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The structural properties of two short-period twist boundaries in germanium are explored using a
state-of-the-art total-energy calculation. The structures of these boundaries are found to be very
complex, with boundary bonds that are distorted and weak. These systems are found to exhibit a
large degeneracy in the number of local energy minima. Thus the boundaries have difficulty in ar-
riving at a locally ordered state. The situation may be unique to the semiconducting twist grain
boundaries due to the inherent frustration present between the tendency to form directional bonds
and the imposed twist geometry which makes the bond formation improbable. This study focuses
on the energy, coordination, volume change, and electronic states characteristic of the local mini-
ma. A trend towards dimerization is found especially in the highest-angle twist boundary.

I. INTRODUCTION

Most materials of engineering and technological im-
portance are polycrystalline. They consist of an aggre-
gate of randomly oriented single crystals. The regions
separating each single crystal are called grain boundaries.
Grain boundaries influence the properties of polycrystal-
line materials in many significant ways. For example,
they can be responsible for embrittlement, corrosion,
fracture, polarization, and short-circuit diffusion.! In
semiconductors, the electrical properties of thin polycrys-
talline films are important since these films are commonly
used in device technology.? The presence of a grain
boundary in an electronic device can degrade its perfor-
mance by introducing enhanced resistance and capaci-
tance effects. These effects are directly attributable to the
intrinsic structural disorder of the grain boundary.

From a physics point of view, grain boundaries are in-
teresting because, when compared to point or line de-
fects, they represent a higher level of microscopic com-
plexity. However, unlike amorphous materials, they have
elements of order such as periodicity and a well-defined
thickness. Some grain boundaries are more ordered than
others. In terms of relative complexity, coherent twin
boundaries are clearly more ordered than boundaries of
an arbitrary misorientation and this is reflected in their
physical properties, e.g., low energy and specific resistivi-
ty. Intermediate between these two geometrical extremes
lie symmetrical tilt and twist boundaries. On the basis of
the structural-unit model>* and crystallographic con-
siderations,’ it is apparent that twist-boundary structures
are generally more complex than those of symmetrical-
tilt boundaries. Both kinds of boundaries can be
manufactured and characterized at the microscopic level
using x-ray diffraction® or high-resolution electron mi-
croscopy.” With the availability of new computational
techniques®® based on first-principles methods, it is now
possible to predict and correlate with some accuracy the
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details of the atomic and electronic structures of these
boundaries.

In this article, the phase space of two relatively short-
period high-angle twist boundaries in germanium is ex-
plored using state-of-the-art quantum-mechanical
methods. These methods are necessarily numerical since
no theorem exists to predict the ground-state properties
of a grain boundary. They involve an equation-of-motion
method'®!! to minimize to the total energy of the bound-
ary using density-functional and pseudopotential
theory.!? A pure twist boundary is chosen for study since
it represents a system of sufficient complexity to be in-
teresting while at the same time it can be constructed
with a relatively small unit cell to make the computation-
al difficulties tolerable. Previous theoretical work on
semiconductor grain boundaries using nonclassical
methods has primarily focused on symmetrical-tilt boun-
daries or twin boundaries which have invariably exhibit-
ed tetracoordinated structures and well-defined energy
minima."?~!® The energies of [111] twist boundaries have
also been computed previously but with little description
of the relaxed structures.?’ Previous classical calcula-
tions, principally on metals,>! but also on semiconduc-
tors,?? have indicated that the energy surface of a pure
twist boundary is less well defined than that of a pure tilt
boundary for intrinsic geometrical reasons referred to
above which are related to the local atomic arrangement
and freedom for relaxation. A similar result is anticipat-
ed in the present study but may be further enhanced by
the presence of realistic directional bonding and rehy-
bridization effects that may reduce the ease with which
atoms can rearrange. Subtle effects such as small bond-
length and bond-angle distortions and interface states in
the band gap may therefore be important. Germanium
was chosen over silicon as the computational material
mainly for technical reasons—a reliable ab initio local
pseudopotential is available.!? In addition, available ex-
perimental data indicate that grain boundaries in ger-
manium and silicon are isomorphic.?
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Due to the microscopic complexity of the grain boun-
daries to be considered, the investigation will yield an
overall understanding of the system rather than specific
results such as the absolute ground-state energy struc-
ture. However, statements will be made concerning the
energy scales of the system, the nature of the local bond-
ing, the presence of electronic states in the band gap, the
local volume changes, and the breaking of symmetry.
The present work represents the authors’ current under-
standing of these grain boundaries and corrects our previ-
ous publications®?* which we found to contain numerical
errors.”> Experimentally, little is known about high-angle
twist boundaries in semiconductors. The atomic struc-
ture of twist boundaries, in contrast to tilt boundaries,
cannot be determined reliably using high-resolution elec-
tron microscopy.?® Diffraction contrast effects in low-
resolution experiments have demonstrated the stability of
these boundaries in both silicon and germanium by ob-
serving the magnitude and direction of the Burgers vec-
tors of the secondary grain-boundary dislocations.?”
The principal experimental problem has been preparing
thin-film bicrystal specimens of controlled geometry
which are free of impurities and other defects. The gen-
eral properties of grain boundaries in semiconductors
were reviewed by Grovenor® in 1985 and several confer-
ence proceedings provide more recent information.?%3!

II. CRYSTALLOGRAPHIC ASPECTS
OF TWIST-BOUNDARY STRUCTURE

This paper considers the structure of two short-period
twist boundaries formed by bringing together the (001)
faces of two diamond cubic semicrystals and rotating
them about a [001] axis. Since the diamond lattice has a
two-point basis, the origin for rotation about [001] can be
either (0,0,0) or (1,4,1). As a consequence, a complete
microscopic specification of the boundary requires the lo-
cation of the boundary plane as well as the usual parame-
ters describing the misorientation and relative translation
of the crystals. Because of the cubic symmetry of the dia-
mond lattice (space group Fd3m), all distinct [001] twist-
boundary structures can be generated in the angular
range 0=60=45" provided the origin of rotation is
specified. If the boundary plane is kept fixed, then all dis-
tinct structures are generated in the range 0<6<90°. A
short-wavelength periodicity is introduced into the
boundary when the misorientation angle takes certain
singular values. This periodicity corresponds to that of
the plane of the coincidence-site lattice’? (CSL) which lies
parallel to the boundary. A measure of the periodicity is
the X index, the inverse density of coincidence sites. Be-
cause of the two-point basis of the adjoining lattices, two
distinct coincidence-site patterns with the same X can be
obtained for any given misorientation angle 6 corre-
sponding to rotations about the two different origins.
The same patterns will be generated by rotations of
90°—0 if the boundary plane is kept fixed. Once the an-
gle of misorientation angle and boundary plane are
chosen, then all local boundary structures constrained to
this crystallography will be found by translation of the
two crystals within the irreproducible zone of the unit
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cell of the pattern-conserving, or DSC (displacement shift
complete), lattice.??

The specific twist boundaries to be investigated have
the smallest possible value of = for the (001) system, i.e.,
2=5. In the present study, these boundaries are
specified in terms of a fixed origin of rotation and, there-
fore, two misorientation angles, 36.9° and 53.1°, provide
the desired structures. To be consistent with earlier
work,%?* these boundaries are labeled 35(36.9°) and
35%(53.1°). This distinction in notation is useful in dis-
cussing the different structural domains that may occur
in the £=15 system. The unit-cell vectors of the CSL and
DSC lattices in the plane of the boundary for both 25
and =5* are of the type 1a(310) and £a(310), respec-
tively, where a is the lattice constant. The unrelaxed
CSL and DSC unit-cell structures for both boundaries are
depicted in Fig. 1 and are body-centered tetragonal. The
CSL cells are indicated by dashed lines. Four (004)
planes are shown projected along [001] so that, in each
case, two planes are above and two are below the bound-
ary. It is seen that the two boundary structures are relat-
ed by a 90° rotation of either the upper or lower crystals.
Further examination shows that they are also related by
an out-of-plane translation equal to £a(315) which can
be viewed as a transformation involving the removal or
insertion of a (004) plane normal to one of the boun-
daries. Thus, despite their wide angular separation, it is
conceivable that the £5 and 25* boundaries could coex-
ist in domains bordered by steps and grain-boundary
dislocations with Burgers vector &a{315).

Classifying the twist boundaries in terms of their bi-
crystal symmetry elements is also important since sym-
metry can reduce the number of distinct structures that
need to be considered and also indicate preferred struc-
tures through the principal of symmetry-dictated energy
extrema. The space group of the pattern produced by the
two rotated lattices completely specifies the translational
and point symmetry of the unrelaxed twist boundaries.
This pattern is called the dichromatic complex.*® In their
untranslated state, the structures shown in Fig. 1 for =5
and X5* have maximal symmetry and belong to the
I42'm and I4,/am’d’ space groups, respectively.** Re-
laxations will, of course, modify these space groups.
However, the properties of these symmetry groups can be
used to determine, at least initially, that part of
configuration space which contains all unique structures.
In the plane of the boundary, this irreducible zone is
found to be } of the DSC unit cell and, therefore, only -
of the CSL unit cell. Figure 2 shows the DSC unit cells
for both boundaries with the irreducible zones indicated
by the shaded areas. The coordinates used to specify the
size of the unit cells are based on a CSL vector equal to
unity. Thus, (0.2,0) refers to ;5a[310] in Fig. 2(b). The
different symbols indicate symmetry-related positions and
the circled symbols refer to structures that were comput-
ed. The absence of fourfold symmetry results in the gen-
eration of nonequivalent structures when translations are
made along [310] and [130]. With a grid spacing of 0.05,
it is seen that coverage of the irreducible for =5 requires
only seven calculations whereas for £5* it requires nine.
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FIG. 1. Unrelaxed atomic positions in planes normal to the
[001] direction for two twist boundaries in germanium: (a)
35(36.9°) and (b) 5*(53.1°). Two layers above (solid circles)
and below (open circles) the boundary plane are shown in both
cases. The CSL unit cell is indicated by dashed lines and the
smaller DSC cell is indicated by solid lines. Note that the x and
y directions are reversed in (a) and (b), and that there is no rela-
tive translation of the upper and lower layers.

III. THE TOTAL-ENERGY METHOD
AND RELAXATION STRATEGY

The total-energy calculations were made within the
local-density approximation of density-functional theory
using the exchange-correlation parametrization of Per-
dew and Zunger.® The pseudopotential approximation
was utilized by employing a local Starkloff-Joannopoulos
potential for germanium.*® The scheme used to optimize
the ionic and electronic structures was a modified Car-
Parrinello algorithm!®!! which employed plane waves up
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to an energy of 125 eV and two special k points at (1, 1,0)
and (—+,+,0). The computational cell, which extended
periodically in all directions, consisted of two identical,
but separate, twist boundaries related to one another by
inversion symmetry. Each boundary was enclosed by two
(004) layers of atoms that were free to relax and one fur-
ther, outer layer that was kept frozen in the bulk position
so as to emulate the bulk boundary condition. The atom-
ic forces were relaxed until they were smaller than 0.1
eV/A. The finite number of basis states used introduced
a spurious internal stress known as the Pulay force.*’
This force, which was ignored in earlier work,¥?* has
been accounted for in the present study by adding a
linear force correction. By estimating the errors due to
every approximation used in the calculations, including
finite k-point sampling, the model size, and the local
pseudopotential, an overall error margin of 0.5 eV /unit-
cell was determined. However, energy differences be-
tween different configurations should have significantly
smaller error margins.

Since no optimization scheme is guaranteed to locate
the absolute ground-state configuration, or even all possi-
ble metastable states, it is important to develop a sys-
tematic relaxation strategy which allows us to concen-
trate on the lowest-energy region of phase space. This is
particularly true in the present study where the twist-
boundary geometry exhibits a variety of bond-length and
bond-angle distortions, where the bonding is directional
and where the molecular dynamics algorithm used in-
volves a rapid quench. In order to explore as much of
boundary phase space as possible, a three-step relaxation
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FIG. 2. DSC unit cells (solid lines) for (a) £5(36.9°) boundary
and (b) £5%(53.1°) boundary. The shaded areas indicated the ir-
reducible zones for both boundaries. The coordinates are given
as fractions of a CSL vector. Note that the x and y directions
are reversed in (a) and (b) to be consistent with Fig. 1. The
different symbols indicate symmetry-related positions and the
circled symbols refer to structures that were computed.
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process was initially used. As described later in Sec.
IV D, the results of this process indicated that all possible
geometries had still not been accessed, and further calcu-
lations were made. However, the initial three-step pro-
cess involved the following: fixing the translation state at
different positions within the irreproducible zone, and (1)
determining the total energy by relaxing only the elec-
trons, (2) determining the total energy by relaxing the
electrons and the separation between the misoriented
crystals (the local volume), and (3) determining the total
energy by relaxing the electrons and all ion positions.
The results of performing this sequential process are de-
scribed in the following section.

IV. EQUILIBRIUM STRUCTURES
AT FIXED TRANSLATION STATES

To illustrate the three-step relaxation process, atten-
tion is focused on the £5* boundary. In subsequent dis-
cussion, however, the fully relaxed results for both twist
boundaries are presented in detail.

A. Total energies

In the first step the total energies of the boundaries
were determined by keeping the ions fixed in the transla-
tion states indicated by circled symbols in Fig. 2 and not
allowing the local volume of the boundaries to change.
The energy contour obtained in this calculation for =5*
is shown in Fig. 3. This contour map represents an extra-
polation of the results so as to cover four DSC unit cells.
It is seen that the energy range is about 10 eV with the
minimum and maximum values equal to 17.3 and 27.4
eV /unit-cell,*® respectively (1 eV/unit cell ~0.2 Jm ™).
The minima are located at %a[TSO] [corresponding to
position (0, 0.1) in Fig. 2(b)], in agreement with earlier
work.2* The large variation in energy arises from the
close proximity of atom pairs for some translation states
and not others. This is highlighted in Fig. 4 where the
energy of each translation state is plotted against the dis-
tance of the two atoms that are closest across the bound-
ary.

RELATIVE
BOUNDARY ENERGY (eV)

FIG. 3. The energy translation surface for the =5* boundary
before allowing any atomic relaxation. The surface covers four
DSC unit cells and the boundary energy is normalized to the
minimum which is located at 5:a[130].
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FIG. 4. Unrelaxed boundary energies of the nine translation
states of 5% as a function of the distance separating the two
atoms of closest approach across the boundary.

In the second step the total energy of each boundary is
minimized with respect to the distance between the
misoriented crystals. This calculation is performed for
each translation state but keeping the ions fixed within
their planes. Thus, the minimum energy with respect to
local volume is obtained. The resulting energy contour
for =5* is shown in Fig. 5 where it is seen that the loca-
tion of the maxima and minima is not changed compared
to Fig. 4, but that the variation in energy is substantially
smaller. In addition, the absolute energies are consider-
ably reduced with the minimum and maximum values
equal to 9.4 and 9.9 eV /unit-cell,*® respectively. Clearly,
the high-energy interactions across the twist-boundary
have been reduced by allowing the local volume to ex-
pand. At the same time, the distribution of distorted
bonds no longer becomes highly dependent on translation
state. This seems to be typical of twist-boundary
geometries. The variation of boundary energy with
volume expansion is shown in Fig. 6, where there is a
clear correlation between increasing energy and expan-
sion. Obviously, the lowest-energy structures have few
atoms that are too close and they therefore require small-
er volume change.

In the third step, the total energy of each boundary is

REL/ TIVE
BOUNDARY ENERGY (eV)

FIG. 5. The energy translation surface for the =5* boundary
after allowing the volume to expand. The surface covers four
DSC unit cells and the boundary energy is normalized to the
minimum, which is located at 5;a[130]. Note that the energy
scale is much smaller than in Fig. 3.
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FIG. 6. Boundary energies of the nine translation states of
35* as a function of the local-volume expansion. No individual
atomic relaxations were allowed.

minimized by allowing the ion positions to relax as well
as the volume of the boundary region. The resulting total
energies for =5 and 25* are given in Table I together
with the corresponding translation states and volume ex-
pansions. The translation states are given as fractions of
the CSL vectors in the boundary plane, e.g., for 5%,
(0.1,0) represents 5-a[310] and (0.1,0.1) represents
+a[120], as can be seen from Fig. 2(b). The energies are
reported in eV/unit-cell and the volume changes are in
A/unit-area. The energies exhibit a number of important
characteristics. First, for the 25* boundary, the local
atomic relaxations have lowered the boundary energy by
about 3 eV, which corresponds to 0.3 eV per boundary
atom. This is a surprisingly small relaxation energy and
is indicative of shallow bond minima. The energies are
still all very similar with respect to translation state, but
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the minimum has now moved to the untranslated (0,0)
position. The energies of the 25 boundary are compara-
ble to those of the £5* boundary, but the minimum is lo-
cated at the (0.05,0) position or a[130]. The energy
range for all translation states in the £=35 system is rath-
er narrow (5.8-7.1 eV), resulting in an average boundary
energy of about 6.5 eV /unit-cell.

B. Local volume changes

As can be seen from Table I, the fully relaxed volume
changes for both the £5 and 5* boundaries are all posi-
tive and therefore represent expansions. The expansions
corresponding to the minimum energy structures for 25
and =5* are 0.34 and 0.42 A/unit-area, respectively. The
average expansion for all structures is 0.25 A/unit-area,
with the deviation from this value being greater for =5*
than 5. The boundaries expand, rather than contract,
as a reaction to the presence of compressed bonds belong-
ing to atoms that are in close proximity. This was also
described to be the situation in step (2) of the relaxation
process, but it is now seen that the expansions are smaller
by a factor of 2. Clearly, the local rearrangement of
atoms has resulted in the need for a smaller volume
change. These local relaxations have also destroyed the
strong correlation that existed between the boundary en-
ergy and volume expansion, as seen in Fig. 7, for both
boundaries.

C. Local bonding

The atomic configurations resulting from the third step
in the relaxation process are shown in Figs. 8 and 9 for
the 25 and =5* boundaries, respectively. For the X5
boundary, seven configurations are shown corresponding
to the seven circled translation states in Fig. 2(a). The

TABLE I. Twist-boundary energy (eV/unit-cell) and volume expansion (A/unit-area) for the seven
computed translation states of 25 and the nine computed translation states of 25*. The translation
states are given as fractions of a CSL vector and are depicted as circled symbols in Fig. 2. The energies

are displayed as columns in Fig. 11.

Translation state

(CSL vectors)

=5(+x[130],4 y[310]) (0.0,0.0)
(0.05,0.0)
(0.01,0.0)
(0.0,0.05)
(0.05,0.05)
(0.0,0.1)
(0.15,0.05)
=5% (1x[310], 1 y[130]) (0.0,0.0)
(0.0,0.05)
(0.0,0.1)
(0.05,0.0)
(0.05,0.05)
(0.05,0.1)
(0.1,0.0)
(0.1,0.05)
(0.1,0.1)

Energy Volume expansion
(eV/unit-cell) (A/unit-area)
6.20 0.16
5.79 0.17
6.74 0.23
6.35 0.23
5.97 0.23
7.04 0.28
5.82 0.15
5.93 0.42
6.28 0.07
6.30 0.12
7.02 0.40
6.16 0.20
6.32 0.12
6.70 0.30
6.83 0.23

6.89 0.18
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FIG. 7. Relaxed boundary energies of the translation states
of (a) =5 and (b) =5* as a function of volume expansion.
Volume changes and local atomic relaxations were allowed.

distribution of configurations is the same as the distribu-
tion of circled states with the exception of the boxed
configuration which corresponds to the state (0.15,0.05).
For the 25* boundary, nine configurations are shown
corresponding to the nine circled translation states in
Fig. 2(b). For both boundaries, the untranslated (0,0)
state is the configuration in the lower left-hand corner of
Figs. 8 and 9. The number of atoms contained in the
structures and their orientation is the same as in Fig. 1,
i.e., four CSL unit cells viewed down [001] through the
twist boundary. The criterion for drawing bonds between
atoms is as follows: Atoms are bonded if their interatom-
ic distance is equal to or less than 2.7 A. This cutoff was
chosen because the number of atoms with a bond length
larger than 2.7 A trails off rapidly and, as shown in ear-
lier work® 2.7 A corresponds to the limit beyond which
the bond charge density between pairs of atoms changed
from having one maximum to two separate maxima. Ex-
amination of the structures in Figs. 8 and 9 shows that
they exhibit a variety of bond-length and bond-angle dis-
tortions and deviate from perfect tetrahedral coordina-
tion. For either boundary, no one particular structure
dominates, although several of the structures have
features in common. In general, there are two to four
atoms per unit cell that are either over- or undercoordi-
nated and four to six atoms that are fourfold coordinated,
but with bond angles deviating from the perfect
tetrahedral configuration. The average coordination
number of the atoms in the =5 boundary is 3.54, while it
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FIG. 8. Relaxed atomic configurations of the seven transla-
tion states of =5 (36.9°). The orientation of the structures is the
same as in Fig. 1(a). Their arrangement in the figure corre-
sponds directly to the arrangement of circled symbols in Fig.
2(a) with the exception of the boxed structure, which corre-
sponds to the state (0.15,0.05). Thus, the (0,0) state is the struc-
ture in the lower left-hand corner.

FIG. 9. Relaxed atomic configurations of the nine translation
states of 25 (53.1°. The orientation of the structures is the
same as in Fig. 1(b). Their arrangement in the figure corre-
sponds directly to the arrangement of circled symbols in Fig.
2(b). Thus the (0,0) state, which has the lowest energy, is the
structure in the lower left-hand corner.
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is 3.72 for the 5% boundary. There are two types of
bonds at the boundary: those which cross the boundary
and those which form (110) dimers along the surface of
one of the grains. There are more dimerlike bonds in the
35* structures (1.9 bonds per configuration) than in the
35 structures (0.8). The number of intraboundary bonds
is about the same for both boundaries: 6.7 bonds per
configuration. Reviewing all the microscopic data ob-
tained for both boundaries, it appears that the most
significant structural feature distinguishing 25 and 25* is
the tendency for 25* to form more (110) dimers. These
dimers are similar to those found on the (001) free sur-
face.*” From this result, it is tempting to speculate that
high-angle twist boundaries contain more dimer bonds
than low-angle twist boundaries which may be comprised
of all interboundary bonds. In particular, it is possible to
build a model of a 90° boundary which is all dimerized,
where the dimers of one surface fit nicely into the pattern
of dimers on the opposite surface.

Figure 10(a) illustrates an average radial distribution
function for the =35 twist-boundary system obtained
from all the 25 and Z5* structures computed. Two
curves are shown, one for the atoms in the first layer ad-
jacent to the boundary (solid line), and the other for
atoms in the second layer adjacent to the boundary
(dashed line). It is seen that the curve for atoms in the
second layer exhibits distinct peaks at the crystalline
neighbor distances, implying that these atoms are in
bulklike environments. However, the curve for atoms in
the first layer has fewer and smaller peaks than in the
second layer which implies that these atoms are in a more
disordered environment. In fact, this curve is very simi-
lar to that obtained experimentally*! for amorphous ger-
manium as can be seen in Fig. 10(b). In particular, the
experimental curve, shown dashed, and the computed
curve has characteristically a well-defined nearest-
neighbor peak and a missing third peak. The disorder at
the boundary appears to be slightly greater than that of
amorphous germanium, as indicated by the presence of a
few configurations around 3 A. Finally, we note that the
choice of 2.7 A as a bond-length cutoff is consistent with
the dip in the radial distribution function at 3 A.

The presence of a variety of bond distortions in all the
calculated structures reflects the compromises that have
been made in minimizing the total energy of a system
that is constrained by rotation and translation. These
compromises have resulted in boundary structures that
all have quite similar energy with respect to translation
state. It has been argued previously from classical calcu-
lations®"?? that this may be expected for twist boundaries
comprised of several atoms per lattice plane since, in such
cases, approximately equal numbers of new bonds form
as do break. In the present study, the additional effects
due to electronic relaxation appear to enhance this result
rather than suppress it.

D. The multiplicity of local minima and selecting
a low-energy phase-space region

Let us now reconsider the question related to achieving
a global minimum. Have we, in our calculations thus far,
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FIG. 10. (a) Average radial distribution function of the £=5
twist-boundary system for atoms in the first layer adjacent to
the boundary (solid line) and the second layer adjacent to the
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adjacent to the boundary (solid line) compared to the experi-
mental (see Ref. 41) distribution function for amorphous ger-
manium (dashed line).
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FIG. 11. Total energies, given in Table I, displayed as

columns within the irreproducible zone of the DSC lattice for
(a) 25 and (b) =5*. The arrangement of columns corresponds
directly to the arrangement of circled symbols given in Fig. 2
and to the arrangement of structures given in Figs. 8 and 9.
Thus, the shaded column shown in (a) corresponds to the boxed
structure in Fig. 8.

really reached the true ground state? We would have
been reasonably confident had all the configurations we
obtained looked very similar: This would have allowed
us to conclude that there was only one minimum in phase
space; we could then draw a total-energy surface as a
function of translation state, identify the minimum and
claim that it was the ground state. However, the situa-
tion we have arrived at is much more complex: The
configurations we obtained are related to different mini-
ma; for example, some of the boundaries are dimerized
while others are not. To emphasize this point, we display
the energies for the different translation states as isolated
columns in Figs. 11(a) and 11(b), rather than a continuous
surface.

To truly identify the ground-state configuration, we
would have to consider all of phase space. For the sys-
tem at hand, this would be impossibly complex and time
consuming. What we can do, however, is to use our data
to select and focus on what appear to be low-energy re-
gions of phase space, and investigate the local minima in
these regions further. We do this for the £5* boundary
as follows.

3651

For the =5* geometry, a signature of a low-energy re-
gion appears to be dimer formation along the surfaces of
the grain boundary. We attribute this to the fact that
bonds across the boundary became more and more
strained as we increased the twist angle rotation and that
atoms would prefer to bind along each surface. Thus,
with this in mind we are going to constrain our search in
phase space to all structures that are maximally dimer-
ized. Specifically, we will dimerize each individual sur-
face, change the intersurface configuration by a relative
translation, and the new configuration will be a new ini-
tial geometry from which we will apply a quench.

This procedure turns out to generate more geometries
than expected. Naively, one might expect that translat-
ing the dimerized surfaces by one DSC vector would re-
sult in the same intersurface configuration. But this actu-
ally does not occur due to the presence of symmetry
breaking.

As soon as the grain-boundary atoms start to relax,
they can break the symmetries of the initial, unrelaxed,
structure. The relevant type of symmetry breaking
occurs when two atoms that originally occupied symme-
try equivalent positions, to within a translation by one or
more DSC lattice vectors, cease to do so. In the unrelaxed
35* (0.0,0.0) boundary [Fig. 1(b)] there is only one non-
equivalent atom in this sense (as we translate the grains
throughout the DSC cells, the atomic identities are sim-
ply permuted). For the corresponding relaxed
configuration (Fig. 9), there are five nonequivalent atoms.
This type of symmetry breaking greatly enlarges the low-
energy regions of phase space that we can consider. The
unit cell of translations is no longer the DSC cell of the
unrelaxed boundary. For example, if we rigidly translate
the relaxed £5*(0.0,0.0) boundary (Fig. 9) by a DSC vec-
tor, we obtain a nonequivalent configuration. In fact,
since there are 25 DSC unit cells per CSL unit cell, there
are 25 possibly nonequivalent configurations for this
boundary geometry. Figure 12 illustrates, in a schematic
way, how transitions are made between the various
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FIG. 12. Schematic energy-level diagram for a set of five
grain-boundary geometries as a function of translations across a
multiple number of DSC unit cells. The symbols identify how
the geometries transform into each other. Note that the
geometries transform back into themselves only after a CSL
translation (five DSC translations).
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grain-boundary configurations as several DSC unit cells
are traversed. In this example, L1-L5 represent the en-
ergy levels of a set of five different grain-boundary
geometries. For each geometry, translation by one to
four DSC cells will generate the other members of the set.
The symbols identify how the five different geometries
transform into each other. Thus, the geometry with ener-
gy L2 at 0 DSC, transforms to geometries LS, L4, L1,
and L3 after translation by one, two, three, and four
DSC’s, respectively.

The details and results of our calculations using this
extended region of phase space are presented in the next
section.

V. A CONTINUOUS TOTAL-ENERGY SURFACE

In this section the results of performing the fourth and
final step in the relaxation process is described in which
the minimum-energy structures obtained previously are
rigidly translated beyond the irreproducible zone of the
DSC unit cell and rerelaxed. The objective is to deter-
mine whether any new stable or metastable structures
may be found by starting from a variety of different bond-
ing configurations. Due to computational time con-
straints, this study was performed more thoroughly for
the maximally dimerized £5*(0,0) boundary than for the
25 boundary. The size of the region beyond the irrepro-
ducible zone that may need to be examined cannot exceed
the area of the CSL unit cell in the boundary plane. In
fact, the symmetry of the relaxed £5* (0,0) boundary in-
dicates that, at most, one-quarter of the CSL unit cell
needs to be covered. [The translation state (x,y) is
equivalent to the translation states (0.2—x, y), (x, —y)
and (0.2—x, —y)]. We found that sufficient accuracy
would be obtained if the new translation zone was sam-
pled every 0.125 CSL vectors (or £a{310)). Thus, 16
new calculations were performed corresponding to
translation states outside the original irreproducible zone.
Figure 13 shows the result of an exploratory calculation
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FIG. 13. The relative energy of the £5*(0,0) structure as it is

translated along [310]. Translations are given as fractions of the
CSL vector.
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FIG. 14. The energy translation surface for the >5%(0,0)
boundary obtained by performing extended translations beyond
the DSC unit cell. The surface spans one complete CSL unit
cell [(x,y): 0.1<x<1.1,0. <y <1.0] and was obtained by a
mapping of the computed zone (% of the CSL cell) into the rest
of the cell. The locations of the three lowest energies are la-
beled A, B, and C, and the three highest energies are labeled D,
E, and F. The boundary energy is normalized to the minimum,
which is location 4.

in which the X5*(0,0) relaxed structure is translated
along [310]. It is seen that the variation in total energy
[which is shown relative to the (0,0) state] is harmonic on
a length scale of about 0.4 CSL vectors (%a[310]), that it
is not periodic in the DSC lattice (0.2 CSL vectors), and
that the minimum shifts slightly to (—0.05,0), i.e.,
—a[310]. Thus, this initial procedure has located a
configuration of marginally lower energy than was ob-
tained originally.

Figure 14 shows the final energy contour for the
25%(0,0) boundary. The energy range is about 1.7 eV
with the minimum and maximum values equal to 5.7 and
7.4 eV/unit-cell, respectively. The contour spans one
complete CSL unit cell and was obtained by a symmetry
mapping of the computed translation zone (} of the CSL
cell) into the rest of the cell. It is found to have three lo-
cal energy minima (located at points 4, B, and C) and

TABLE II. Twist-boundary energy (eV/unit-cell) and volume
expansion (A/unit-area) for the three 5* structures of lowest
and highest energy after extended translations beyond the DSC
cell are made. The translation states are given as fractions of a
CSL vector and are labeled 4 —F in Fig. 14.

Translation state
(25* CSL vectors)

Energy
(eV/unit-cell)

Volume expansion
(A/unit-area)

Minima
A (0.25,0.0) 5.72 0.47
B (0.1,0.5) 5.85 0.56
C  (0.475,0.375) 5.96 0.44
Maxima
D (0.45,0.0) 7.38 0.46
E (0.1,0.25) 7.29 0.42
F  (0.6,0.5) 7.35 0.70
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three local energy maxima (located at points D, E, and F).
The absolute minimum is point A corresponding to the
— +a[310] state [or equivalently (—0.05,0), which is the
same as (0.25,0)]. The contour is clearly not periodic
with the DSC lattice. For example, points 4 and D are
separated by a DSC vector, and yet they are relative
minima and maxima in energy and correspond to quite
different local structures. This dramatically illustrates
the effect of starting the calculation with different local-
bonding configurations which do not relax to the same
structure despite the fact that the two grains in each case
are in equivalent translational positions. The total ener-
gies, volume expansions, and translation states of all the
minima and maxima are given in Table II. The corre-
sponding atomic configurations are shown in Fig. 15 for
both the minima (left panel) and for the maxima (right
panel). The lowest-energy structure is located at the top
of the left panel. It is noted that one of the minima (bot-
tom left panel) is fourfold coordinated and that all the
high-energy structures have atoms in close proximity
across the boundary.

A further interesting result of the above calculations is
shown in Fig. 16. This shows two relaxed structures of
the (0.05,0) state (or ;5a[310]) resulting from initial

FIG. 15. Relaxed atomic configurations corresponding to the
energy extrema A —F in Fig. 14. The three minima 4, B, and C,
and the three maxima D, E, and F are shown top to bottom in
the left- and right-hand panels, respectively.
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FIG. 16. Two relaxed atomic configurations of the (0.05,0) or
the -+a[310] state of £5*. (a) was obtained from relaxation of
the rigid-body geometry and (b) was obtained by translating the
relaxed (0,0) state to (0.05,0) and rerelaxing.

configurations which were either the rigid-body geometry
[Fig. 16(a)] or a geometry obtained by relaxing the (0,0)
state and translating to (0.05,0) [Fig. 16(b)]. It is seen
that the different initial bonding configurations yield
similar structures, although Fig. 16(b) is fully dimerized,
whereas Fig. 16(a) is not. The relative energies of the two
structures are plotted on Fig. 17, which shows that the
fully dimerized structure has the lower energy. Also
shown in Fig. 17 is the energy path connecting the two
structures which was obtained by a linear transformation
of the atomic coordinates of one structure into the other
structure. It is found that an energy barrier of about 0.1
eV separates the two structures which may suggest that
they can coexist. A similar example of this phenomenon
was found when performing additional translational cal-
culations on the 25 boundary. Figure 18 shows a charac-
teristic group of atoms that form part of two different
translation states of the 25 boundary that are symmetry
equivalent but yielding different configurations. The
difference is an ammonia molecule-like inversion of a
threefold center as highlighted in the figure. The energy
barrier separating the two configurations is found to be
~0.05 eV. The existence of an energy barrier and the
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FIG. 17. Relative energy path connecting the two structures
shown in Figs. 16(a) and 16(b).



FIG. 18. Characteristic group of atoms that form part of two
different translation states of =5 that are symmetry equivalent,
but yield different configurations. The arrows highlight the
differences.

similarity in boundary energies suggests that these
configurations may be considered as tunneling states.

VI. GRAIN-BOUNDARY STATES IN THE BAND GAP

Since all the relaxed twist-boundary structures exhibit
distorted or broken bonds, electronic states should be
present in the band gap. The boundaries are thus expect-
ed to be intrinsically active electrically*? (at least in the
absence of passivative impurity elements) which has im-
portant technological consequences. To determine the
presence of grain-boundary states, the electronic eigen-
values of the two lowest-energy 25 and =5* structures
have been calculated at the ({,+,0) k point. Figure 19
shows the presence of several energy states distributed
throughout the band gap for both boundaries as expect-
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FIG. 19. Lowest-energy empty electronic states of the two
lowest-energy =5* structures (a) and (b) and the two lowest-
energy 25 structures (c) and (d). BOC and TOV refer to the
bottom of the conduction band and top of the valence band of

Lol

bulk Ge at the (3, 7,0) k point, respectively.
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ed. These are all unfilled states. The (a) and (b) labels
refer to the 25* structures and the (c) and (d) labels to the
35 structures. It is seen that for the 25* structure la-
beled (a), a state exists below the top of the valence band
(TOV) which implies, in this case, that the boundary
would be charged. Further confirmation of the electrical
activity of these low-energy structures has been obtained
by computing the local density of states (LDOS) on each
atom in the four layers adjacent to the boundaries. Fig-
ure 20 shows a typical result for a £5* structure. In the
top panel of Fig. 20, the LDOS relative to the bulk on an
atom in the first layer adjacent to the boundary is shown.
In the lower panel, an atom in the second layer is con-
sidered. It is seen that the LDOS exhibits perturbations
in the band gap for atoms in both layers although the
perturbations are larger in the first layer. This result is
consistent with the general distribution of distorted
bonds in the boundary as described earlier.
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FIG. 20. Typical local density of states (LDOS), relative to
the bulk, on an atom in the first layer adjacent to a £5* bound-
ary (top panel) and on an atom in the second layer adjacent to
the boundary (bottom panel).
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VII. ADDITIONAL MODES OF RELAXATION:
RECONSTRUCTION AND POINT DEFECTS

Since surfaces are known to relax by reconstructing to
form larger unit cells, it is conceivable that grain boun-
daries may do the same thing. In fact, such an effect has
already been observed experimentally for tilt boundaries
in germanium.““4 For £ =35 twist boundaries, therefore,
it is possible that the preferred unit cell may contain ten
or more atoms per lattice plane instead of five. Unfor-
tunately, current computational resources prohibit test-
ing such a model using total energy methods. However,
some inferences may be made from the present results.
The lowest-energy structure for the £5* orientation had a
pronounced tendency to form dimerized bonds along the
boundary plane. In order to dimerize all the atoms in the
boundary plane, there must be an even number of atoms
per unit cell. Thus, a (2X1) reconstruction for the £5*
boundary is a possible candidate for a preferred struc-
ture. In order to test for energetically preferred recon-
structions, a number of classical calculations were per-
formed on the 25* boundary using the Stillinger-Weber
potential45 for silicon. In these calculations, the nine
different translation states of the boundary were statically
relaxed using a model containing four CSL unit cells. It
was found that two of the nine translation states, (0.05,0)
and (0.1,0) did reconstruct to form larger unit cells,
namely (V2XV2) and (2X 1), respectively. However,
both reconstructions were of relatively high energy and
did not dimerize all the atoms in the boundary plane. It
would thus appear that a low-energy (2X 1) reconstruc-
tion with complete dimerization is not energetically pre-
ferred, at least using the Stillinger-Weber potential. This
provided additional support for the approach used in the
ab initio calculations which employed just one CSL unit
cell. Of the remaining seven translation states that did
not reconstruct, five were remarkably similar in structure
to those obtained in the total energy calculations. How-
ever, it was found that the topology of the energy-
translation surface was rather different from the total-
energy result with the minimum located at (0,0.1) instead
of (0,0).

Many of the initial bonding configurations used in the
present study have involved atoms in close proximity
across the boundary and are consequently in energetically
unfavorable situations. Although these situations can be
relieved by allowing in-plane translations and volume ex-
pansions, it is recognized that creating vacancies may ac-
complish the same result. Indeed, results of a calculation
including one vacancy show that a drop in energy, com-
parable to that found for translations, is obtained.

The details of this calculation are as follows: The va-
cancy geometry was constructed by considering the unre-
laxed configuration with the largest energy (correspond-
ing to the energy peak in Fig. 3), and removing one atom
from one side of the boundary that was “colliding” with
the corresponding atom on the other side of the bound-
ary. Total energies were then calculated using the three-
step relaxation scheme discussed earlier. The results are
9.5 eV for purely electronic relaxation, 9.3 eV for elec-
tronic and local volume relaxation (the width increased

by 0.20 A with respect to bulk Ge), and 6.64 eV for elec-
tronic and complete ion relaxations (the width decreased
by 0.07 A with respect to bulk Ge). Thus, by removing
one of the two atoms that were in very close proximity,
the width of the boundary becomes smaller than before.
Moreover, the energy of the vacancy boundary is very
similar to the boundaries without vacancies. This result
leads to the conclusion that the £5* boundary can absorb
vacancies and interstitials without much change in ener-
gy. It also suggests that a £=5(001) boundary may, in
general, consist not only of 25 or 25* boundaries (that
are related by a removal of a full layer of atoms),”” but
also all other boundaries that can be constructed by re-
moval or insertion of single atoms. Furthermore, it
opens up the possibility that the grain boundary can ab-
sorb not only single atoms or vacancies, but also disloca-
tions resulting in boundary steps. The global structure of
a 2=5(001) system may, however, be even more complex
than this since the current calculations have suggested a
multiplicity of metastable states separated by energy bar-
riers. The overall structure, therefore, may contain not
only dislocations but a network of different structural
units.

VIII. FINAL REMARKS

From this investigation emerges one fundamental re-
sult: The microscopic properties of 25 and =5* twist
boundaries are complex. Accordingly, it is difficult to
distill simple physical models of the system and it is im-
possible to determine the absolute ground-state structure
since the computed energy differences between the vari-
ous metastable structures is so small. Nevertheless, it is
possible to describe the types of configurations that con-
stitute low-energy structures and their properties in terms
of energy, symmetry, electronic states, local volume
changes, and bonding characteristics.

Two major features contribute to the observed
structural complexity: the intrinsic geometry of a twist
boundary and the presence of strong directional bonding.
The twist boundaries studied here involved many com-
peting interatomic interactions, some favoring bond for-
mation, others not. When this is coupled with covalent
bonding, which restricts atomic relaxation, the result is a
boundary-energy surface that is not highly dependent on
translation state. Thus, many configurations are found
within a few tenths of an eV/unit-cell and the local-
volume changes do not correlate well with the boundary
energy. Covalent bonding also causes a lowering of the
boundary symmetry after relaxation which indicates that
additional structures may be found if translations beyond
the DSC unit cell are imposed on the relaxed boundaries.
New structures are indeed found when this procedure is
performed. It is emphasized that these extended transla-
tions do not change the fundamental properties of the
DSC lattice. They are considered as a computational
mechanism for generating alternate local bonding
geometries. They appear to be useful in covalent systems
and have not been considered in previous work. The en-
ergies of the 25 and =5* boundaries are similar and
around 6 eV /unit-cell. This implies the possible existence
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of structural domains and even structural multiplicity as
described in the previous sections.

Since our density-functional calculations were per-
formed using rapid quenches, our results are relevant to
experiments at least at very short time scales. Under
these conditions, one would expect to find a wealth of
metastable states having similar energy. Tunneling be-
tween them should be possible by ammonia-like inver-
sions, bond-switching reactions, and exchanges of vacan-
cies and interstitials. As one allows the system to anneal
further, it will gradually find deeper and deeper energy
minima (if they exist) using larger distortions. There will
be fewer metastable states, tunneling between them will
be less frequent, and atoms further away from the bound-
ary will be displaced.

Finally, the bonding characteristics of the twist boun-
daries and their effect on the local electronic structure
appear to be quite different from well-coordinated tilt
boundary structures. In symmetric-tilt boundary calcula-
tions,*® it has been found that structures containing no
broken bonds can be found relatively easily and that the
energy-translation surface exhibits a well-defined energy
minimum. It is proposed that this difference in structural
characteristics is universal among covalently bonded
solids and may be attributed to the different degrees of
frustration associated with the two types of boundary.
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The frustration results from the tendency to maintain lo-
cal directional bonding, both across the grain boundary
and into the bulk. For the tilt orientation, this frustra-
tion may be thought of as one dimensional, while for the
twist orientation, it is two dimensional. The higher level
of disorder in the twist boundary leads to a variety of
bond distortions and the appearance of electronic states
deep in the band gap as can be seen in Fig. 19. This is in
sharp contrast to recent tight-binding results!’ on the
25(310) tilt boundary in silicon, where only shallow
states associated with the upper edge of the valence band
and the lower edge of the conduction band were found.
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FIG. 1. Unrelaxed atomic positions in planes normal to the
[001] direction for two twist boundaries in germanium: (a)
35(36.9°) and (b) £5%(53.1°). Two layers above (solid circles)
and below (open circles) the boundary plane are shown in both
cases. The CSL unit cell is indicated by dashed lines and the
smaller DSC cell is indicated by solid lines. Note that the x and
y directions are reversed in (a) and (b), and that there is no rela-
tive translation of the upper and lower layers.



FIG. 15. Relaxed atomic configurations corresponding to the
energy extrema A —F in Fig. 14. The three minima A, B, and C,
and the three maxima D, E, and F are shown top to bottom in
the left- and right-hand panels, respectively.



(0.05.00) (005.00)

FIG. 16. Two relaxed atomic configurations of the (0.05,0) or
the %a[SlO] state of £5%. (a) was obtained from relaxation of
the rigid-body geometry and (b) was obtained by translating the
relaxed (0,0) state to (0.05,0) and rerelaxing.



FIG. 18. Characteristic group of atoms that form part of two
different translation states of 5 that are symmetry equivalent,
but yield different configurations. The arrows highlight the
differences.



(0.0) (0.2.0)

(0.0} (0.2.0)

FIG. 2. DSC unit cells (solid lines) for (a) £5(36.9°) boundary
and (b) £5%(53.1°) boundary. The shaded areas indicated the ir-
reducible zones for both boundaries. The coordinates are given
as fractions of a CSL vector. Note that the x and y directions
are reversed in (a) and (b) to be consistent with Fig. 1. The
different symbols indicate symmetry-related positions and the
circled symbols refer to structures that were computed.



FIG. 8. Relaxed atomic configurations of the seven transla-
tion states of £5 (36.9°). The orientation of the structures is the
same as in Fig. 1(a). Their arrangement in the figure corre-
sponds directly to the arrangement of circled symbols in Fig.
2(a) with the exception of the boxed structure, which corre-
sponds to the state (0.15,0.05). Thus, the (0,0) state is the struc-
ture in the lower left-hand corner.



FIG. 9. Relaxed atomic configurations of the nine translation
states of £5* (53.1°). The orientation of the structures is the
same as in Fig. 1(b). Their arrangement in the figure corre-
sponds directly to the arrangement of circled symbols in Fig.
2(b). Thus the (0,0) state, which has the lowest energy, is the
structure in the lower left-hand corner.



