
PHYSICAL REVIE% 8 VOLUME 42, NUMBER 1
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1 JULY 1990

Fusayoshi J. Ohkawa
Department ofPhysics, Hokkaido University, Sapporo 060, Japan

(Received 18 December 1989)

Anisotropic superconductivity in layered Cu02 structures is theoretically examined by using ex-
tended t-J models. It is predicted that in multilayered structures the second transition can occur in

superconducting states. The transition is between superconducting states belonging to different rep-
resentations with respect to a symmetry operation of exchanging layers. Therefore, the transition is
reduced to a sharp crossover when the layers are nearly equivalent. It is probable that above the
crossover temperature the gap vanishes along lines on the Fermi surface in the three-dimensional
Brillouin zone. However, around the crossover temperature the gap can start to open everywhere
on the Fermi surface in multilayered structures distorted from tetragonal symmetry. The results
can explain both the temperature dependences of the nuclear-magnetic relaxation time and the
penetration depth in high-T, superconductors, which appear to be inconsistent with each other.

I. INTRODUCTION

The discovery of high-T, superconductors has stimu-
lated research of strongly correlated electron systems.
Anderson argued soon after their discovery that they
must be close to the Mott-Hubbard metal-insulator tran-
sition, and that their essential physics must be included in
the Hubbard model or in the t-J model. ' Although it
does not yet seem to be settled which is the simplest mod-
el including the essential physics, that is, whether oxygen

p electrons should be explicitly included or not, we will
follow Anderson in this paper; an argument is given in
Sec. V for taking the t-J model.

In the large-U limit, the Hubbard model can be
transformed into the t Jmodel:-

acting on the subspace with no doubly occupied sites,
with s; the electron spin, n; the electron number, and
J= —4t /U, U being the on-site repulsion in the Hub-
bard model. ~t/U~ &&1 is assumed, and the summation
of (ij ) is made over nearest-neighbor pairs of sites.
Terms of three-site exchange interaction have been left
out because they are not important in nearly half-filled
cases. The last term in Eq. (1), which is the charge-
charge coupling, can also be ignored because the charge
fluctuations must be largely depressed in the t-J model
due to the restriction of no doubly occupied sites.

The t-J model can be replaced by an auxiliary boson-
fermion model. The local gauge symmetry with respect
to auxiliary particles is necessarily required to guarantee
the equivalence between the two models. The present au-
thor examined the auxiliary-particle model in keeping the
local gauge symmetry. Green functions of auxiliary par-
ticles must be site diagonal because of the local gauge
symmetry, although the exchange between boson and fer-
mion can occur; the exchange interaction corresponds to
the transfer integral in the t-J model. Bosons and fer-

mions can only move by the exchange processes. Physi-
cally this means that auxiliary particles are localized
themselves, but that fermionic pair excitations between
fermions and bosons are itinerant, and they correspond to
electrons in the t-J model. His results in the case of J =0
are consistent with Hubbard's results' in the high-energy
region, while the formation of heavy electrons at the top
of the lower Hubbard band is predicted. The mass renor-
malization factor is evaluated as y =1/(1 n) in ne—arly
half-filled cases, n =1 and n &1, n being the electron
number per site. Therefore he argued that a Fermi liquid
is very probable in the case of vanishing exchange in-
teraction, J =0. The formation of heavy electrons in the
case ofJ =0 is assumed in the present paper.

The effects of the exchange interaction can be taken
into account perturbatively, when the exchange interac-
tion is small enough such as

~ J~ &(1—n)~8t~. The oppo-
site case of

~
J~ ) (1—n) ~8t[ is out of scope in this paper.

As far as the square lattice is concerned, anisotropic su-
perconductivity with d symmetry is the most probable
within the model. The gap function of the d symmetry
vanishes along lines on the Fermi surface in the three-
dimensional Brillouin zone. This prediction seems to be
confirmed by the temperature dependence of the
nuclear-magnetic relaxation time. However, it disagrees
with the experiments of the penetration depth and the
tunneling, which implies ordinary isotropic Bardeen-
Cooper-Schrieffer (BCS) superconductivity where the gap
is open everywhere on the Fermi surface. These experi-
ments appear to be inconsistent with each other.

There are two ways of explaining the apparently incon-
sistent experiments. Because there are no chances of iso-
tropic superconductivity in reasonable parameter spaces
within the t-J model of the square lattice, ' one simply
discards the t-J model and tries to explain experiments
with different models. However, we will take the other,
which is to extend the t-J model. Actual high-T, oxides
usually have orthorhombic structures, where the s and
the d symmetry should be coupled to each other. Be-
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cause YBa2Cu307 compounds have linear chains, for ex-

ample, the effects of distortion can be expected to be large
there. The other feature to be taken into account is that
many high-T, oxides have multiple layers of CuOz in a
unit cell. One of the purposes of the present paper is to
examine the effects of the distortion and multiple-layered
structures within extended t-3 models.

The plan of the present paper is as follows. Single-
layered structures are examined in Sec. II by using a t-J
model. An effective Hamiltonian of heavy electrons is
proposed in Sec. III, which gives the same result as t-J
models within the mean-field approximation of supercon-
ductivity. Multiple-layered structures are studied in Sec.
III by using the effective Hamiltonian. Because it is hard
work to solve the gap equation in the case of multiple-
layered structures, superconductivity in multiple-layered
structures is discussed in Sec. IV by using a phenomeno-
logical free energy. In Sec. V, we argue for taking the t-J
models, and an application to actual high-T, oxides is
presented. A summary is given in Sec. VI. In the appen-
dixes we examine impurity effects and the Meissner effect
due to anisotropic Cooper pairs between Bloch electrons.

II. SINGLE-LAYERED STRUCTURES

A. Heavy electrons

First let us examine superconductivity in single-layered
structures. The model Hamiltonian of Eq. (1) can be ex-
pressed in the momentum representation as

&,~= ge(k)d~ d„——,
' g J(q)s(q) s( —q), (2)

ko q

acting on the subspace with no doubly occupied sites.
Here a small distortion from the square lattice is as-
sumed:

and

4J = ——(t'+t')
U

4J=— —(t t—)
2 2

cf U x JP

(10)

U being the on-site repulsion in the Hubbard model:

s+(q)= —g dq+qtd~t,
k

(12)

and

s (q}= g dt+qtd
k

1
s, (q) =—g —,'a d „+q d„~

kyar

(13)

(14)

being the bandwidth of heavy electrons.

are the electron spins.
In the case of vanishing exchange interaction, single-

particle Green functions of electrons are given by '

g '(in), k)=y [t'co+is e(k)]+op—,psH,
in the presence of infinitesimally small magnetic fields,
with y, =y =1/(1 n), an—d e(k)=e(k)/y the disper-
sion relation of heavy electrons renormalized due to the
restriction of no doubly occupied sites. The Ward identi-
ty tells us that y, is nothing but the vertex correction due
to the restriction of no doubly occupied sites to the ex-
change interaction in the limit of small transferred ener-
gies and momenta. Then the exchange interaction can
be treated perturbatively for

e (k) = (t„+t„)P,(k—) —(t„—t, )P„(k), (3)
B. Gap equation

with t, and t the transfer integrals between nearest
neighbors along the x axis and y axis, respectively:

and

P, (k)=cos(k, a)+cos(k b) (4)

P&(k) =cos(k„a)—cos(k~b), (5)

and

Po(k) =1,
P„(k)=&2 sin( k„a),

P~(k)=&2sin(k b) .

(6)

(7)

with a and b the lattice constants of the x axis and the y
axis, respectively. Other form factors used in the follow-
ing parts are defined here such as

Because the exchange interaction is antiferromagnetic,
only singlet Cooper pairs with even parity are possible.
Single-particle Green functions of electrons in supercon-
ducting states are expressed as

g t t(ice, k) g t t(ito, k)

gtt(iso, k) g(t(ice, k)g, '(ice, k)=

ia)+p —e(k)
—h*(k)

—b,(k)
ico —p+E(k) (16)

where the basis (dz&, d z&} is taken. The gap function,
the order parameter, or the self-energy can be determined
self-consistently in an approximation shown in Fig. 1,
which corresponds to the mean-field approximation of su-
perconductivity:

The exchange interaction is given by

J(q) =J,y, (q)+J,y„(q),
with

(9)

which leads to

+Unity ]gtt(iso, p), (17)
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X h(k) = li
}}}}

tl ~ ~ a.

and

(23)

FIG. 1. Diagrams of the self-energy of electrons. Solid lines
are anomalous parts of the Green functions of electrons. A
wavy line stands for the exchange interaction, and vertex
corrections shown by hatched parts are put to the both ends of
the exchange interaction. A double-dashed line is the T matrix
caused by the restriction of no doubly occupied sites.

b, (k) =—g'M(k —p) tanh b,(p), (18)
P

2E p

Electrons with antiparallel spins should show strong
short-ranged repulsion to each other because of the re-
striction of no doubly occupied sites, and U& &y is the T
matrix caused by the restriction of no doubly occupied
sites. Although it is very difficult to evaluate U&&, it
must definitely be repulsive and presumably U& &

=0 ( W).
The summation over p in Eqs. (17) and (18) should be re-
stricted to

with ie(p) —pi « $V (24)

and

E (k }= I [s(k) —p]'+
I
~(k)

M(q) = —
—,'I(q) —

U&& .

(19)

(20)

because the quasiparticle or heavy-electron picture is not
yet valid in the high-energy region.

The gap function or the order parameters of supercon-
ductivity can be expressed as

It should be noted that two vertex corrections, y„are ap-
plied to both ends of the exchange interaction in obtain-

ing Eq. (17) as shown in Fig. 1. Here r(q) is the efFective
exchange interaction between heavy electrons, and it is
calculated as

b (k; T)=b p( T)pp(k)+ 6, ( T)p, (k)+ hd ( T)pd (k) . (25)

By using a relation

~(k-p)=&, gP (k)P (p)

I (q) =I,P, (q)+ Id Pd (q),
with

(21)
+~d [4.«)kd(P }+Cd «)4, (P }

+P„(k)P„(p)—P, (k)P, (p)], (26)

gp (22) it can easily be found that

U t g Ilpp+ 1

4'I, II,O

,'I,II„—
U) g IIO,

4Is IIss+ 1

i(r, il„+r„ll„)

b,p

bd

=0 (27)

should be satisfied, where

1 gg y }
tanh[E(p)/(2T)]

2E(p)
P

(28)

with the restriction of Eq. (24). It should be noted that
all II

&
are real and that the matrix in Eq. (27) is a real

matrix.
In the square lattice, a =b, t, =t~, and Id =0; s(k) has

the total symmetry of the lattice. In the presence of
Cooper pairs with bp+0, 5,%0, and b,d=O, or Cooper
pairs with Lip=LE, =O and Ad&0, ~h(k)~ has the total
symmetry:

Eq. (24). ' However, such a case (~I, ~
) W} is outside the

scope of this paper. Once holes are doped and the re-
striction of Eq. (24) is taken into account, T, of the d
symmetry is definitely higher than the s symmetry; the
van Hove singularities lie at Q=(+m. /a, O) and (0, +n./a),
and pd(k) has its maximum value of 4 at Q. ' If the
effect of U& ~

& 0 is taken into account, T, of the s symme-
try is further reduced. Therefore T, of d symmetry is
definitely higher than that of s symmetry as long as

U)i &0.
The critical temperature and the gap function of d

symmetry can be obtained by solving

II d =II„=II, =II,=O (29) ,' ~ I, ~ IIdd —1 =0 . (30)

in such a case. Cooper pairs can be classified into s sym-
metry and d symmetry.

It is argued that in the half-Slled case the s symmetry
and the d symmetry have the same superconducting criti-
cal temperatures T, without U&~ and the restriction of

This gap equation has already been solved numerically
in Ref. 8. The gap function can be written as
h(k}=Ad(T)pd(k), which vanishes at points on the Fer-
mi surface in the two-dimensional Brillouin zone, or
along lines in the actual three-dimensional Brillouin zone.
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C. Coexistence between s symmetry and d symmetry

When temperatures are enough lower than the critical
temperature of s symmetry, the coexistence between s
symmetry and d symmetry is possible. The gap function
~h(k)~ can have the total symmetry only when the order
parameters have the following phases:

and

b 0=+
~
b o~ exp(iri ),

b,, =
~
b,, ~exp(iri),

6&=+i ~hz~exp(i ri) .

(31)

(32)

(33}

Because the gap function can be written as

I
&(k }I'= I &0+&,0, (k) I'+

I &gag(k }I', (34)

The temperature dependence of 46&(T) is very close to
its BCS dependence, although the size of the gap is
significantly larger in this model than its BCS value;

2EG/T, =3.53 in BCS theory, while 4b&(0)/T, =4.35 in

d symmetry. This unusual behavior is because of the
sharp structure in the density of states due to the van
Hove singularity.

ty should be coupled to each other. Because the matrix
in Eq. (27) is a real matrix, the order parameters should
have the same phase in distorted lattices. The s +id state
can never be obtained in distorted lattices. The only pos-
sible solution is the second type. This implies that the
s+id state is unstable in an infinitesimally small distor-
tion from the square symmetry or the tetragonal symme-
try.

III. DOUBLE-LAYERED STRUCTURES

A. E8'ective Hamiltonian of heavy electrons

JVg ff &Q (41)

Double-layered structures are examined here as the
simplest case because they include essential features of
multiple-layered structures. It is straightforward to ex-
tend the t-J model to include two-layered structures.
However, we take an effective Hamiltonian for heavy
electrons following Ref. 11 for the sake of simplicity. It
can be straightforwardly seen from two different calcula-
tions that the effective Hamiltonian gives the same results
as the extended t-J model within the mean-field approxi-
mation, as far as superconductivity is concerned:

the gap is open everywhere on the Fermi surface. Be-
cause Eq. (29) holds in such a case, not only Eq. (30) but
also

with

&0= g g s; (k)a, k a,k
ij ko

(42)

U„rr +1
4IS rrso

U»rr„
4Is Hss+ 1 ~s

=0 (35)
and

&;„,=-,' g g [-I(q)S;(q) S;(—q)
should be satisfied below a critical temperature of the
coexistence, that is, the second critical temperature. This
solution corresponds to the so-called s +id state. '

In other cases, the gap function cannot have the total
symmetry. Therefore Eq. (29) does not hold; Eq. (27)
should be treated instead of Eqs. (30) and (35). Because
the matrix in Eq. (27) is a real matrix, the order parame-
ters should have the same phase:

i q

+ U& tN;(q}N;( —q)], (43)

where a;k is a creation operator of heavy electrons with
band i or layer i, momentum k, and spin a:

e, (k) r(k)
"~'"}= r'(k) .,(k)

(44)

and

ho=+ ~
b 0~ exp(iri),

b,, = )b,, )exp(i'),

bz=+~bz~exp(iri) .

(36)

(37)

(38)

with y r(k) the bare transfer integral between layers and
e;(k)=e(k) the bare dispersion relation given by Eq.

(3) without any interlayer-transfer integrals. Although
s&(k)=s2(k) in the present model, they are expressed
differently in order to include more general cases:

Since the gap equations are exactly the same in the limits
~
b,o~ ~0 and ~h, ~

~0, the second critical temperature of
superconductivity should be the same in the two types of
solutions. Because the gap function is given by

i+(q) N X ~ik+ql~ikt
k

S (q)= g Q.k+ gQ kt
k

(45)

(46)

~~(k) ~'= ~~,+~,y, (k)+~,y, (k}~', (39)

the gap presumably vanishes at points on the Fermi sur-
face in the two-dimensional Brillouin zone or along lines
in the actual three-dimensional Brillouin zone.

So far, we have confined ourselves to the square lattice.
If a small distortion is introduced,

I&%0, IIO&%0, II&0%0, II,&%0, and II&,%0,
in general. Therefore all the representations of even pari-

1
1

S,,(q) =—g , O'a, k+q~a—(k~ ~

ko

N;(q) =—ga;k+ a, k
ko.

(48)

and l(q) is given by Eq. (21). The last term proportional
to U&~ in Eq. (43) is due to the restriction of no doubly
occupied sites. Here any interlayer mutual interactions
are assumed to be small enough to be ignored.
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For vanishing exchange interaction, single-particle
Green functions of heavy electrons in normal states are
given by

with

Ei(k) =
2
(ei(k)+s2(k)

G '(ice, k) =
ice+ p —si(k)

—r'(k)

—r(k)

i co+p s—2(k)
(49)

and

+[[& (k) e (k)] +41'(k)l'j'"}—p (55)

Since it is convenient to see where the Fermi surface is in
the final results, let us use the representation to diagonal-
ize Eq. (49). By introducing operators defined by

Ei(k) =
—,'(s, (k)+e2(k)

—
I [s,(k) —s,(k)]'+4~r(k) I'j ' ')—p . (56)

b, &
=cos[A(k)]e'~"'a, i, +sin[A(k)]e ""'a2&

and

b2«=sin[A(k)]e' "'aik —cos[A(k)]e '"'"'a2&

(50)

(5l)
I tan[2~(k) ] I

» I (57)

If three-diinensional features are ignored, r(k) is indepen-
dent of k, and it can be assumed to be real. Here it is as-
sumed that heavy electrons in the two layers have similar
dispersion relations that

and

exp[i 2a(k )]= r(k)

tan[2A, (k)]=

(52)

(53)

might be satisfied. When the two layers are equivalent
such as s&(k)=s2(k), tan[2A, (k)]= 00, which gives
A,(k) =m/2. In such a case, the operator b, i, annihilates
an electron in bonding states between two layers, and

b2k annihilates an electron in antibonding states, respec-
tively.

6 '(ice, k) =
i co+p, —Ez(k )

(54)

it can be easily seen that single-particle Green functions
can be diagonalized as

iai+y, E, (k)—

B. Mean-field approximation

Let us confine ourselves to singlet superconductivity
with even parity because the exchange interaction is anti-
ferromagnetic. By assuming the broken gauge symmetry,
&;„,can be reduced to a BCS-type Hamiltonian:

g g M(k —p)((a; p a,p }a,i, a, i, +H. c. )
1

i kpcr

= g I[bi(k)btztb, zi+hz(k)bzi, tbq qi+b3(k)(b, ztbz zi+b2qtb, q) )]+H.c (5&)

with M(q) given by Eq. (20). The gap equation is given by

&i(k)=—yM(k —p)Icos'[~(k)](a] piaipt &+»n'[&(k)](a2 pea»$ }j
1

p

1 QM(k —p)[(b& p&bip&+b2 p&b»& ) +c os[2k( k)]si n[2A(p)]( bi p&b»&+bi p&b»& }j,
p

b2(k)= —QM(k —p)Isin [A(k)](a, p&a»& )+cos [A(k)](az p&a»& }j
1

p

1

2N Q M(k —p)I (b, »b», +b, »b,» }—cos[2A(k)]»n[2A(p)](b, »b», +b, »b, pt }j,

(59)

(60)

and

53(k) =
—,'sin[2A(k)] —g M(k —p)[(a i —pea»i } ( a2 —pi a2pt }]

1

p

1=
—,'sin[2A(k)] —P M(k —p)sin[2A( p)](b, p&b»&+bz p&b, pi ) .

N
(61)

Here ( . ) means the average in superconducting
states. It can easily be seen that b i(k) = b,2(k), when the
two layers are equivalent; the order parameter h&(k) cor-
responds to Cooper pairs between bonding electrons and

I

hi(k) between antibonding electrons, respectively, while

b3(k) corresponds to Cooper pairs between bonding and
antibonding electrons. A symmetry operation of ex-
changing layers can be defined, when the two layers are
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exactly equivalent. Under this symmetry operation,
hi(k) and b,z(k) have even parity, while b,3(k) has odd

parity.
By taking a basis of (b, i i, b, z&, bzzi, bi zi), the

mean-field Hamiltonian is given by

o,E, (k }+o„b,(k) o „h,(k}

o,Ez(k)+o„hi(k}o„b,3(k}

(62)

with o„and o, Pauli matrices. When r(k) is real, h, (k)
can be made real in distorted lattices. By diagonalizing
Eq. (62), the dispersion relation of quasiparticles is given
by

Eg(k) =
—,'[Ei(k)+E2(k)+hi(k)

with

+62(k)+26,3(k)k&D(k)], (63)

D(k) =[Ei(k)—E2(k)+h, (k) —6~2(k)]2

+4~)(k) t [Ei(k) —Ei(k)]'

+[A,(k)+62(k)]ij . (64)

i(k) =—g g'M(k —p) tanh hi(p),
i=i p

4E; p

(65)

C. Crossover between suyerconducting states

When the two layers are exactly equivalent, the critical
temperatures are obtained by solving

There is no reason that c, , c2, and c3 are the same in
distorted lattices. Therefore, in general, three conditions
of b;(k)=0 define different lines in the two-dimensional
Brillouin zone, or different planes in the three-
dimensional zone. In the following, distorted lattices are
examined.

When the two layers are equivalent in distorted lat-
tices, hi(k} and b,2(k) have even parity with respect to
the symmetry operation of exchanging layers, while
h~(k) has odd parity. However, their coexistence is pos-
sible below the second critical temperature, which is
enough lower than both critical temperatures given by
Eqs. (65) and (66). The situation is similar to the coex-
istence between s symmetry and d symmetry in Sec. II,
and their coexistence is examined phenomenologically in
Sec. IV. When the two layers are not equivalent, they
should be mixed with each other, in general. The second
transition is reduced to a crossover.

The gap presumably vanishes along lines on the Fermi
surface in the three-dimensional zone above the crossover
temperature. When the dispersion relations of the two
bands are largely different, such as

IE2i{k)-E', (k)
I
» I~, (k) I', (69)

for i =1, 2, and 3, however, b, ,(k) =0 or b,z(k)=0 is still
the condition that the gap vanishes on the Fermi surface
even below the crossover temperature. It can easily be
seen from

Because s symmetry and d symmetry should be cou-
pled to each other in distorted lattices, all the order pa-
rameters can be generally expressed as

6,(k)= ge, P (k) .

for even parity with respect ta the symmetry operation of
exchanging layers, while

1
d3(k) =—g' M(k —p)

E, (k)
E+ (k) =E i (k)+h, (k)+263(k)

and

(70)

Ei(p) Ez(p)XTh, 53(p), (66)

Ep(k)
E (k)=E2(k)+62(k)+2hi(k) (71)

with

exp(x +y) —1

[exp(x)+1][ex (y)+1] '

for odd parity. The restriction of Eq. (24) is assumed in
Eqs. (65} and {66). Because Th{x,y~x}=tanh(x/2),
Eqs. (65) and (66} should give similar critical tempera-
tures for similar Ei(k) and E&(k), that is, for small

If the lattice has a tetragonal symmetry, Cooper pairs
can be classified into s symmetry and d symmetry even in
multiple-layered structures. As can easily be implied
from weak interlayer couplings, the critical temperature
of d symmetry should be much higher than that of s sym-
metry. In d symmetry states, all of the order parameters
should be proportional to Pz(k) such as h&(k) ~Pz(k).
Therefore the energy gap shauld vanish along lines an the
Fermi surface in the three-dimensional Brillauin zone.

and the relations of E,(k)=0 or E2(k)=0 on the Fermi
surface. Therefore it is highly probable that the energy
gap vanishes along lines on the Fermi surface in the
three-dimensional Brillouin zone.

On the other hand, when the two dispersion relations
are nearly the same such as

IEf(k) —E2(k)I = I~;(k}I' (72)

or

IEf«)-E,'«)I & I&;{k}I', (73)

for i =1, 2, and 3, the situation is completely difFerent. If
the two layers are nearly equivalent, and if there exist
only weak interlayer couplings, Eq. (72) or (73) is easily
realized. In this case, all of I4;(k) I are of the same order
of magnitude. The gap can vanish on the Fermi surface,
only when two set of points in the two-dimensional Bril-
louin zone defined by
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and

b, 1(k)=63(k)=0 (74) AF(8)=—T (
—8+8 +58)'4C 0

0 (81)

b2(k) =52(k) =0 (75) If C0 & C2 the second transition is possible: Its critical
temperature is given by

are just on the Fermi surface. If b1(k) =0 and b3(k) =0
define the same lines in the two-dimensional zone, respec-
tively, or if 62(k)=0 and 53(k) =0 define the same lines,
respectively, the gap presumably vanishes at points on
the Fermi surface in the two-dimensional zone. Howev-
er, such situations cannot necessarily be satisfied. Even if
the three-dimensional feature is taken into account, the
same argument is still possible. It is very probable that
the gap is open everywhere on the Fermi surface below
the crossover temperature in highly distorted lattices
with multiple-layered structures, if the admixture of s
symmetry is significant.

C+C
A

0 2

C0+ C2—8+co+ 58
0 2

and

C +C
A

0 2

C0+ C2—S+Qw $S
C0 —C2

Therefore the free energy is given by

C0+ C20 =0 — 60 .c2 0 C C0 2

Below 8,2 the order parameters are given by

(82)

(83)

(84)

IV. PHENOMENOLOGICAL THEORY
OF TWO-LAYERED STRUCTURES F(8 ) = —

—,
'

T11 A ( —8+co)1

0 2

Because it is hard work to solve the gap equation given

by Eqs. (59), (60), and (61), the model will be examined by
a phenomenological argument. Let us take two order pa-
rameters, p& and p2, which correspond to even parity and
odd parity in Sec. III, respectively. The free energy can
generally be written up to fourth order as

F(T;p»p2)= T [—'A(0~ —0~ —50~)P1

+—,
' A (8—80+58)p2

~p lP2+ 4 Co(P1+P2)+ 2 C2P1P21

(76)

with A & 0, Co )0, and C2 & 0, To as the unit in energy,
8 as temperature normalized by To, and 80+58 and

00—58 as the critical temperatures without any inter-
layer couplings, respectively; without loss of generality,
58)0 and 8 & 0. Here it is assumed that the two layers
are equivalent or nearly equivalent.

When the two layers are equivalent, 8 =0 and

~58~ &&80. In this case, the condition of the free-energy
minimum is given by

+ 58
0 2

(85)

Because the thermodynamic critical field, H„must be
proportional to

~

—F(8)~', H, increases more rapidly
with decreasing temperatures below 8,2 than above 8,2.
It can be easily seen that the total magnitude of the order
parameters defined by p&+pz also increases more rapidly
with decreasing temperatures below 8,2 than above 8,2.

When the two layers are not equivalent, then B is
finite. In such a case, the second transition is reduced to
a crossover. The crossover is very broad when the two
layers are very difFerent. On the other hand, the cross-
over is rather sharp for B « A, that is, when the two lay-
ers are nearly equivalent.

A superlattice structure can be made using a spontane-
ous distortion of lattices along the z axis in weakly cou-
pled single-layered structures. In distorted lattices, pa-
rameter B is presumably linearly proportional to the dis-
tortion. If A58 is small enough there, a superlattice
structure is stabilized by coexistence. It is possible that
multiple-layered structures are made by spontaneous dis-
tortion.

p = Top, [ A (8—80—58)+C11P1+C2p2] =0

and

(77)

V. APPLICATION TO HIGH-T,
SUPERCONDUCTIVITY

ar
Top2[ A (0" —0" +50)+Cop2+C2p1] =0

~P2
(78)

Q~ =Q~ +QQ~ (79)

Because the order parameters are given by

p, (e)= ( —e+e +58),A

0

and p2(8) =0, the free energy is calculated as

(80)

The superconducting critical temperature is obtained as

d d
nc„d « no

p p
(86)

When the present results are applied to actual high-T,
superconductors, the first problem is whether the t-J
models are correct models or not. Recent experiments of
photoemission spectroscopy imply that holes should be
mainly introduced into oxygen p orbits in the so-called
hole-doped superconductors. ' This simply means that
the charge susceptibility of oxygen p electrons is much
larger than that of Cu d electrons such as
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where nc„d is the number of Cu d electrons, and no is
the number of oxygen p electrons. If the correlation be-
tween Cu d electrons is large, such a situation is very
reasonable. In general, it is a different problem which or-
bits are doped and of which electrons quasiparticles are
made.

The formation of heavy electrons and the superex-
change interaction are essential in the present theoretical
framework of superconductivity. As far as heavy elec-
trons and exchange interactions are concerned, no new
ingredients appear even if the p orbits on oxygen ions are
explicitly included. For the sake of simplicity, therefore,
we have not dealt with extended Hubbard models includ-
ing oxygen p orbits explicitly, but rather we have
confined ourselves to t-J models. The t-J models implicit-
ly assume a strong hybridization between Cu d electrons
and oxygen p electrons as implied by many band calcula-
tions.

Within the t-J model, d-symmetry Cooper pairs are the
most probable as long as ~J ((1 n)~8—t~. The condition
is satisfied in actual high-T, oxides because ~JR=10 K,
~8t~ =4X 10 K, and (1—n) )0. 1. There is no chance of s

symmetry without any other strong on-site attractions.
Therefore one of the most promising choices is to try to
explain experiments by assuming d-symmetry Cooper
pairs.

However, it is implied by a number of experiments '

that high-T, superconductors are ordinary BCS super-
conductors, and that the gap should be open everywhere
on the Fermi surface. The only exceptional observation
is the nuclear magnetic relaxation time (NMR T, ). No

humps have been observed just below T, in the depen-
dence of 1/T, as a function of T, and 1/T, is propor-
tional to T below T, . This dependence is consistent
with the present results, which tell that the gap presum-
ably vanishes along lines on the Fermi surface at temper-
atures not so far below the superconducting critical tem-
perature. However, the theoretical results show that
there should be a small hump even for d symmetry in
clean systems, and that a small number of impurities are
needed to depress the hump. ' Therefore the NMR T&

data imply that impurities should exist in actual systems.
It is usual that oxides include many defects, in particular,
oxygen defects. The effects of impurities are examined in
Appendix A.

The penetration depth was measured in RBa2Cu307
compounds, R being one of the rare-earth ions. Because
they include linear chains between CuOz layers, the ad-
mixture of s symmetry cannot be ignored as examined
theoretically in Ref. 14, where a single layer and a single
chain are assumed. Since the layers are nearly
equivalent, superconducting critical temperatures must
be nearly the same between different representations with
respect to the symmetry operation of' exchanging layers.
Therefore it is highly probable that the two supercon-
ducting states start to coexist at the second critical tem-
perature, or around the crossover temperature, and that
the gap starts to open everywhere on the Fermi surface in
RBazCu307. Actually it has recently been reported that
the lower critical field H, &

shows a rapid increase at a
certain temperature below the superconducting critical

temperature. ' It is highly probable that the observed
transition or crossover corresponds to that examined in
this paper.

It is very interesting to observe the temperature depen-
dence of the penetration depth in single-layered struc-
tures, or in multiple-layered structures with the tetrago-
nal symmetry. The gap presumably vanishes along lines
on the Fermi surface in the three-dimensional Brillouin
zone.

VI. SUMMARY

It has been tried within extended t-J models to explain
the temperature dependence of the penetration depth of
the high-T, superconductors, which is similar to ordinary
isotropic BCS superconductors. Two extensions have
been proposed such as multiple-layered structures of
Cu02 planes, and the distortion from the tetragonal sym-
metry.

Anisotropic superconductivity in layered-Cu02 struc-
tures has been theoretically examined in the extended t-J
models. Within the t-J models in square lattice or in
tetragonal lattices, anisotropic Cooper pairs with d sym-
metry are the most probable. However, the coexistence
between Cooper pairs with s symmetry and d symmetry
has been investigated. The so-called s +id state is unsta-
ble in infinitesimally small distorted lattices. A possible
state is a mixed state with the same phase of the order pa-
rameters between s symmetry and d symmetry.

It has also been predicted that if layers are exactly
equivalent to each other in multiple-layered structures,
the second transition can occur in superconducting
states. The transition is between superconducting states
with different representations with respect to a symmetry
operation of exchanging layers. If the layers are nearly
equivalent, the transition is reduced to a sharp crossover.

It is most probable that at temperatures not so far
below the superconducting critical temperature the gap
vanishes at points on the Fermi surface in the two-
dirnensional Brillouin zone or along lines in the actual
three-dimensional Brillouin zone. However, the gap can
start to open everywhere at the second critical tempera-
ture or around the crossover temperature in multiple-
layered structures with the orthorhombic symmetry,
which are highly distorted from the tetragonal symmetry.
Such a temperature dependence of the gap can explain
both the temperature dependences of the penetration
depth and the nuclear magnetic relaxation time in high-
T, superconductors, which appear to be inconsistent to
each other.
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APPENDIX A: IMPURITY EFI'ECT

tx:
I to/tb, e(T)I, (Al)

at Ic0I «hz(T), t being t, =tr and g&t(to+io, k) being
Green functions of electrons in superconducting state
defined by Eq. (16).

Let us examine the effects of nonmagnetic impurities:

imp= U gdirrditr (A2)

We will confine ourselves to the physical properties of
anisotropic Cooper pairs with the d symmetry in single-
layered structures examined in Sec. II. The admixture of
Cooper pairs with the other symmetry is ignored. Be-
cause the gap function is given by h(k}=he( T)gz(k), the
gap vanishes at Ik, I=Ik~I on the Fermi surface. The
density of states of heavy electrons vanishes linearly at
small energies as

Dc(hatt)= — gg Im[gt1(e)+io, k)]1

T

i a)+i y +@—e(k)
ttt Q+(k }

-&(k)
ie)+i y p, +—e{k}

(A7)

Impurities can make the density of states of heavy elec-
trons finite at the zero energy, when the gap vanishes in
the absence of impurities along lines on the Fermi surface
in the three-dimensional Brillouin zone. Therefore a
small linear specific-heat coefficient can appear even in
superconducting states with the pure d symmetry.

APPENDIX B: MEISSNER EFFECT
DUE TO BLOCH ELECTRONS

at T «T, with r =0(1). The temperature dependence
of y(T) can be ignored at T« T„because ittd(T) is near-

ly constant at T && T, . If y at the zero energy is used ap-
proximately at general energies, the Green functions in
superconducting states are given by

g, '(ill, k)

with the impurity concentration n;m~ The. decrease of T,
due to nonmagnetic impurities is similar to that of the
BCS superconductors by magnetic impuritie;16 T, in the
presence of impurities is given by %, = ——g j(—q)&(q),1

C
(B1)

Let us consider the interaction between electromagnet-
ic fields with small q (IqI(2 « 1):

~co
ln

l 'Yn l—+ +f —=0
2 2mT, 2

(A3)
wl'th

with P(x } the di-gamma function, T,o the critical temper-
ature in the absence of impurities, and y„ the level
broadening in normal states. Superconductivity is still
possible for y„ l(2n T,()) & 0.28: If the mean free path i in
normal states is longer than the coherent length g„k in
the absence of impurities, d-symmetry Cooper pairs are
still possible in the presence of impurities. Here I ))g~k
is assumed.

The level broadening y at zero energy in superconduct-
ing states is determined in the self-consistent Born ap-
proximation:

e Be(k)
k+()/2)qn k —()/2)qcr .

k

(B2)

The current operator of the g component (g=x or y)
should be defined by

e (}e(k)
f 'q

g X gk k —(1/2)qtr k+()/2)qtr
ka

e2 (}2e(k)
X gk gk dktrdktr ~v( l} t

acr g

(B3)

with e the electron charge, in order to satisfy the gauge
in variance

y =n n; U des Do(co)r(to),
1

with

I (co}=—1 y
7T QP +g

(A4) en(q}+iq J(q)=0,
with

1n(q)= gdk+q dl
kcr

(B4)

(B5)

Because of Eq. {Al), y should be finite; otherwise the in-
tegration will be divergent. It is easy to see that y de-
creases with decreasing T, and that

Therefore the current is calculated as

(B6)

&d( T)
y{T) tt- 6&( T)exp r—

0
(A6) with Qg„( T)=Dt„(T)+Pt„(T) given by

Dt, (T)= g fdx f—(x) 1+—' r(x —E)+ 1 ——' r(x+E)g (B7)
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1 Be(k) Be(k) f (x +E) f—(y +E)
(B8)

Jd f( +E) I ( ),
V

(B9)

with f(x)=[exp(x/T)+I] ' the Fermi distribution
function, e=e(k) —p, and E=E(k). Equation (B7) is a
diamagnetic term, and Eq. (B8) or Eq. (B9) is a paramag-
netic term. Because scatterers are of short range,
impurity-ladder terms consistent with the Born approxi-
mation vanish in obtaining Eq. (B8). To obtain Eqs. (B7),
(B8), and (B9), y appearing in the Green functions have
been replaced with the renormalization of current opera-
tors such as t)e(k)/t)k& Be(k)/t)kt.

It can easily be seen that P&,( T) ~ ( T/T, )' at T && T,
in the absence of impurities. However, impurities make
P&„(0) finite; the Meissner current is reduced. Then let
us examine the temperature dependencies of

5D( (T)=D( (T)——D(„(0),

5P(„(T)=P]„(T) ——Pt„(0),
and

5Qg„( T)—:Qg, ( T) —Q(,(0)

in the presence of impurities. By taking into account the
chemical potential shift to keep the electron number con-
stant, it can be found that 5D&, ( T) ~ ( T/T, )" with ri ~ 2
at T«T, If aze(k)/Bk, ak. in Eq. (B7) is approximated

by its averaged value on the Fermi surface, 5D& (T)=0.
It can be seen from Eq. (B9) that 5P~ (T) ~(T/y) at
T «y. Therefore 5Q&„(T)~ (T/y ) at T &&y. This
weaker dependence can be understood by a physical pic-
ture that any excitations of quasiparticles in the gapless
region cannot cause a large reduction of the Meissner
current, because the gapless region does not contribute to
the current so much even at T=O K as seen by 6nite

P&,(0). On the other hand, 5Q&„(T)cc(T/T, )' at
3/(& T &(T .

It can easily be proved as expected by a partial integra-
tion with respect to kt in Eq. (B7) that the diamagnetic
term and the paramagentic term cancel each other at
T )T, . The Meissner current vanishes at T & T, .

Let us examine the penetration depth t(,(T) or its tem-
perature variation 5A,(T)=—A, (T)—A,(0). In type-II super-
conductors with J(,(0) &&g„h, the penetration depth A,(T)
is roughly given by

&(0)/&(T)=[Qg(T)/Qg(0)]' ' .

Therefore 5A, ( T) o- ( T/y ) at T «y, while M, ( T)
~ ( T/T, )

' at y « T « T, .
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