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We describe a new formalism for determining energy eigenstates of spherical quantum dots and
cylindrical quantum wires in the multiple-band envelope-function approximation. The technique is
based upon a reformulation of the K P theory in a basis of eigenstates of total angular momentum.
Stationary states are formed by mixing bulk energy eigenvectors and imposing matching conditions
across the heterostructure interface, yielding dispersion relations for eigenenergies in quantum wires
and quantum dots. The bound states are studied for the conduction band and the coupled light and
heavy holes as a function of radius for the GaAs/Al„Ga, ,As quantum dot. Conduction-
band —valence-band coupling is shown to be critical in a "type-II" InAs/GaSb quantum dot, which
is studied here for the first time. Quantum-wire valence-subband dispersion and eFective masses are
determined for GaAs/Al Ga&, As wires of several radii. The masses are found to be independent
of wire radius in an infinite-well model, but strongly dependent on wire radius for a finite well, in
which the e6'ective mass of the highest-energy valence subband is as low as 0.16mo. Implications of
the band-coupling erat'ects on optical matrix elements in quantum wires and dots are discussed.

I. INTRODUCTION

The rapid progress of experimental efforts to fabricate
quantum wires and quantum dots (the two- and three-
dimensional analogues of the conventional quantum well
in zinc-blende-structure semiconductors) is a strong im-

petus to develop theoretical techniques for their study.
In this paper we present a complete account of a new
analytical method for this problem, first presented by the
authors in Refs. 1 and 2. We show how to determine
simple expressions for eigenstates and eigenenergies of
the spherical quantum dot and the cylindrical quantum
wire, rigorously incorporating band-coupling effects,
through simple dispersion relations accessible to experi-
mentalists, in contrast to complex numerical procedures
previously required.

We begin in Sec. II with a review of the conventional
approaches to the calculation of states in heterostruc-
tures, intending to show the shortcomings of existing
techniques for studying quantum wires and dots so as to
motivate the rest of the discussion. We find in Sec. III
that the analysis of spherical quantum dots and cylindri-
cal quantum wires in the multiband envelope-function
approximation is simplified due to the high symmetry of
these structures and the separable nature of their hetero-
structure potentials. This simplification is made possible
by the observation, originally made in the context of the
theory of acceptors, that total angu1ar momentum,
defined in Sec. IV, commutes with the Hamiltonian in the
spherical-band-structure approximation. We there-
fore proceed, in Secs. IV and VI, to develop the K P
band-structure Hamiltonian in representations appropri-
ate to the quantum dot and quantum wire, respectively,
based on the eigenstates of this operator. Using the bulk

crystal eigenstates that arise in these new representations,
we construct eigenstates of the spherical quantum dot
and cylindrical quantum wire in a piecewise continuous
fashion across the heterostructure interface in Secs. V
and VII. This leads naturally to exact solutions for the
bound states. Representative calculations are performed
on the coupled conduction and valence bands in quantum
dots and wires to illustrate application of the formalism.

II. CONVENTIONAL TECHNIQUES
FOR STUDYING QUANTUM CONFINEMENT

EFFECTS IN SEMICONDUCTORS

Prior to the introduction of our technique, theoretical
analyses of conduction- and valence-band states in quan-
tum wires and dots employed either the simple one-band
effective-mass analysis used initially in this field, or com-
putational approaches based on the standard rnultiband
envelope-function theory. The former approach, while of
great value in the study of conduction-band states, breaks
down fundamentally in the study of the valence bands as
well as the conduction band in narrow-band-gap semicon-
ductors. Studies which use this technique to calculate
optical matrix elements and gain ' and exciton states
entirely neglect band coupling, which has a profound
effect on the valence-subband structure in quantum
wells" and as shown in this work, quantum dots and
quantum wires.

The latter approach, standard multiband envelope-
function theory, has been applied to the study of
confinement in quantum wires in an effort to correct this
flaw. However, the calculations that have been per-
formed, while including band-coupling effects, have cer-
tain other drawbacks, the foremost of which is
mathematical complexity. The problem consists
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mathematically of a set of coupled, simultaneous,
second-order partial differential equations, one for each
band included in the analysis, to be solved for envelope
functions in conjunction with appropriate boundary con-
ditions. Even the simpler problem of the valence-
subband dispersion in a quantum well has an analytical
solution only in the approximation of an infinite-potential
barrier. " A more realistic model of the quantum well,
with finite-band discontinuities, requires numerical solu-
tion.

The quantum-wire and quantum-dot problems are
more complicated than that of the quantum well (which
is essentially a one-dimensional potential problem), be-
cause these structures are multidimensional. This is de-
picted in Fig. 1, which shows a geometrical model of the
quantum wire and quantum dot employed in much of the
work that has been done in this field. ' ' In analogy
with the conventional quantum well, there is a well re-
gion of low-band-gap material with square or rectangular
cross sections embedded in a higher-band-gap barrier re-

gion, so that the structures have planar interfaces. How-
ever, the finite heterostructure potential is nonseparable
in this case, a serious complication even in the simple
one-band problem. As such, workers studying quantum
wires frequently resort to the use of infinite-well barriers
to simplify the problem mathematically' —an approach
which can cause certain interesting physical effects to be
overlooked, ' ' while still leaving a complex problem.
Other workers have retained finite barriers in their mod-
el, employing approximation methods' or more compu-
tationally intensive approaches. ' ' While these studies
are valuable, the relationship between the physics of the
structures and fundamental parameters is, therefore,
somewhat obscured, a quality which reduces usefulness
to experimentalists and device engineers.

An alternate approach is to use a model characterized
by separable finite potentials, as in the cylindrical quan-
tum wire and the spherical quantum dot depicted in Fig.
2. These high-symmetry geometries greatly simplify the
mathematics of the problem to be solved, so that an
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FIG. 2. A cylindrical quantum wire and a spherical quantum
dot. The drawings to the left represent the structures, those to
the right represent the confining potential as a function of the
radial coordinate in each case. The well depth, Vo in the figure,
represents a discontinuity of the band edges across the hetero-
structure interface.

analytical solution might be expected, while retaining the
fundamental features of the problem: namely, two- and
three-dimensional quantum confinement, with finite-well
depths. Furthermore, the cylindrical and spherical
configurations are reasonable approximations to actual
quantum-wire and quantum-dot nanostructure
geometries, which lack the planar interfaces characteris-
tic of the conventional quantum well. ' ' These
geometries have, therefore, been used frequently in one-
band calculations. ' ' ' Additionally, valence-band
states in quantum wire and dots with these geometries
have been studied in the infinite-well approximation by
an elegant coupled-band technique which is specific to
the holes. ' In Sec. III we will develop a general for-
malism for incorporating band-coupling effects among
the conduction and valence bands in quantum dots and
wires, building upon simplifying techniques originally
developed for another centrosymmetric problem, that of
charged impurities.

Qggntgm

(c)

FIG. l. Quantum wells, quantum wires, and quantum dots.
The cube on the left represents bulk semiconductor. The draw-

ings labeled (a), (b}, and (c) represent quantum-well, quantum-
wire, and quantum-dot structures, respectively, with planar
boundaries.

III. THE ENVELOPE-FUNCTION METHOD
IN CENTROSYMMETRIC PROBLEMS

The starting point of the envelope-function techniques,
which have been used so effectively in the study of quan-
tum wells and Coulombic impurities, is the K P theory of
band structure. The technique begins with the
Bloch form for the energy eigenstates of a periodic poten-
tial

+=up(r)exp(iK r),
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where uQ(r) has the periodicity of the crystal lattice and

j is a band index. At the band edges these functions are
characterized by symmetry arguments as eigenstates

lJ, J, ) of an angular momentum J, which we shall refer

to as Bloch angular momentum. These are given for the
conduction and valence bands in the Appendix. Using
these functions as a basis, one can develop a representa-
tion &(K.) for the Hamiltonian governing the conduction
and valence bands (such as that given in the Appendix,
Table V).

To find heterostructure or impurity states, a potential
V(r) modeling the problem is added to the Hamiltonian.
A solution is assumed of the form

P= g l J,J, )Fq q (r), (2)

where F is an envelope function which replaces the plane
waves of the perfect periodic crystal, and the sum may in-
clude conduction and valence bands. K is replaced by—ih'V in the Hamiltonian H(K), creating a differential
operator which acts on the envelope functions. We are
left with an effective envelope Schrodinger equa-
tiOn 1 1

& 26& 27

g [H; (
—iA'V)+ V(r)]F (r)=EF;(r),

J
(3)

where we use the simplified notation (i,j ) in place of an-
gular momentum quantum numbers, to represent band
indices. In conjunction with appropriate boundary con-
ditions this coupled set of equations is solved for the en-
velope functions.

Extensive work done on the Coulomb impurity prob-
lem for degenerate valence bands has established several
important results applicable to our problem. The first is
that, in most materials of interest (with the notable ex-
ception of silicon), it is acceptable, at least as a first-order
approximation, to replace anisotropic terms in the K.P
Hamiltonian by a suitable spherical average, neglecting
"warping" terms of cubic symmetry. ' In such a spheri-
cal approximation, the sum of the angular momenta, J of
the band-edge Bloch functions and L of the envelope
functions, is a constant of the motion. We call this
conserved operator the "total angular momentum, "
F=J+L. Based on this result, Baldereschi and Lipari '

utilized an analogy between L and J and the I.-S cou-
pling scheme used in atomic physics to greatly simplify
the acceptor-state problem. The role of the atomic-
orbital wave function is assumed by the envelopes. In-
stead of the electron spin —,

' the "spin" in the acceptor-
state problem assumes the value J=—,', which character-
izes the underlying band-edge Bloch states of the light
and heavy holes (the I s states). The acceptor wave func-
tions are then simplified by application of the theory of
angular momentum, and computed variationally using
Eq. (3) without the warping terms. The warping can be
added as a small perturbation if desired.

Two important features emerge in applying this for-
malism to a centrosymmetric heterostructure problem.
The first is that, whereas the wave functions and energy
levels of the acceptor-state problem must be computed

variationally, and then corrected approximately for such
effects as the "central-cell" overlap of the wave function,
we can expect exact solutions for flat-band quantum-dot
or quantum-wire heterostructures. Second, the formal-
ism must be generalized if it is to be applicable to prob-
lems other than the coupled light- and heavy-hole bands.
In narrow band-gap semiconductors, for example, cou-
pling between the conduction and valence bands causes
appreciable nonparabolicity in the band structure. To
incorporate such effects, it will be necessary to treat the
K P coupling term between the conduction and valence
bands explicitly in developing the envelope Hamiltonian.
However, the conduction band is characterized by J=—,',
different from that of the J=—,

' states to which the
acceptor-state problem is restricted, so that in a direct
application of the formalism developed for acceptors, the
envelope-state spin evidently has internal variables. In
light of this, we have developed a more general analogy.
We imagine a two-particle system comprised of an "en-
velope" particle and a "Bloch" particle, with respective
angular momenta L and J, and total angular momentum
F=J+L, as before. Thus the model reduces to the for-
malism developed for the acceptor problem in the case of
the I 8 states. However, in contrast to the orbit-spin
analogy of Baldereschi and Lipari, we will see that this
model incorporates the direct K P coupling term be-
tween the conduction and valence bands in a natural way,
through the kinetic energy of the two-particle couple.
Furthermore, the model emerges naturally in the context
of the envelope-function approximation.

A subtle feature of the theory leading to Eq. (3) illus-
trates the last point. In replacing K by the operator
—iAV' which acts only on the envelope functions F, we
have implicitly treated the envelopes F and the underly-

ing Bloch functions
l J,J, ) as functions of spatial coordi-

nates corresponding to different states spaces. Examina-
tion of how wave functions developed in the envelope
theory are used to calculate observables confirms this
interpretation —the envelope and Bloch parts of matrix
elements factor into separate integrals. A familiar exam-
ple is the E-selection rule for band-to-band optical transi-
tions in bulk semiconductors or quantum wells. This
factoring is a result of the separate nature of the envelope
and Bloch function state spaces. The Bloch functions u K
are defined in a coordinate space "interior" to the unit
cell, while the envelope functions F; are essentially
defined over the lattice points, in a coarse-grain approxi-
mation valid for describing functions which are slowly
varying on the scale of the unit cell of the crystal.

The total wave function, which describes a carrier, ex-
ists in a composite state space, which is a direct sum of
the envelope space and the Bloch space. Operators per-
taining to the envelope space commute with those be-
longing to the Bloch space. The two spaces are coupled
through the kinetic energy of the carrier they describe.
This is given by T=

l P l
/2m o, where m o is the free-

electron mass and P is its momentum, equal to the sum of
the momenta of the Bloch and envelope "particles, "
P=P~+P, . We note that this seems equivalent to a
classical "center-of-mass" momentum of the two-particle
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couple. However, in contrast to a system of two real par-
ticles, there is no relative coordinate in our model, since
the envelope and Bloch particles pertain to the same
physical carrier. Thus, the kinetic energy takes the form

lP, l'+ lI, l'+2P, .P,
T=IPI /2m

2tH O

(4)

IV. BAND STRUCTURE IN A

SPHERICAL REPRESENTATION

which is invariant with respect to the total angular
momentum F. If we represent this in a basis of the Bloch
form, Eq. (1), the matrix element of Pz P, becomes the
K P of conventional band-structure theory, lPal is in-

corporated in the band edges E(0), and lP, l
enters the

free-electron kinetic energy term. Thus, the two-particle
model leads to the full K P Hamiltonian governing
valence as well as conduction bands in an intuitive way.
As in the (less general) acceptor formalism, the total an-
gular momentum is a constant of the motion in the ab-
sence of anisotropic coupling to remote bands.

We can, therefore, take full advantage of theory of an-
gular momentum in the centrosymmetric heterostructure
problems at hand. For example, a basis of common
eigenstates of the Hamiltonian H, the operator F, and
the projection of total angular momentum along the
quantization axis F, will greatly simplify problems with

spherical symmetry such as the spherical quantum dot.
The common eigenstates of H, F„andP„the component
of envelope linear momentum along the z axis will simi-
larly profit us in the cylindrical-quantum-wire problem.

for the band-structure Hamiltonian in the absence of an-
isotropic remote band coupling. This makes sense intui-
tively; we expect the Hamiltonian of our two-particle sys-
tem to be a scalar with respect to the total angular
momentum in the absence of anisotropic interactions.

The conceptual model that we have adopted amounts
to replacing a finite symmetry group, the space group of
the crystal, with the full rotation group. We reiterate
that this simplification requires a spherical band-
structure approximation. In the Lane mode1, ' cou-
pling of the valence and conduction bands is isotropic
and the e6'ects of remote bands not explicitly included in
the analysis are ignored, so that this requirement is au-
tomatically satisfied. Many problems, however, necessi-
tate the use of the generalized Hamiltonian given in the
Appendix, which additionally incorporates t.uttinger-
type coupling terms among the valence bands. These
terms represent indirect coupling via remote bands, and
generally impart cubic symmetry to the band structure.
However, many materials are modeled well by setting the
Luttinger parameters yz and y3 equal, in which case this
coupling becomes isotropic. For greater accuracy, band
warping terms in y2

—
y3 can be introduced later as a per-

turbation. '
In a spherical approximation, the Hamiltonian will be

block diagonal in a basis of eigenstates of F and F„as-
suming the form

H g HFF
F, F

We found in Sec. III that the set of operators
(H, F,F, ) form a complete set of commuting observables

I

Using the familiar rules of addition of angular momen-

tum we form such a basis as follows:

J L

lK;F;F„'J,L ) =
J= —JL= —L

Z Z

The first term in the sum is the Clebsch-Gordan
coeScient for adding states of angular momenta J and L.
The states

l J,J, ) as before are the band-edge functions of
the Bloch state space, explicitly given in the Appendix,
and lK;L,L, ) are envelope functions with angular
momentum quantum numbers L and L, .

We anticipate that the appropriate envelope basis for a
flat-band region consists of free spherical waves. The en-
velope kets lK;L, L, ), therefore, have the coordinate
representations

(p, O, plK, L,L, ) =&2/vari hl (Kp) I'I'(6, $),
L

where hL is a spherical Hankel function, YL' is a spheri-

cal harmonic, and E is the radial wave number. These

envelope functions form a complete set in the envelope

state space, obeying the orthonormality relation

and the envelope-space closure relation

j K'dKIK, r,L, )(K,L,L, l
(9)

L=OL = —L

To obtain the explicit form of the band-structure Ham-

iltonian, Eq. (5), in the total angular momentum repre-
sentation l K;F,F, ;J,L ), we apply a unitary basis trans-

formation to the Hamiltonian matrix given in the con-
ventional Bloch plane-wave basis, l K;J,J, )
=lK)lJ, J, ). We begin by establishing the relationship

between the plane-wave envelope states lK) and the
spherical-wave envelope states just introduced:

6(K —K')
~ (8) lK) = y [r, (n„)]*lK,L,L, ) .

L, L

(l0)
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In this equation Qz=(8&, gz) are the polar coordinates
of the vector K. Projection of this relationship onto the
bra &K', L', L,'I, using Eq. (8), results in the following un-
itary transformation matrix relating the two envelope
bases:

&K', L', L,'IK& =[r '(gK, y„)]*
Next, we write the closure relation for the product Bloch
plane-wave basis:

I=I,eI, = gIJJ, &&JJ, I

J,J

fd«' fdII&IK& «I
where the subscripts e and B denote envelope space and
Bloch space, respectively. We insert this closure relation
into the expression for the components of a state f writ-
ten in the total angular momentum basis:

& K;F,F, ;J,L IQ &
=

& K;F,F, ;J,L
I

J',J
fdK'(K') fdII~ IZ'&&+'I (13)

Using Eqs. (6) and (11), this results in

J L
&J J, 'L (L, =F, J, )IF,F—, & f«K[I," (II,„)]"&K.;J,J, Ip&,J=—JL = —L

Z Z

(14)

which is the required unitary transformation. We use this to derive an expression giving the matrix elements of the
K P Hamiltonian in the basis of eigenstates of F:

J J'
&K,F,F,;J,LIHIK, F',F,';J', L'&= g g &J J 'L (L,=F, J, )IF,F, && J',J,';L', (L, =F,' —J,')IF', F,'&

Z 2

1 I

X f d fIK[I; (IIK)]'[I; (II~)]

x & K;J,J, IH K;J',J,' & .
(15)

The matrix elements & K;J,J, I
H I K;J',J,' & belong to the

conventional K.P Hamiltonian written in the basis of
zone-center Bloch functions. We used the fact that this
matrix does not mix waves of different K to eliminate one
integration in (15). For reference, we give the full Hamil-
tonian in the conventional basis in the Appendix.

Using the transformation equation (15), we have de-
rived the explicit form of the band-structure Hamiltonian
Eq. (5) in our spherical-wave representation. Since states
of different total angular momentum do not couple, it is
most useful to present each angular momentum subblock
HzF separately. We begin with the two degenerate sub-

Z

spaces corresponding to F=—,',F, =+—,'. It is simple to
show that for the conduction- and valence-band system,
these blocks are each six dimensional, each subspace be-
ing spanned by the two possible kets from each of the
band edges that can be constructed with F, =+—,'. For
reference, the explicit form of these basis vectors are
shown in Table I. We use the notation IJ,L & for our
basis with the quantum numbers F= —,

' and F, =+—,
' in

IF,F„J,L & understood and therefore omitted.
In Eq. (16), P = —i &s IP, Iz & is equivalent to the Kane

momentum matrix element. ' Atomic units are used
throughout this paper. E„E„E,—5 denote the

conduction-band edge, heavy-hole and light-hole band
edges, and split-off band edges, respectively. The y pa-
rameters in this full matrix are the so-called "modi6ed"
Luttinger parameters which are related to the "true"
Luttinger coupling parameters by the relations

2
true

Yl 3 1 3(g g )

P2
true

2 1 2 3(g E )

(17)

Hl
, +

H1=0

0 H'='

where the blocks H' I ' ~ take the form

In Luttinger's original work the conduction band was
treated as remote, hence the above correction is necessary
when the conduction-band coupling is treated explicitly.

From selection rules for parity, Hamiltonian block
H l I can be further decomposed to

2
—

2
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H 1 = I0, 1I

~-,', [0,1I &

i-,', [0, I I ) E, + ,'K-' i—&2/3PK

K2
i&2/3PK E, (y, +2yp)

~-, , ~1,0~ &

—i& I /3PK

K—2v'2y 2 2

~-,', tO, I ) ) i&I/3PK K 2—2v'2y
2 2

K
E, —6—y)

The envelope angular momentum quantum number is to
be read as the first or second number in the curly brack-
ets ji,j I. Other than this, the two blocks assume identi-
cal forms.

When we diagonalize these blocks, we obtain eigenval-
ues corresponding to the light holes, split-off holes, and
the conduction electrons. This is most easily seen if we
make certain simplifications. If we consider the case,
equivalent to the Kane model, in which all the higher
band coupling terms and the free-electron energy are
neglected, we recover the nonparabolic dispersion rela-
tion

(E, E)(E„E—)(E„—5 E)=—(E„—', 6 E)P—K— —

(20)

which is the well-known result for the split-off, light hole,
and conduction bands. If b is large, we can describe the
coupled electrons and light holes with the two-band
dispersion relation

(E, E)(E„E)—= ', P K— — (21)

On the other hand, considering only the I 8 states,
treating the conduction bands and the split-off bands as
remote, we immediately see that the states

~

—'„1)and

~
—,', 2 ) decouple with eigenvalues E(K)=E„—( y,
+2yz)K~/2, as we expect for the light holes. Again, the
heavy-hole states are not found in this subspace.

H3 + —PI +—2' 2 2

H' 0

0 H (22)

with the parity subblocks given respectively by

These observations lead us to point out that states
must be labeled "light hole" or "heavy hole" solely on
the basis of the eigenvalue dispersion, E(K), to which the
states correspond, and not on the basis of the quantum
number J, of the Bloch component of the wave function,
~J,J, ), as some authors prefer. The eigenstates of the
conventional Luttinger Hamiltonian for K=Kz corre-
spond to J,=+—,

' for the light holes and J,=+—', for the
heavy holes. ' However, J, is generally not a good
quantum number and this correspondence does not hold
for all directions of the vector K. In fact, the light-hole
states

~

—'„1)and g„2)discussed above are superpositions
involving various

~
J,J, ), as shown in Table I. (It

remains true, however, that a projection of either state
onto the space of Bloch eigenstates with K=Kz, recovers
a superposition of Bloch states characterized by J, =+—,'.)

The heavy holes first appear in the four degenerate
spaces corresponding to F=—,', and its four projections
F,=+—,

' and F, =+—,'. These are each spanned by eight
vectors. As before we find that each of these sets decou-
ple into 2 subsets of four vectors, due to parity selection
rules. The four degenerate Hamiltonian subblocks thus
each assume the form

I-,', 2)

/-,', 0&

E, +—,'K

—i &1/3PK

i &1/3PK

i & I /3PK

iv I/3PK
K—y

K'y'
2

K
2y2

2

i & I /3PK-

K
2y2

2
KE —y

K'r'
2

—i&1/3PK
K

2y2
2
K

2y'
2
K

E, —5—y)

and
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E, +—,'K i &1/15PK i v—3/15PK —i v'1/3K

iv 1/3PK

Ki—v'1/15PK E, —(y, ——', y2)

6 Kiv 3/5PK y
5 2
2 K

v5 y2

6 K
5 7 2

K
E, —(y, +-,'y, )

6 K
y2

2 K
v'5 ' 2

6 K
v'5 ' 2

KE —5—yV 1

(24)

where the quantum numbers F,F, have again been omitted in the vectors, Diagonalization of these matrices yie]ds the
conduction, light-hole (LH), heavy-hole (HH), and split-off band eigenvectors for these spaces. It is interesting to exam-
ine the form of these matrices after application of a unitary transformation which diagonalizes the inner 2 X 2 system,
which represents the projection of the Hamiltonian onto the I 8 band edge. For example, transformation of the inner
block in (23) using the basis vector definitions: ~LH) =(

~

—'„0)—
~

—'„2))/v'2 and ~HH) =(~ —'„0)+
~

—'„2))/v'2, yields

H'=
~LH&

~HH)

E, +1/2K

i v'2/—3PK

i v' I /3PK

i v'2/3PK

KE.—(yi+2yz)
2

2v'2y,'2

KE.—(y i
—2yr. )

i v' I—/3PK
K2v'2y,2 2

KE —6—yV 1

(25)

It is clear that the vector
~
HH ), which is decoupled from

all other states, belongs to the heavy-hole band. The con-
duction, light-hole and split-off bands are coupled. In-
terestingly, this is the same matrix that one obtains with
the conventional theory, when K is directed along the z
axis. In the present case, however, the coupling parame-
ter is the isotropic radial wave number K.

As before, it is useful to explore certain simplifying
limiting cases. If the spin-orbit parameter b and the en-

ergy gap E, —E„arelarge compared to the kinetic ener-

gies of the light holes, we can treat the split-oft' and con-
duction bands as remote. In this case, the y's are true
Luttinger parameters and we retain only the I 8 block of
the matrix in (25). Then the vector ~LH) is rigorously
identified as the light-hole eigenstates, with the familiar
eigenvalues E(K)=E„—(y&+2y2)K /2. On the other
hand, in the limit where the terms in K can be neglected,
we again retrieve the Kane dispersion relations, Eqs. (20)
and (21), plus one more for the heavy holes: E~„=E,.
The heavy-hole band is entirely flat in this approxima-
tion.

Continuing in this fashion, the Hamiltonian could be
developed for spaces of higher angular momentum. Hav-
ing demonstrated that our technique for computing band
structure in a spherical representation gives the correct
bulk crystal dispersion relations within a spherical band-
structure approximation, we now apply the technique to
the calculation of states in the spherical quantum dot in
Sec. V.

V. ELECTRONIC STRUCTURE
OF THE SPHERICAL QUANTUM DOT

Since the spherical quantum-dot heterostructure is an
isotropic potential, F and Fz remain good quantum num-
bers. Thus the quantum dot may be very simply modeled
by considering the band-structure parameters in our
Hamiltonian subblocks as functions of the radial coordi-
nate p. The states are governed by the Hamiltonian ma-
trices H~F in each separate total angular momentum

Z

subspace. Consequently, the approach is algebraic, and,
with only minor exceptions, is identical to that used in
standard heterostructure envelope calculations.

As a first example, we compute the two lowest energy
conduction-band states in a GaAs quantum dot of radius
R embedded in Al Ga, As. We will compare our re-
sults against those of the one-band model, which is accu-
rate in this case, as a check of the formalism. In this sim-
ple problem, coupling to remote bands is negligible. We
neglect the free-electron energy term and coupling to the
split-off bands. The lowest states turn out to be con-
tained in the F=—,

' subspace. The Hamiltonian in this
case becomes a simple two-band, 2 X 2 matrix with band-
structure constants E„E,, within the structure and E, ,E,
exterior to the structure. Eigenvectors of the 2 X 2 Ham-
iltonian are computed interior and exterior to the quan-
tum dot. We require that the wave function be regular at
the origin. Boundary conditions are then applied at the
interface of the dot to arrive at a relation between spheri-
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(E E—)(E E—)=—'P k

(E,' E)—(E,' E)—= ——'P'A. ' (26)

where the exterior spherical wave number is taken as ik
in anticipation of solving for bound energy eigenstates.
Eigenvectors resulting from the diagonalization process
have the form

cal wave numbers inside and outside. This condition is
combined with the known energy dispersion relations to
determine the eigenvalues of the quantum dot. The ener-

gy dispersion relations follow from Eq. (21) and are given
by the expressions 0

E
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(27)

where I =0, 1 depending on the parity of the conduction-
band envelope and where A is a constant to be deter-
mined by matching boundary conditions and applying
normalization. The angular dependence and Bloch space
elements of Eq. (27) are the same inside and outside the
dot, so this vector is projected onto only the envelope-
space radial coordinate representation. This results in
the following two-dimensional column vector:

QE(p) = A
hI(kp)

E E
hI+ ~(kp)

(28)

The form of Eq. (26) is such that kk (+A, ) are degenerate
roots. Using these roots and the basic form given by Eq.
(28), state functions within each region are constructed.
The requirement of regularity at the origin leads to com-
binations of Hankel functions within the quantum dot
that are equivalent to spherical Bessel functions of the
first kited. Outside the quantum dot, only the Hankel
function of imaginary argument which decays for large p
is retained. Applying continuity of the resulting envelope
states at the boundary of the quantum dot leads to the
following condition:

FIG. 3. Confinement energy of the conduction-band states in
a spherical GaAs dot embedded in an A1Q 3GaQ 7As barrier rela-
tive to the bulk GaAs band edge, plotted as a function of dot ra-
dius. The ground ("GndSt") and first excited ("1st ExSt") states
are shown for both the two-band ("2B") model and the one-
band ("1B")model. The dashed line represents the well depth,
equal to 224 meV. The difference between the two curves for
the first excited state is due to the neglect of band coupling in
the one-band model.

800

600-

Edge
del
del

energy offset). An important feature of the calculated re-
sult is the appearance of a critical quantum dot radius
below which no bound states are allowed. This result was
previously predicted for quantum dots by solving a sim-
ple one band effective-mass Hamiltonian in spherical
coordinates. '

As a check of the formalism, the above results are com-

JI(kR)h&+, (i AR )

jI+,(kR )h&(i AR )

(E E, )(E E„)— —
(29)

(E E„)(E E, )— —

0'
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Equations (26) and (29) form a system of three equations
in the three unknowns, E, k, and A, . In Fig. 3 we present
the energy of the conduction state in a quantum dot rela-
tive to the bulk crystal conduction-band edge, as a func-
tion of radius for the two cases of interest ( I =0 and I = 1)
in the I'= —,

' subspace. These states are twofold degen-
erate. Parameters have been selected so that the band
curvature at the zone center yields an effective mass that
is equivalent to the conduction-band effective mass in
GaAs (m,*=0.067mo, Es, (GaAs)=1. 424 eV; in addi-
tion mLH=0. 082mo=m, * indicating that the two-band
model is approximately correct). The band-energy con-
stants have been selected to reAect the quantum dot ern-

bedded in an Alo 3Gao 7As barrier (m, =0.092mo,
E

g p (Alp 3Ga0 7As ) = 1 .798 eV, 60:40 conduction: valence
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FIG. 4. Confinement energy of the conduction-band states in
a spherical InAs dot embedded in a GaSb barrier, plotted as a
function of dot radius. The ground state is shown for both the
two-band model and the one-band model. The dashed line is
the position of the GaSb valence-band edge, 150 meV above the
conduction-band edge in bulk InAs. The difference between the
two curves is far larger than in Fig. 3 due to the strong band-
coupling effects in this type-II structure.
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pared in Fig. 3 with a calculation based on a simple one-
band effective-mass Hamiltonian. The one-band
efFective-mass Hamiltonian assumes a parabolic bulk
dispersion relation and neglects mixing of the zone-center
conduction-band wave function with other bands for
nonzero wave numbers. In comparison against the two-
band model discussed above, the ground-state energies
are in good agreement for all quantum-dot radii. Only in
the excited state does a slight difFerence appear, which
becomes more pronounced for stronger confinement (i.e.,

smaller radii). On the whole, however, the two models
agree in this case as we expect.

An extreme situation in which the one-band model
would fail for the conduction-band states in a quantum
dot is in type-II heterostructures. An InAs dot embed-
ded in GaSb provides an example. In this system, the
conduction-band edge of bulk InAs is below the I 8

valence-band edge of GaSb. Thus, coupling between the
conduction and valence bands across the heterostructure
interface cannot be ignored, so that the assumptions un-

derlying the one-band model break down. To determine
the conduction-band states in this structure, we employ
the two-band formalism that we developed for the GaAs
dot. We use the material parameters of Ref. 31 and cal-

culate the position of the lowest conduction band state
relative to E, in InAs as a function of InAs dot radius, in
Fig. 4. For comparison we also plot the results calculat-
ed using a one-band model of the conduction band in the
same figure. It is clear that the two models disagree
significantly in this case, by as much as 100 meV for
smaller radii, due to the neglect of band-coupling effects
in the one-band calculation. We do not extend the calcu-
lation beyond the radius at which the InAs conduction
state sinks below the GaSb valence-band edge as at this
point charge transfer across the surface of the dot may be
expected to occur. Quantitative analysis of this interest-
ing effect, which has been observed in InAs/GaSb super-
lattices, must incorporate a self-consistent determina-
tion of the band bending as in Ref. 33.

We return to the study of type-I systems such as
GaAs/Al„Ga, „As, in which the band edges line up
closely across the heterostructure, to study the coupled
valence-band states in a quantum dot. We first consider
states characterized by total angular momentum quan-
tum number F= —,'. We neglect the split-off band, retain-

ing only the projection of the Hamiltonian submatrix in
this space onto the I"8 band edge. As discussed in the
Sec. V, the Hamiltonian assumes the form

E
+I Ig&1& E (j )+2rp)2+2 U 1 2

(30)

K0 (r i+—2rz)

The y's in this matrix are "true" Luttinger parameters. This diagonal matrix contains only light-hole eigenvalues since
the F=—,

' space contains no heavy-hole character. Because of this decoupling, the vectors
~

—,', 1 & and
~

—'„2& each form

quantum-dot bound states with the same energy as that determined in a one-band model of the light holes, correspond-
ing, respectively, to the first and second excited light-hole states. It should be noted, however, that the total wave func-
tions are very difFerent between the coupled band and one-band models. The one-band model of these states predicts a
degeneracy of three for 1=1 and five for 1=2, plus the twofold spin degeneracy, while the multiple-band calculation
yields only the twofold degeneracy in F, =+—,

' for the states. As the radial part of the envelopes happens to be the same

in the two models, the energy calculation proceeds from this point in a familiar way so we do not pursue it further.
We expect the uppermost valence states (lowest energy in the hole picture) in the spherical quantum dot to have en-

velopes with a degree of s character, which is not contained in the I 8 states spanning the F=—, space. It is straightfor-
ward to show that such states can only appear in the space characterized by total angular momentum I' =—', . We con-
sider the submatrix of H3 3 f Eq. (22), which corresponds to the I, band edge:

2 -2"-2'

r 8H3
O1 +—2' 2 2

I-'„0& K
2r'

2
I(E —ri 2

KE, —(ri —
—,'r»

2
K6

S~~

K6
5 3

KE. (ri+ ', r»—-

(31)

The matrix is itself block diagonal with the upper-left
matrix corresponding to even parity states and the lower
right, to odd parity states. For each of the four possible
values of F, (+—'„+—,

'
) there are, therefore, four eigenvec-

tors: a heavy- and a light-hole eigenvector of each parity

type. The even parity vectors are

II-H&,„,„=&1/2{I —', , 0& —
I
—', , 2& I

IHH &„,.=&1/2{ ~-,', 0&+ ~-'„2&I

(32)
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while the odd parity vectors are given by

ILH&. =
—,
'

{I-'„I&
—3I-'„3&

&

[HH), =
—,'{3[—,', I)+[—', , 3) I .

(33)

jo«HH(E }P}
g (P)=V1/2 . (K (E) )

(34)

and similarly for the light-hole eigenvector,

As before, we form these states separately for the re-
gions inside and outside the dot. We then project them
onto the radial coordinate of the envelope space. We
consider the even parity eigenvectors first. Using Eq. (7),
and anticipating the requirement of regularity at the ori-
gin, we obtain a two-dimensional column vector for the
heavy-hole eigenvector inside the dot in terms of spheri-
cal Bessel functions:

Jo(KHH(E}R )J2(KLH(E }R }

+jo(KLH(E)R )j2(KHH(E)R ) =0, (37)

yielding the valence state eigenenergies E as a function of
the dot radius R. Once the energy is known, the con-
stants A and 8 may be determined, specifying the light-
and heavy-hole amplitudes of the state. It is, therefore, in
general, qualitatively incorrect to characterize a quantum
dot as having light- or heavy-hole states: the quantum-
dot confinement potential hybridizes these bands. This
effect was recently reported for the infinite-well quantum
dot in Ref. 23. We will see below that it is also true for
the finite-well case.

The infinite-well-dot eigenstates, which arise from the
odd parity block of Eq. (31), are governed by a dispersion
relation similar to the one just determined for the even-
parity states. Proceeding as we did for the even states,
we arrive at the dispersion relation

9J, (KHH(E)R )J,(KLH(E)R )

jo (K„H(E)P )

PP(P) =&I/2 . (K (E) )
(35} +j,(K„H(E)R)j&(KHH(E)R )=0 . (38)

—g yHH( ) +g yLH( (36)

The requirement that g vanish at P=R leads to the sim-
ple dispersion relation

Here Kz~ and K„~are the heavy- and light-hole wave
numbers inside corresponding to the dispersion relations:
EH„(K)=E,—(}',—2y2)K /2, and ELH(K) =E„—(y,
+2@i)K /2.

If we assume at this point that the confining potential
outside the dot is infinite (an infinite valence-band discon-
tinuity) the total wave function must vanish at the dot
surface. Because the radial envelope wave functions are
in this case two-component vectors, this boundary condi-
tion manifests itself as two independent equations. Thus
the quantum-dot eigenstate generally cannot be purely
light or heavy-hole in character. The solution must take
the form

For the more realistic case of a dot surrounded by a
medium with a finite relative valence-band discontinuity,
such as GaAs in Al„Ga, ,As, these dispersion relations
fail. We must construct a nonvanishing wave function
outside the dot. Light- and heavy-hole vectors are
formed according to Eqs. (32) and (33) outside the dot.
Projecting them upon the envelope-space radial coordi-
nate as before, we obtain expressions similar to Eqs. (34)
and (35) except we use spherical Hankel functions to en-
sure vanishing probability at infinity for the bound states.
The wave function inside and outside the dot is then writ-
ten as a linear combination of the HH and LH vectors in
each region, yielding a total of four unknown coefficients.
Continuity of the wave function and probability current
are required at the interface at radius p=R between well
and barrier regions, resulting in four equations, The re-
quirement that a solution to this set of equations exist
leads to a four-by-four determinental dispersion relation
for the allowed eigenenergies. For the even-parity states,
this is,

jo(

ji«HH(E)R }
det

jo«HH«)R }

J2(KHH(E)R )

jo(KLH(E)R }

J2(KLH(E)R )

jQ(KLH(E)R )

—j~(KLH(E)R )

ho(iAHH(E)R )

h~(iA, HH(E)R )

ho(iAHH(E)R )

h ~(iAHH(E)R )

hP(&~LH(E }R}
—h2(iA, LH(E)R )

ho(iALH(E)R )

—h~(iALH(E)R }

(39)

3j,(KHH(E)R ) ji(KLH(E)R ) 3h, (il (EHH)R )

J3(KHH(E)R } —3J3(KLH(E)R ) hi(iAHH(E)R }
det

3J, (KHH(E}R) J', (KLH(E}R) 3h'&(iAHH(E)R)

—3h3(iA, LH(E)R }
'

h', (ikLH(E)R )
(40)

j3(KHH(E)R ) —3ji(KLH(E)R ) h i(ikHH(E)R ) 3h (ik3(ELH)R )—

In this expression, h is the spherical Hankel function h'" which decays for imaginary argument. f denotes derivative
of f with respect to P, i.e., f'(kR)=[df(kp)/dp]}~ ii. KLH(E) and KHH(E) are defined as before, and ikLH(E} and
iAHH(E} are the light- and heavy-hole wave numbers outside the dot, taken to be imaginary in anticipation of solving
for bound states. A similar dispersion relation follows straightforwardly for the odd-parity states:

h, (iALH(E}R )
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We have assumed that the effective masses are the same
inside and outside the dot for simplicity. Solution of
these dispersion relations gives the allowed energies of
the quantum dot with a finite-well depth, in the I'= —',
spaces.

The highest states calculated with the finite-well
quantum-dot dispersion relations are plotted in Fig. 5(a)
in the electron picture. The plots reAect a GaAs dot em-
bedded in Alp 3Gap 7As with a 40% valence-band offset,
so the "well depth" is 150 meU. %e have assumed
m LH =0.082m p and m HH =0 45mo The figure displays
the energies of even and odd parity states found with Eqs.
(39) and (40) respectively, relative to E„in bulk GaAs.
The state with lowest confinement energy (highest curve
in the figure) is of even parity as we expected, while the
next is an odd-parity solution. As in the conduction-
band calculation, there is a critical radius below which no
bound states exist. We point out that each state
displayed is fourfold degenerate due to the fourfold de-
generacy of I' = ', . In Fi—g. 5(b) we compare the energies
of the highest even- and odd-parity states determined us-
ing the infinite-well dispersion relations, Eqs. (37) and
(38), with the results of the finite-well calculation. The
infinite well causes an overestimation of the confinement
energy for both states. Note that in the finite well, the
energy separation between the even and odd states is
enhanced relative to the infinite-well calculation because
the odd-parity states has higher probability to be in the
barrier region than the even state. Thus the infinite-well
model yields energies for these states that are inaccurate
both qualitatively as well as quantitatively.

The results of a one-band calculation for the heavy-
and light-hole states in a GaAs quantum dot surrounded
by Alp 3Gap 7As, using the same material parameters as in
our multiple-band calculation, are shown in Fig. 5(c) for
comparison to the coupled band model used in Fig. 5(a).
Note the level crossings which occur in the one-band
model do not occur when band coupling effects are in-
cluded. Furthermore, the highest state in our multiple-
band calculation is significantly lower than the highest
heavy-hole state in the one-band model. This is due to
the fact that the dot eigenstates are an admixture of light-
and heavy-hole character. Any admixture of lower mass
light-hole character into the heavy-hole ground state
would naturally tend to increase the confinement energy,
pushing it downwards on the energy scale of Fig. 5(c).

This admixture has a significant impact on the electri-
cal properties and optical spectra of these structures, and
hence must be taken into account if applications involv-
ing quantum dots, such as to semiconductor lasers, are to
be accurately studied. Information about the optical
properties of the quantum dot may be straightforwardly
obtained by using the dot eigenstates, such as Eq. (36) for
the valence bands, to calculate matrix elements for opti-
cal transitions between conduction- and valence-band
states. A calculation of the optical matrix element be-
tween the lowest conduction- and highest valence-band
states shows that this transition in the quantum dot is op-
tically isotropic, as we expect in a spherical band-
structure approximation. ' This result could not be ob-
tained in a one-band model. %'e mention that all of the
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FIG. 5. Confinement energy of bound valence-band states in
a spherical GaAs quantum dot plotted vs dot radius, relative toE„in bulk GaAs. The dot is embedded in an AlQ 3GaQ 7As bar-
rier, rejected in a well depth of 150 rneV. (a) Coupled band
model of the light and heavy holes. The states belong to theF= —, space and are labeled according to parity (even or odd)

=3
and order in energy (1,2, . . . , ). (b) A comparison of the finite-
and infinite-well models. Note that in the finite well the energy
of the odd state is substantially below that of the even state,
while the two are nearly degenerate for the infinite well. (c) A
one-band calculation. Effective masses are the same as in Fig.
5(a). The states are identified by the band (HH or LH), the en-
velope angular momentum and order in energy. Note the level
crossings, which do not occur in the coupled band model.
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calculations presented in this paper were performed ei-
ther analytically, or where necessary, on a desk top per-
sonal computer, implying that incorporation of band-
coupling e6ects into device analyses is simple and there-
fore warranted. We next turn our attention to the quan-
tum wire.

VI. BAND STRUCTURE
IN A CYLINDRICAL REPRESENTATION

Our success in solving the multiple-band quantum-dot
problem arose from the compatibility of the total angular
momentum F with the band-structure Hamiltonian in the
spherical approximation. A similar simplification applies
in the case of the quantum wire. In contrast to the spher-
ical case, where we used the complete set of commuting
observables including H, F, and F„wenow a use a basis
of eigenstates shared by H, F„andP„the component of
envelope linear momentum along the z axis. This basis
has the desired symmetry for studying the cylindrical
quantum wire. F, is a good quantum number so the
Hamiltonian in this basis is again block diagonal

H=g HF (41)
F

In contrast to the approach in Sec. IV for the spheri-
cally symmetric problem, it is most convenient to work in
an "uncoupled" angular momentum representation. We
use the fact that F, =J, +L, to construct a basis in the
product form

K„k,F, ;J,J, )=lJ,J, ) lK, ;k, L, =F,—J, ) . (42)

The envelope vector lK„k,L, ), described below, is an
eigenstate of L„the projection of envelope angular
momentum along the z axis with quantum number L, .
The zone-center Bloch function lJ,J, ), as before, has
Bloch angular momentum quantum numbers J,J, . The
envelope vectors are simultaneously eigenstates of P„the
z component of the envelope momentum operator, with
eigenvalue AK, . The envelope states, therefore, have the
cylindrical coordinate representation

.L
(r, &,zlK„'k,L, ) = HL (kr)e ' e

2~
where k is a radial wave number and H is a Hankel func-
tion. It is clear that the resulting basis has the necessary
cylindrical symmetry. It is also an orthonorrnal basis

(K, , k', F, ;J', J,'l K„k,F, ;J,J, )

=5, 5J ~5, 5(k,' —k, ) . (44)
5(k' —k )

The process of expressing the band-structure Hamil-
tonian in this basis involves a unitary transformation
similar to that carried out in the spherica1 case. It is sim-
ple to show that the transformation from the convention-
al Bloch plane-wave basis into the new cylindrical wave
basis is

(K„k,F,;J,J, lg)= f d8~. e ' ' '(K';J, J, ll(j) .

(45)
In this equation, (K',J,J, lg) are the components of a
wave function P written in the conventional basis of
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Bloch plane waves. 8& is the angular coordinate of the

vector K expressed in cylindrical coordinates. Using
this unitary transformation we find the matrix elements
of the band-structure Hamiltonian in the new basis in
terms of the conventional matrix elements (found in the
Appendix):

«„k,F,';J', J; IHIK„k,F„J,J, &

2a i [(FZ Fz z 2 ~(9'

2' 0

x(K.;J',J,'IHI&;J, J, & . (46)

Employing this transformation equation, we find that
each Hamiltonian subblock HF [see (41)] assumes the

Z

identical 8X8 form given in Table II. This is the full
Hamiltonian governing conduction, light and heavy
holes, and the split-off bands. In the table, the basis vec-
tors are written as products of a zone-center Bloch func-
tion,

I J,J, ) and an envelope state, IF, —J, ) so that

L, =F, —J,. This form ensures that all the basis vectors
correspond to the same quantum number F, . In the en-

velope vector, k and E, are understood and therefore om-

itted. P is the Kane matrix element. The other terms are
given by

E,
,—=—(yi+y2)

2
+(yi —2y» 2' —+ =(yi y~—) +(yi+2yz)

2
(47)

kK,
i 2&—3y 3 (axial approximation)

kE,—i 2&3yz (spherical approximation),

k—M=&3y 22

These subblocks are quite similar in structure to the
conventional Cartesian coordinate Hamiltonian (see the
Appendix), but K„and K are everywhere replaced by
the radial wave number, k. Either the spherical or the
axial approximation may be employed as indicated in the
expression for the term L. In the more accurate axial ap-
proximation, we equate y2 and y3 only in the term M, so
that warping effects are neglected only in the (K„,K~)
plane. Thus the energy bands remain cylindrically sym-
metric about the quantization axis and F, remains con-
served. The axial approximation is, therefore, naturally
incorporated into the present formalism, in contrast to
coordinate free methods which have been previously ap-
plied to the cylindrical quantum wire. It is easily
shown that the band-structure relations, which result
from diagonalizing these subrnatrices, agree with those
obtained via the conventional K.P method using the
same approximations. However, the eigenvectors have
cylindrical symmetry, so that the cylindrical quantum-
wire problem is now easily solved by the same algebraic
method that we used for the spherical quantum dot.

VII. ELECTRONIC STRUCTURE OF THE CYLINDRICAL
QUANTUM WIRE

By treating the band-structure parameters such as E,
and F., as functions of the radial coordinate in the Harnil-

tonian given in Table I, we can model the cylindrical wire
heterostructure just as in the case of the quantum dot.
We find that the one-band model is adequate for
conduction-band states in systems like
GaAs/Al„Ga, „As,but fails in the case of type-II sys-

tems such as InAs/GaSb.
We narrow our focus now to the more interesting I 8

states —the light and heavy holes —and calculate the
quantum wire subband dispersion relations E (K, ) for
these bands. For the light and heavy holes, we retain
only the middle 4X4 block of the Hamiltonian in Table
II, incorporating the effects of coupling to the conduction
and split-off bands through the Luttinger parameters in
the spherical approximation:

I-', —
—,
'

& IF, + —,
'

& I-'„—-', &IF, +-', )

r,HF' =
E, +T2

iL*
—iL

E +—+—'QT
6

E, + —+—', Q
T iL

(48)



3704 PETER C. SERCEL AND KERRY J. VAHALA 42

IHH), =

k +4K,
k'

2K,
k
1

0

IHH }~=

where the heavy-hole
E„H(k)=E, —(y, —2yi)(k +X, )12.
vectors are

2K,

1

eigenvalue is
The light-hole

—v'3

2K,
k

ILH}i=

0

ILH&, =

2E,

1 k~+4'

(50)

For a given Fz, the heavy and light holes each have
two eigenvectors. The heavy-hole vectors are

with eigenvalue ELH(k) =E, —(y, +2yz)(k ~+X~)/2.
Note that if X, =0 the I s Hamiltonian, Eq. (48), decou-
ples into two 2X2 blocks of even or odd parity. The vec-
tors subscripts 1 and 2 will then contain separately en-
velopes of either purely even- or purely odd-parity, de-
pending on F, . Thus, by taking the quantum-wire axis to
be the quantization direction, we not only obtain a simple
radial boundary condition for the wave functions of the
quantum wire, but also a significant simplication in deter-
mining subband-edge (X,=0) wave functions and ener-
gies. This is pointed out because the optical properties of
the quantum wire will be dominated by the subband-edge
states.

As in the quantum-dot calculation, we treat the band-
structure parameters as a function of the cylindrical radi-
al coordinate r, form heavy- and light-hole vectors sepa-
rately inside and outside the quantum wire, and project
them onto the envelope space radial coordinate. Inside
the wire, the envelopes must be regular so these projec-
tions are

yHH1( )
z

k +4X J 3(kHH(E)r }
3 k

2E, JF, (kHH(E)r )
zJ,(kHH(E)r )

z

exp(iX, z), g" (r,z)=

2K, J 3 (kHH(E)r )
z

&3J,(kHH(E)r)
F, —

2

JF +, (kHH(E)r)
z+2

exp(iX, z ), (51)

and

yLH1( r )
z

—&3J 3 (kLH(E)r )
2

2I(, J i(kLH(E)r)
z 2J,(kLH(E)r }
2

exp(iX, z), PP (r)=

2E,
(E)r)

z 2

k +4X J ) (kLH(E)r )
3 k

0
J 3 (kLH(E)r )

z+2

exp(iX, z) . (52)

For bound states, the wave functions outside the wire must be normalizable, so the projections in the barrier region in-
volve Hankel functions H" ' in place of the Bessel functions J appearing in the expressions above.

The quantum-wire eigenstates are then formed in each region as a superposition of the bulk light and heavy-hole vec-
tors. If we specialize for the moment to the case of a quantum wire with an infinite-well depth, the boundary condition
is that the wave function inside must vanish at the surface of the wire, r =R. Since the states are four-component vec-
tors, this requirement can be satisfied generally only if the wave function is a superposition of the four bulk light- and
heavy-hole eigenstates for a given F„suchas

fF (E)=~ IHH), +BIHH},+CILH), +EILH), . (53)

By forcing this state to vanish at R, we obtain a 4X4 determinantal dispersion relation giving the allowed energies for
the infinite-well quantum wire, namely

det

kHH + Kz

kHH 2

2E,
k JF l(kHHR)

HH z 2J,(kHHR )
z+2

0

2E,
k JF 3{kHHR }

HH z

z 2

0

3 (kHHR )
2 2

—&3J 3 (kLHR )
z 2

2K, J,(k„HR)
LH zJ,{kLHR )

2 2

2K, J 3(k„HR}

k LH+4& J,(kLHR )
LH z 2

J 3 (kLHR )
z+2

(54)
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This dispersion relation is equivalent to the one report-
ed in Ref. 22, which was derived using a coordinate free
form for the Luttinger Hamiltonian. The formalism
presented in this work is more general in that explicit
coupling to the conduction and split-off bands is incor-
porated into the general Hamiltonian. The formalism
reduces to that presented in Ref. 22 for the case of the
isolated I 8 states we are presently calculating.

Before returning to the finite-well problem, we stop to
examine some qualitative features which become ap-
parent in the steps leading to the infinite-well dispersion
relation. The only possibility for the light and heavy
holes to decouple in the wire exists in the spaces corre-
sponding to F, =+—,

' at the zone center (E, =O) where

parity is a good quantum number. In this case, the odd-
parity vectors in Eq. (51) and (52) have two nonzero en-

velope components, proportional to J+&(kr). SinceJ,(x ) = —J, (x ), the infinite-well boundary condition at
the wire interface is equivalent to just one equation:
J, (kr) =0. Thus the light- and heavy-hole vectors decou-

ple in this specific case, and the corresponding subband-

edge energies are identical to those predicted by a one-
band model. However, for the even-parity vectors corre-
sponding to F, =+—,', and for all other zone-center vec-

tors, both even and odd, with ~F, ~

& —,', the indices of the

Bessel functions for the two nonzero components are not
equal. As a result, light- and heavy-hole waves must be
mixed to satisfy the boundary conditions at the wire in-

terface, and the one-band model fails even to predict
correct subband-edge energies. The quantum-wire eigen-
states are, therefore, in general, hybrids of light- and
heavy-hole character, even at the zone center. With

—inside —o ut side

det —Inside —outside

=0 (55)

where the 4 are 4 X 4 blocks given by

nonzero K, this mixing further increases. This eftect,
which has been reported for wires of square cross sec-
tion, ' ' in addition to the cylindrical wire result report-
ed here, is in distinct contrast to the situation in the con-
ventional planar quantum well, in which light- and
heavy-hole states are always decoupled at the zone
center. It is therefore not possible to label quantum-wire
subbands as light or heavy hole in character as is done in
the quantum well.

This remains true for the finite-we11 quantum wire. To
solve this problem, we must construct states in the bar-
rier region in addition to the states inside the wire. As in-
dicated above, the barrier states contain Hankel functions
which decay as r increases to infinity. The quantum-wire
eigenstates in the well and in the barrier are formed sepa-
rately as superpositions of the two light- and two heavy-
hole vectors in the respective regions, leaving four con-
stants in the well and four constants in the barrier to be
determined. By requiring continuity of the wave func-
tions (four equations) and the probability current (four
more equations) across the interface between well and
barrier regions, we obtain an 8X8 determinantal disper-
sion relation which determines the allowed quantum-wire
eigenenergies and eigenstates. We take the effective-mass
parameters to be the same in the well and barrier, and
write this dispersion relation in the compact form:

—&nstde

and

~@utstde—

kHH +4K, J 3( HHR)V'3 k'„H Fz

2K, J,(kHHR )
HH zJ,(kHHR )

z 2

KHH+4Kz
H (K„HR)

Fz

2K, H, (KHHR )
KHH F

H, (KHHR )
z 2

2K,
k F 3(kHHR)

HH z 2

&3J,(kHHR)
z 2

0

J 3(kHHR)f

2K,
H 3(KHHR )

KHH F ——

z 2

0

H 3 (KHHR)
2 2

, (k„„R)
z

2K J,(kLHR )
F

2 2

—&3H 3 (KLHR )
2 2

2K,
H 1(KLHR )

F
2H, (KLHR )

z 2

0

2K, J 3(kLHR )
LH z 2

k LH+4Kz J l (kLHR )
3 kLH z

J,(kLHR )
z+2

2K, H, (KLHR )

KLH+4Kz H, (KLHR )
3 KLH

H 3 (KLHR )
2+2

(56)

(S7)

and each term in the blocks labeled 4' is the derivative
with respect to r of the corresponding term in 4. kHH
and kLH are the wave numbers corresponding to
E(k)=E,—(y, +2y2)(k +E, )/2, where the minus ap-
plies to the heavy holes and the plus to the light holes.

KHH and K'LH are similarly defined in the barrier.
%e have solved this dispersion relation for a GaAs

wire embedded in an Alo 3Gao 7As barrier region for

several wire radii, using the same band-structure parame-
ters as in Sec. V. We begin by presenting plots of the
subband-edge (E, =0) energies of bound states as a func-
tion of wire radius. Figure 6(a) shows edge energies for
all of the bound subbands corresponding to F, =+—,

' for
radii up to R =10 nm, relative to E, in GaAs. Figures
6(b) and 6(c) similarly show the bound subband edges in
F, =+—', and F,=+—'„respectively. The states are labeled
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according to parity in Figs. 6(a)—6(c) since at the
quantum-wire zone center, parity is a good quantum
number. In Fig. 6(d) we show the position of the four
highest subband edges versus wire radius calculated in a
one-band model for heavy and light holes using the same
band-structure parameters as for the coupled band calcu-
lations. A comparison of these plots shows the effect of
the admixture of light- and heavy-hole character in the
zone-center quantum-wire states, discussed above. The
highest state in Fig. 6(a) is substantially lower for all radii
than the HHO state in the one-band mode1, reflecting ad-
mixture of light-hole character into the wave function.
The confinement energies increase as we decrease wire ra-
dius, as expected. Also, confinement energies for a given
radius tend to be larger for states of higher F, . The
highest subband (lowest confinement energy) corresponds
to an even-parity state with F, =+—,'. Note that, in con-
trast to the situation in the quantum dot, there is always
at least one bound state in the wire, though as r ap-
proaches zero the subband edge of the states approaches
the top of the well asymptotically. This point was first
pointed out for the one-band case in Ref. 16.

In Figures 7(a) and 7(b) we show the subband disper-
sion, E(E, ) for bound states corresponding to F, =+—,

'

and F,=+—'„respectively, in a GaAs/A10 3Gao 7As quan-
tum wire with radius 5 nm. Reference to Fig. 6(c) shows
that there are no bound states for the 5 nm radius wire in
the spaces F, =+—,': Figures 7(a) and 7(b) represent all
bound states for this radius. These plots were made by
solving Eq. (55) numerically on a desk top personal com-
puter. The states are labeled according to the parity of
the zone-center envelope wave function. The strong non-
parabolicity of the subband structure is a result of the
no-crossing rule for coupled states, reflecting the impor-
tance of band-coupling effects in this system. The most
extreme result of this coupling is seen in Fig. 7(b), in
which the highest subband is actually electronlike at zone
center. Similar effects manifest themselves in Figs. 8(a)
and 8(b), which show the dispersion of the bound sub-
bands in a wire of radius 2.5 nm. Reference to Figs.
6(a)—6(c) shows that these plots describe all bound states
for this radius.

It is instructive to examine the effective masses at the
subband edges as a function of wire radius. We have
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FIG. 6. Confinement energy at the zone center (E,=0) for bound valence-band states in a cylindrical GaAs quantum wire embed-

ded in an Alo 3Gao 7As barrier (well depth=150 meV) plotted versus wire radius. (a) Coupled band model, F, =+—,'. The states are
labeled according to their parity, which is a good quantum number at zone center. (b) Coupled band model, F, =+ 2. (c) Coupled
band model, F, =+—,'. {d) One-band model with the same effective masses as in (a) —(c). The states are identified by the band {HH or
LH) and the quantum number L,.
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determined these masses by performing a quadratic best
fit to the subband dispersion curves near the subband
edges, as in Ref. 13. The results for the highest subband,
for both infinite- and finite-mell depths, are shown in
Table III. The mass is as low as 0.16mo for the 2.5 nm
radius wire with finite-weil depth, and increases some-
what with increasing wire radius. In the approximation
of an infinitely deep well, the mass is found to be
m'=0. 25mo, independent of wire radius. A similar re-
sult was reported for a quantum wire of square cross sec-
tion in the infinite-well approximation, in Ref. 13. How-
ever, in that study, the mass of the highest valence sub-
band was found to be m*=0.027mo, nearly ten times
lighter than our value for the infinite-well case. This
discrepancy is explained by the fact that the light- and
heavy-hole states are assumed to decouple at the
quantum-wire zone center in Ref. 13, an assumption
which has been shown here to be invalid, as well as in
previous studies by other workers. ' ' '

The effective mass of the highest valence subband in a
quantum wire of a given diameter tends to be heavier
than that for the corresponding state in a planar quantum
well with a comparable thickness. This is best seen in the
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FIG. 8. Subband dispersion E(K, ) for a 2.5 nm radius GaAs
quantum wire embedded in an Alp 3Gap 7As barrier (well
depth=150 meV). (a) F, =+

—,
'. (b) F, =+2. See comments in

Fig. 7.

approximation of infinite-well depth. In this approxima-
tion, the mass of the highest valence subband in a GaAs
quantum well is m *=0.118m 0, independent of well

thickness, " in contrast to m*=0.25mo for the highest
quantum-wire subband. The valence subbands in a quan-
tum wire tend to be more numerous and therefore more
closely spaced in energy than in a quantum well with
comparable thickness due to the additional confinement
and band-coupling effects in the wire structure. (This
rather counter-intuitive effect is not true in a simple-one-
band model in which band coupling is neglected. ) This is

i (b) Wire Radius 5 nm

-200
0.0 2.5

I

5.0

(1O'm ')

I

75 10.0

FIG. 7. Subband dispersion E(K, ) for a 5 nm radius GaAs
quantum wire embedded in an Alo 3Gao 7As barrier (well
depth=150 meV). (a) F, =+—'. The dispersion curves are la-

beled according to the parity of the zone-center state to which
they correspond. (b) F, =+—,. Note that the highest state in

this space is electronlike near the subband edge.

Quantum wire
well depth 2.5 nm

Radius
5 nm

Infinite
150 meV

0.25m o 0.25m o

0.16m o 0.19m o

0.25m p

0.27m o

TABLE III. Effective mass at the subband edge of the
highest subband in a GaAs quantum wire embedded in an
Alo 3Gao 7As barrier, for several wire radii. Also included in the
table are values determined in the approximation of infinite-well
depth.
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TABLE IV. A comparison of the effective mass for valence-
band in-plane dispersion in a GaAs quantum well and down-
wire dispersion in a quantum wire. The values are calculated in
the approximation of an infinite-well depth. The quantum-well
state labeled HH1 is heavy-hole-like with even parity at the sub-
band edge. AE& I is the energy separation between HH1 and
HH2, the next highest state, which has odd parity. Correspond-
ing values are given for the highest even- and odd-parity states
for the quantum wire, which have quantum number F, =+ 2.
The larger energy separation between HH1 and HH2 implies a
lighter effective mass in the quantum well.

State E (meV) hE» (meV) m */mo

Well: HH1
Wire: F, = —,

' even 1

—8.3
—39.6

24.9
9.8

0.118
0.250

seen in Table IU. There, the edge energy of the highest
valence subband (HH 1) in an infinitely deep quantum
well of thickness 10 nm is listed, with the energy separa-
tion to the next state (HH2) and the effective mass for in-

plane dispersion. The corresponding parameters are
given for the highest valence state of a 10 nm diameter
quantum wire with infinite-well depth (which belongs to
the F, =+—,

' subspace). The energy separation to the
second highest state is lower in the quantum wire than in
the planar well by over a factor of 2. As a result, the cou-
pling between these levels is stronger in the wire, causing
the higher subband to "flatten out" due to the no-
crossing rule. This is reflected in the mass —it is more
than two times higher in the wire than in the well.

A more comprehensive study of the subband structure
and effective masses in a cylindrical quantum wire will

appear elsewhere, incorporating band-warping effects
into the calculation by employing the axial approxima-
tion discussed in Sec. VII. In the axial approximation,
actual band structure in a cubic semiconductor is more
accurately reproduced than in the spherical approxima-
tion, yet, since F, remains a good quantum number, the
calculation is only moderately more complicated.

Finally, we point out that it is straightforward to ob-
tain exact, closed-form expressions for the quantum-wire
wave functions using the formalism we have presented.
This is necessary for studying such important topics as
excitons in the quantum wire, and matrix elements for
optical transitions. The band coupling has a profound
efFect on these calculations and must not be ignored if
realistic results are to be obtained. For example, a calcu-
lation of the lowest energy optical transition in the cylin-
drical quantum wire shows that the square of the optical
matrix element is four times larger when the eLectric field
vector is oriented along the wire than for the perpendicu-
lar orientation. ' This result could not be obtained using a
simple one-band m.odel.

equivalent to a two-particle model of the electrons in a
semiconductor. In the spherical approximation, the
band-structure Hamiltonian commutes with the sum of
the angular momenta of these particles, which we term
Bloch and envelope. The total angular momentum F
therefore, provides good quantum numbers in centrosym-
metric systems, a general result originally found in the
context of the acceptor problem. Application of the
theory of angular momentum thus greatly simplifies the
spherical quantum dot and the cylindrical quantum wire
bandstructure calculations. Additionally, for the cylin-
drical quantum wire, the more accurate axial approxima-
tion may be invoked to incorporate band-warping effects.

Utilizing the two-particle model to develop unitary
basis transformations, we recast the K P band structure
Hamiltonian into a coupled total angular momentum
basis for the quantum dot and an uncoupled basis of
eigenstates of F, for the quantum wire. The resulting
Hamiltonians are block diagonal, producing eigenstates
corresponding to the familiar conduction, light-hole,
heavy-hole, and split-off bands. Quantum dot and wire
eigenstates are formed by constructing linear superposi-
tions of the bulk crystal eigenstates inside and outside the
structures. By matching these functions at the heteroin-
terface, we obtain simple dispersion relations giving the
allowed state energies. A two-band dispersion relation
was developed and solved for quantum-dot conduction-
band states in GaAs/Al, Ga, ,As and the type-II system
InAs/GaSb. We found good agreement between the
two-band model and the less accurate one-band model for
GaAs/Al, Ga, As, but the one-band model failed for
the type-II system. For the valence-band states in
GaAs/Al, Ga, As quantum wires and dots, the one-
band approximation breaks down completely. The
multiple-band calculation, which we introduced, shows
that the valence-band states in the quantum dot and
quantum wire are admixtures of light- and heavy-hole
character. This admixture has a significant affect on the
binding energy of valence-band states in quantum dots
and on valence subband dispersion in quantum wires,
which is highly nonparabolic and electronlike in some
cases. Analytic expressions derived in this paper for
quantum dot and wire eigenstates rigorously include
band-coupling effects and can be used to accurately cal-
culate matrix elements for optical transitions in a
straightforward way. The formalism should also greatly
simplify the incorporation of band-coupling effects into
exciton studies. Further work is in progress to investi-
gate the effect of band-warping terms, neglected in this
study, on transport characteristics and optical properties
of quantum dots and wires.
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TABLE V. The full 8 X 8 K-P Hamiltonian H(K) representing coupling between conduction and valence bands as well as indirect

coupling through remote bands. The symbols are defined in the text.
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APPENDIX: THE CONVENTIONAL
K P HAMILTONIAN

In this section we present the conventional K P band-
structure Hamiltonian describing coupling among the
two conduction and six valence bands. %e use a some-
what different phase convention in our definition of the
band-edge Bloch states than that used by other investiga-
tors. The states

I J,J, ) are written below in terms of or-
bital wave functions transforming as s states (the conduc-
tion bands), p states (the valence bands), and the spin
states up and down. Our phase convention is determined

by the reality of the Clebsch-Gordan coefficients used to
combine the spin and orbital angular momenta to form
states of total Bloch angular momentum J:

I-,', —,', (0) & =I.&IT &,

I-,', —
—,', (o) & =Is &I1&,

I —,', —,', (1))= —&1/3[ z &I t &+(Ix &+i fy ) )ll )],
I-,', —

—,', (1)&
=&I/3[

I
z & I 1 &

—( lx &
—i ly & ) I t & ],

(Al)
I-'„-',&

= —&1/2[Ix &+i ly &]I t &,

I-', , —,
'

& =&2/3lz & It &
—&I/6(lx &+ily &)Il &,

I-', ,
—

—,
' &=&»6(lx &

—ily &)I& &]+&2/3[lz&ll &,

&
=&1/2[Ix & i

I y & ] I 1) . —

We include the orbital angular momentum quantum
number in parentheses for the conduction and split-off
bands to distinguish between the two. For these bands
the following correspondences apply between the band-
edge representations of the crystal double group and the
representations of the full rotation group (written D,
corresponding to the states that transform an angular
momentum j): D, &2~I 6 for conduction band, Di/2~+7
for the split-off bands, and D3/2~F8 corresponding to

(K„+K») K,
(3 i+y2) +(yl 2Y2)

2 2
(A2)

—+ =(y, —y, ) +(y, +2y, )

(K„iK»)K,—
l2 3y3

(axial approximation),

(K„iK»)K, —
i2 3yp

(spherical approximation),

(K„—iK )—m=&3y,

The y parameters in these expressions are so-called
modified Luttinger parameters which are related to the
true Luttinger coupling parameters by the relations

2
/true

3(E, E„)—
p2

true
y2 =y2 (A3)

p2
true

3(E, E,)—

the coupled light and heavy holes.
In this basis, the Hamiltonian matrix H(K) takes the

form given in Table V. E„E„Ehave their usual mean-

ings, I' is the Kane momentum matrix element, and the
other terms are defined as follows:

K2 K2+K2+K2x y z

K+ =K, +iK

K =K„—iK
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In these modified parameters me have effectively sub-

tracted out the effects of valence-band coupling to the
conduction bands from the true parameters. These
effects are included explicitly in this model. Note that we
have also assumed inversion symmetry in this Hamiltoni-
an.

We note that a number of simplifications are possible.
We can restrict attention solely to the I

& block, for exam-

ple, in which case we simply obtain Luttinger's 4X4
Hamiltonian and the true Luttinger parameters are
used in place of the modified parameters discussed above.
In the spherical approximation, this gives isotropic LH

and HH dispersions

(A4)

ELH(E) =E, —(yl+2y2)
2

E
(A5)

where K= ~K~. On the other hand, if we neglect the Lut-
tinger coupling parameters and the free-electron kinetic-
energy term K /2 entirely, we recover the Kane disper-
sion relations discussed in the text.
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