisorption
probability.
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