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Second-harmonic generation in a Fibonacci optical superlattice
and the dispersive effect of the refractive index
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A Fibonacci optical superlattice is analyzed which is made from a single crystal with quasiperiod-
ic laminar ferroelectric domain structures. The second-harmonic generation in this system is stud-
ied. Because of the dispersive effect of the refractive index, the second-harmonic spectrum does not,
reflect the symmetry of the quasiperiodic structure and thus does not exhibit self-similarity. The ex-
istence of the extinction phenomenon constitutes one major difference between our system and het-
erostructure systems. A general extinction rule is also obtained.

One of the most striking events in condensed-matter
physics in recent years has been the discovery and devel-
opment of quasiperiodic crystals which show many
unused physical properties. Many subsequent research-
ers have focused on its linear phenomena' and its
third-order nonlinearity. ' In these works the physical
parameters such as dielectric coefficients and elastic
coefficients were taken to be nondispersive. Little has
been done on the second-order nonlinear-optical phenom-
ena because of lack of proper materials.

The Fibonacci optical superlattice (FOS) made from a
single LiNb03 crystal with quasiperiodic laminar fer-
roelectric domain structures provides a useful tool for the
study of second-order nonlinear-optical phenomena. Pre-
viously, we investigated second-harmonic generation in a
periodic optical superlattice, ' which is made from a sin-
gle LiNb03 crystal with periodic laminar ferroelectric
domain structures, and verified the theory of quasi-
phase-matching proposed by Bloembergen et al. ' In
this paper we report our theoretical results of the
second-harmonic generation in a FOS. Considering
dispersive effects of the refractive index, we find that the
spectrum of the second-harmonic intensity in a FOS doe
not possess self-similarity. We also find that if the struc-
ture parameter of the FOS is properly selected, a
phenomenon somewhat similar to the extinction
phenomenon in solid-state physics will occur.

Traditionally, the Fibonacci superlattice is constructed
as follows. First, define two building blocks A and B,
each composed of two layers of different constituent ma-
terials. Then arrange them according to the concatena-
tion rule S =S &~S z for j ~ 3, with S~ = A and
S2= AB. The Fibonacci superlattice thus formed is a
heterostructure. In our case each block consists of one
positive ferroelectric domain and one negative ferroelec-
tric domain. The two domains are interrelated by a dyad
axis in the x direction. Since the nonlinear-optical
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FIG. 1. FOS made of a single LiNbO, crystal (the arrows in-
dicate the directions of the spontaneous polarization). (a) The
two building blocks of a FOS, each composed of one positive
and one negative, ferroelectric domain. (b) Schematic diagram
of a FOS.

coefficients form a third-rank tensor, it is easy to prove
that they will change their signs from positive domains to
negative domains. ' The superlattice thus formed is not a
heterostructure, but still a single crystal. This kind of
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structure can be fabricated by a special crystal-growth
technique developed by us. Here we term this struc-
ture a Fibonacci optical superlattice, or FOS, which is
shown in Fig. 1.

In Fig. 1 we can see that l~ =l~ +l„and lz=l& +I& .
In our treatment we have set l„=lz =1, l„=i(1+ri),
and ls =i(1—rg) with the golden ratio r=(1+&5)/2.
Here, I and g are two adjustable parameters. Through
the variation of the value of q, the structure can be either
a periodic superlattice or a quasiperiodic one. For exam-
ple, if g=0, then the structure is a periodic one; other-
wise it is a quasiperiodic one. In our system, I plays an
important role, and so we call it a structure parameter.

As will be seen below, the phase-matching regime can-
not be used to study the effect of the FOS on the
nonlinear-optical phenomena, and so the quasi-phase-
matching regime ' should be used. In order to use the
largest nonlinear-optical coefficient d33 of LiNb03 crys-
tals, we assume that the domain boundaries are parallel
to the y-z plane (Fig. 1) and that the polarizations of the
electric fields are along the z axis, with their propagating
directions along the x axis.

In what follows we will restrict ourselves to the case of
second-harmonic generation (SHG) with a single laser
beam incident onto the surface of the FOS. According to
Refs. 10 and 14, these two electric fields, E, and E2,
satisfy the wave equation under the small-signal approxi-
mation:

dEz(x) . 32~~'
i— , d(x)E, exp[i(k "—2k")x],

dx k c2

with d(x)=d33 in positive domains and d(x) = —d» in

negative domains, where co and k" are the angular fre-
quency and wave number of the fundamental beam, re-
spectively, k is the wave number of the second harmon-
ic, and c is the speed of light in vacuum.

By integrating Eq. (1), the second-harmonic electric
field after passing through X blocks of the FOS can be
represented as

I kk X2+exp(in) g e
j=0

(2)

where bk =k —2k . [x„),n =0, 1,2, . . . , are the po-
sitions of the ferroelectric domain boundaries (Fig. 1).

In Eq. (2) the terms inside the curly braces comprise
the structure factor, which is divided into two parts, with
one part lagging behind the other by a phase
exp[i (bk 1+rr)].

For an infinite array with l„/lz =~, i.e., g=0. 34, by
use of the direct' or the projection method, ' Eq. (2) can
be written in the form

E, (b,k) ~—128 d»E, exp(i ,' b, k l)sin(——,
' hk I) gk "c Ak

sinX
exp(iX „)5(bk —2m(m + n r)/D ) .

X
(3)

Here, X „=rrr( m r n) /( 1+r ),—D = rl „+la.
The appearance of b k is due to the energy coupling be-

tween the fundamental beam and the second harmonic
through the nonlinear-optical effect. Obviously the FOS
cannot be used in the study of phase-matched SHG
(b, k =0). It can be only used in the study of quasi-
phase-matchable SHG.

The peaks of the second-harmonic intensity can be ob-
tained from the 5 function in Eq. (3), which is

Ak „=2m(m + n r)/D,
or

(bk D) „=2m(m +nr) .

The factor (sinX „)/X „ in Eq. (3) is important. It
determines which peaks are stronger. Here we know that
the smaller the X „, the larger the value of
(sinX „)/X „. This means that n/m must be close to
~. It is well known that the best rational approximants to
~ occur when n and m are successive Fibonacci numbers,
F&. ' Therefore, the sequence of the most intense peaks
corresponds to (m, n)=(F&, , F&), where (Fp F, )

=(0, 1). Note that the second-harmonic intensity peaks
are indexed by two integers, even though the structure is
one dimensional. The appearance of more indices than

the dimensionality is typical of incornrnensurate crystals
and quasicrystals.

%e will discuss some interesting phenomena in both
real space and reciprocal space. All calculational results
are valid only under room temperature and, without loss
of generality, only the results with N =100 have been
presented.

In real space we study the dependence of the second-
harmonic intensity on the structure parameter l of the
FOS. In this case the wavelength Ap is kept unchanged,
as are the refractive indices n, p and n2p. Here, n, p and

nzp are the refractive indices for the fundamental beam
and the second harmonic, respectively. Thus the disper-
sion of the refractive indices has no effect on the second-
harmonic spectrum. Equation (4) can be rewritten as

(m+nr)AOl,n=
4(n 2o

—n, „)(1+r)

Here, Ap represents the wavelength of the fundamental
frequency in vacuum.

For those intense peaks, Eq. (5) becomes

Xp
l(s,p) = $7

4(neo —n
~

)(01 r+)
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Here, s and p are integers.
Obviously, here the relation I (s, p +1)= I (s,p)

+I (s, p —1) holds, and thus the spectrum of the second
harmonic exhibits self-similarity. Figure 2 shows the re-
lation between the second-harmonic intensity and the
structure parameter I with the pump beam at wavelength
Xo= 1.318 pm and n, o

=2. 14S3 and n zo
=2. 1970 for

LiNb03 crystals under the condition lz/Is=r. The re-
sult conforms to the discussion above. The intense peaks
take the form of Aps/[4(nzp n—, p)(1+i)]. Under gen-
eral conditions, i.e., I„&~I&, calculations have shown
that the peak positions of the second-harmonic intensity
remain unchanged, except for their strengths. In our
case the change of the value of g does not affect the value
of D. This can be seen easily from the relation
D =rl „+ls =2I (1+r). This indicates that D is a
characteristic parameter of the FOS. The result is con-
sistent with that of Merlin et al. They found that for all
I„%is the Fourier spectrum of the structure factor of a
Fibonacci superlattice consists of 5-function peaks at
k =2m(m+nr)/D, with D =rl„+Is. We may deduce
from these results that the FOS possesses certain space
symmetry. The symmetry is determined by the order of
arrangement of the blocks, not by the block thicknesses.

In reciprocal space we study the dependence of the
second-harmonic intensity on the wavelength A, . In this
case, the structure parameter I is kept constant. Equa-
tion (4) can be rewritten as

I =2j (n/Ak), .

they interfere destructively. Here, n /hk is the coherence
length for SHG. ' That is to say, when the structure pa-
rameter I equals an even number times the coherence
length, the corresponding SHG will disappear. This can
be also deduced from Eq. (3) easily. In Eq. (3), for mode
(2,2), we can obtain bk 1=2nfrom the . 5 function, but
then the factor sin(b, k I /2) =0. Thus the second-
harmonic intensity is zero. By substituting for Ak I from
Eq. (9) into the 5 function in Eq. (3), we can obtain the
general extinction rule, which is

(1/A, )
4[n2(k) —n &(A, )](1+r)1 (7)

Here, n&(A, ) and nz(A, ) are functions of )(.. ' Equation (7)
indicates that here the dispersive effect of the refractive
index on the second-harmonic spectrum must be taken
into account; moreover, for these intense peaks Eq. (7)
becomes

( I /A, ),
4[n ~(A, ) n, (A, ) ](1+r)l— (rn, n)=(2j, 2j) . (10)
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FIG. 3. Dependence of the second-harmonic intensity on the
fundamental wavelength in reciprocal space. Note that
(1/k), ,&(1/A, ), + (1/A, ),

FIG. 2. Dependence of the second-harmonic intensity on the
structure parameter 1 in real space. Note that l (s, p +1)
=1(s,p)+ l (s, p —1).

The relation ( I/A, ), ~+, =( I/A. ), ~+( I/A, ), , no longer
holds because of the dispersion of the refractive index,
whereas in linear phenomena and the third-order
nonlinear-optical phenomena this relation is valid.

Figure 3 shows the relation between the second-
harmonic intensity and the wavelength with I = I,
=m/bkp and l„=mls. Here, bkp=4vr(n~p n—,p) /hp.

As expected, the intense peaks occur at
(m, n)=(F& „Fk), but their positions have shifted
markedly. For example, in Fig. 3 we can see three in-
tense peaks occurring at A,, ~, as indicated by H .They
are A.

&
~= 1.318 pm k, 3= 1.115 pm and k, 4=0.960

pm. Obviously, (I/A, ), 4%(1/A, )& 3+(I/A, ), 2, and thus
the spectrum of the second-harmonic intensity in recipro-
cal space does not exhibit self-similarity.

Here, another interesting phenomenon should be not-
ed, one somewhat similar to the extinction phenomenon
in solid-state physics. In both Figs. 2 and 3 the mode
(2,2) does not appear. As discussed above, after the fun-
damental light passing through the entire superlattice,
the resultant second-harmonic light can be viewed as be-
ing composed of two parts with a phase difference of
exp[i(bk!+~)]. When the two parts of second-
harmonic light satisfy the condition (hk I +n ) =(2j
+1)n or
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Namely, all peaks with indices (m, n)=(2j, 2j) are absent
in the spectrum of the second-harmonic intensity. This
property may not be restricted to the nonlinear-optical
effect exclusively. In our previous study on ultrasonic
excitation in a Fibonacci superlattice, which is the same
as the one discussed here (in this case, the linear effect is
discussed), the extinction phenomenon also exists, pro-
vided the structure parameter is selected properly. Nev-
ertheless, in a conventional heterostructure superlattice
this phenomenon does not exist. This constitutes one ma-
jor difference between the FOS system and conventional
heterostructure superlat tices.

In conclusion, we have presented a FOS made of a sin-

gle LiNb03 crystal and theoretically second-harmonic
generation in the FOS. In our system we find that be-
cause of the dispersive effect of the refractive index, the
spectrum of the second-harmonic intensity in reciprocal
space does not reAect the symmetry of the quasiperiodic
structure, and thus does not exhibit self-similarity. Also
found is an extinction phenomenon which constitutes one
major difference between our system and conventional
heterostructure systems. A general extinction rule has
also been obtained.
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