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The one-electron, self-consistent-field formalism for harmonic generation is presented. The solu-
tion is expanded in a Fourier series, assuming that the time-dependent perturbation is weak. The
equations of harmonic response form a set of inhomogeneous Schridinger equations which, if
solved order by order, are coupled only through self-consistent-field effects. Special attention is paid
to the case of second-harmonic generation in crystalline semiconductors with a longitudinal field
present. The f-sum rule for crystals is exploited to eliminate certain terms which apparently
diverge as ® 2, in perfect analogy to the linear-response theory. Additionally, terms which are in
the form of numerical first-, second-, and third-order finite differences of the frequency are com-

bined into numerically superior forms.

1. INTRODUCTION

The calculation of linear-response coefficients for semi-
conductors has recently become quite accurate. Well-
converged Hohenberg-Kohn-Sham local-density approxi-
mation (LDA) calculations of the dielectric constant of
various semiconductors,'~* phonon frequencies,® and
piezoelectric coefficients* have appeared. The systematic
overestimate of the static dielectric constant by the LDA
has been shown to be correctable by the inclusion of a
“scissors operator” in the LDA Hamiltonian; deviations
from experiment occur at the level of 4% in the cases of
silicon and germanium.?

There has not yet been a successful ab initio calcula-
tion of second-order nonlinear optical response in a semi-
conductor to my knowledge. Previous work includes a
semiempirical pseudopotential calculation® and an empir-
ical tight-binding calculation;’ despite the use of fitting
parameters these works disagree with experiments, the
static limit is underestimated by a factor of 10-100 in
Ref. 6 and overestimated by a factor of 1-4 in Ref. 7. It
is a measure of the difficulty of the problem that the
literature is riddled with errors even at the formal level.?
It is only a few years since the first correct local-density-
approximation calculation of the third-harmonic genera-
tion coefficients in rare-gas atoms;”'® and even these cal-
culations overestimate the experimental hyperpolarizabil-
ities by about a factor of 2. These calculations have been
extended to alkali-halide crystals in the “spherical-solid”
approximation.!! Second-harmonic generation at a jelli-
um surface has also been studied recently using the
LDA."

The goal of the present work is to set the stage for the
calculation of a hyperpolarizability y'*(2w;w,w) in a
semiconducting crystal such as GaAs in a framework of
ab initio one-electron theory and self-consistent induced
fields.!~*%13717 The one-electron response formalism is
set down as a set of inhomogeneous Schrodinger equa-
tions; the inhomogeneous Schrédinger equations have
been used previously for the calculation of atomic polari-
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zabilities'* ™! and hyperpolarizabilities and more re-
cently have been introduced into the solid-state context.>
Certain exact cancellations are applied to these equa-
tions. The resulting formulas are, it is hoped, computa-
tionally tractable.

The formulation is restricted to longitudinal response;
optical experiments will typically measure transverse
response. In linear electronic response, the long-
wavelength longitudinal dielectric function is equal to the
corresponding transverse quantity.'®!® However, in the
case of phonons, the longitudinal- and transverse-optical
frequencies are not equal in polar semiconductors; in-
stead they are related through the Lyddane-Sachs-Teller
relation.?® So far as I have been able to determine, the
relationship between transverse and longitudinal response
is not known for the hyperpolarizabilities. Presumably,
elements of the approach developed here will be useful in
a deriving the more complete current-current response
formalism. '3

II. GENERAL ONE-ELECTRON FORMALISM

Consider the time-dependent Schrodinger equation

(2.1

—i-a%—Ho le/;(z)): VDlw(n) ;
here, H, is a time-independent Hamiltonian, and the
standard phase convention is associated with the equa-
tion for the “bra” form {u(t)]. We will restrict con-
sideration to the case where V' (t) is a small interaction of
the form

x J o
Vt)= 2 k]2[2] V[(({))ezla)t .

ji=1 I=-y

(2.2)

Here, the V,)' are permitted to be arbitrary time-
independent operators, including scalar and vector poten-
tials. Time-reversal symmetry imposes the restriction
Vi =vY" = The notation 34121, means the index [ is
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incremented by 2’s. We will seek solutions order by or-
der in A, which ultimately will be set to unity.?! In prac-
tice, we will typically be concerned only with j <3, i.e.,
up to third-order processes. (An eye-catching exception
to this is the recent observation of odd harmonics as high
as 33rd order in rare-gas atoms. *)

We will seek a solution in the form

2 ka[z](s+lw Ho)hlj(j))ezlwt_ 2 )\.] 2[2] V(,]) il'wt E )\'} 2[2] |l[/(/ ))ell ot
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U =S WS e

iletlw (2.3)
1=0 i=—y
with a temporary normalization (¢ |4’)=1. (The
correct normalization is considered in Sec. III.) Substi-
tuting the form (2.3) in Eq. (2.1), we arrive at
(2.4)

j=0 I=—j j'=1 - j'"=0 =—j"

This equation must be satisfied separately for each frequency lw and each power of A. Let ® =1 for j =0 and ®;=0
for j <0. Hence, for |I| <j with j —1I even,

(e+lo—HylyY') = 2 2[219 11O VIR 1) .5)

j'=1l'=-
Only terms in ¥}/ and |¢}”’) with the appropriate parity indices enter Eq. (2.5). Since j'> 1, if the V, V) are known, the
functions |4}/ ) may be determined mdependently of each other in order of ascending values of ;. In practice, we will
seek a self-consistent solution, i.e., the ¥}/ will depend upon the |¢}/’) for j’ <j; this represents only a moderate in-
crease in the dlfﬁculty of the problem. The amount of |¢#/{’) to be included in |¢{’) is not determined. However, as the

value of (¥’|¢”’) can affect only the phase of the normalized wave function, we take {¢§’|¢y’) =0, j > 0.
We expand Eq. (2.5) for process from zeroth order to third order in the perturbation:

=0, [ =0:
=1, I==1:

(e—HYY)=0;
(etw— HO h//l) — +w|¢(0)

, | =%3:

=3, I==*1:

(e+3w—H,)|

2, I=%2: (ex20—H)9H) =V, 1y + VL 1) ;

=2, 1=0: (e—HY@)=VZ[y@)+ V1w + v g ;
3 By =V, v +vi,
3 (etw— H0)|¢+1>— +wl¢(0))+V+2{u|¢

The formalism presented here is similar to the formulation of Subbaswamy and others.* 1

I11. WAVE-FUNCTION NORMALIZATION

In Sec. I, the normalization {¢{’|¢y”) =1 was intro-
duced. The correct wave function is defined by
[9(e)) = ZA]DWJ )) and (J(t)|¥(¢))=1. The normali-
zation constant Z is given by Z = ((t)|¥(¢)). The nor-
malization constant has no time dependence because
probability is conserved in systems with a Hermitian
Hamiltonian. Let us define expansion coefficients

Z=3 NZU .
j=0

(3.1

From the expansion for the wave function in Eq. (2.3),

- = o J=yr
Z=3I M 3 2[2] b O e e
j=0 j'=0UI'=—; Il=—j+;)=I
(3.2)

Although Eq. (3.2) is apparently time dependent, the con-
servation of probability requires the time-dependent
terms to vanish. (See the Appendix for an expanded dis-
cussion.) We may identify terms separately for each j.
Hence,

(2.6a)
(2.6b)
(2.6¢)
(2.6d)
D + V0 [2)) (2.6e)
DAV [0 + V0 g2y + v D y2)) (2.6
[
zV= i 2{[2] ®; 1@ (WY )
Jj=01=—
(3.3)
For j <3, the only nontrivial term is
Z W= )+ () 6.4

Also, Z '’=1. All terms with j odd vanish. In particu-
lar, the wave-function normalization constant does not
affect linear response.

Since Z is of the form

Z=1+MNZP+0Y, (3.5)
the normalization constant has the expansion
Z Vr=1-12Z P 4+00) . (3.6)

The normalized wave function may be written as
[9(0)) = [P ) (1= 1A2Z )+ [y ) AP Je ™
+E[w' )(}» 1}\32(2))_‘_lw(ﬁ;);\f&lei(sim)t

+_ll/}lfzi))\Zel(EtZ(u)r_{_|¢(§%>A3eiiet3(0)t+o(k4) .
(3.7)
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IV. INDUCED ELECTRON DENSITY

The ground-state electron number density is given by
no(0)={Y|r){r|¢y’). The electron number density
induced by the interaction V(¢) is given by

dn(r,t)={P(t)|r){r|d(t)) —ny(r) . 4.1)

The induced electron density has an expansion of the
J
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form

* j
n(r,)=3 MIPlsn(r)ele" .

IEENES

4.2)
Since 8n(r,t) is real, 8n;/'=8n (l’,t. Explicit formulas for

the low-order &n/'(r) may be obtained from Eq. (3.7).
For j <3, these are the following:

Snii ()= (g le) (el ) + (i o) Crly) (4.3a)
8n'd) o 1o (@) + (i I (el + (o) (elye”) (4.3b)
5"62)(1'): <¢é>°)|r)<rl%2’>+<1ll(1”|r)<r|¢'1”)+(¢‘_”‘r)(rltb‘l) Y+ ) (ryy)) —Z Png(r) (4.3¢)
8n 3y (r)= (> |r) (ely)) + (P o) (@) + (P o) (el + (o) (rlyg) (4.3d)
sn3)(x —<¢ o) Celg]) + e Crlw)) + ot o) Cel i

1) D)+ 2 o) + W) (el —Z @on (o) .3¢)

The integrated induced charge density must vanish.
This will be demonstrated for the formulas in Eq. (4.3).
We may invoke the completeness relation

I=fdr|r)(rl .
Applied to the ground-state charge density, we compute

fdrno r)—‘de'(l/)(O){l') (rlyf”

(4.4)

=)
=1 (4.5)
The integrated first-order response is
[arsnd(n=CoQlpd)) + (9

=Z

H—

=0. (4.6)

(The symbol Z !} is defined in the Appendix.) For the
second-order induced number density, application of the
identity (4.4) to Eq. (4.3), the results of Egs. (3.4) and
(4.5), and the relation (¢{”|¢{*) =0 lead to the con-
clusion that the integrated induced charge density van-
ishes. Moreover, there would have been no effect on the
induced density if {{|¥*') had not been required to
vanish. More specifically, cancellation occurs between
the ordinary terms and the normalization corrections in
the expressions for 8n?(r) and &n3)(r) of Eq. (4.3). (In
this case, the normahzanon constant would be Z ?
— (w&())hﬁg)) + <,¢(11)'¢(11)> + <¢(1 |,¢l(l > + (l/}KO)hp(Z) )
For the other terms in Eq. (4.3) the completeness relation
of Eq. (4.4) reduces the expression to the time-dependent
terms in the wave-function normalization which all van-
ish, as discussed in the Appendix.

V. LONGITUDINAL RESPONSE
IN INSULATING CRYSTALS

Consider the case in which H represents a crystalline
solid. For definiteness, we restrict attention to a longitu-
dinal perturbation of the form

= i )\12 2] 2[2] (j) r)et(lwl+mq r) (5.1)

=t I=—jm=—j

where each ¢ /) (r) is periodic in the unit cell. As indicat-
ed in the Introduction, the response to light should be
done with in a transverse or current-response formalism,
but this harder problem is deferred for now. Let the
long-wave part of this potential be denoted by
=95 [ dré il (r), where the subscript O refers to
an integral over a unit cell, and Qo is the unit cell
volume. Reality of ¢(r,t) requires ¢ (r)=¢V¥_, (r),
but otherwise leaves these coeﬂicients unrestrlcted In
particular, for j=1, ¢{(r)=¢"*_,(r) and ' (r)

—¢>(_11 (1), but reality imposes no relationship between

U(r)and ¢!'" (1)

We may expand the wave function and the charge den-
sity in the wave vector as well as the frequency in expan-
sions similar to Eq. (5.1). The normalization constant Z
has no spatial dependence, hence no wave-vector expan-

TABLE 1. Lowest nonvanishing order in g for various quan-
tities in linear response (w) and second-harmonic generation
(2w).

6 E,P 8n
o long wave 1 q q*
1) short wave q q q

2w long wave q q? q°
20 short wave q? q’ q?
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sion. Specifically, Explicit formulas for the expansion coefficients of Eq.
(5.3) are presented below for linear response (j=1) and
)= 2 )\12[2] 2[2] g ) Yeiltettwi+marr] (5.2) for second-harmonic generation (j=2, |l[=2, and

=0 I=—jm=—j |m|=2). (The presentation is limited in this section be-

and cause the formulas are lengthy. The m=0 terms are a
form of “three-wave mixing,” and hence are excluded

dn(r,1)=0Q" 2 A 2[2] 2[21 87 (r)eitlortmar) from the presentation.) The results presented here
j=1 I=—jm=—j beyond linear response were obtained with the aid of the

(5.3y  software package MATHEMATICA. >

) . o For optical response, we are interested in the long-
the functions {r|¢{/)) and 87 {/)(r) are periodic in the wavelength limit, i.e., q—0.?* The lowest nonvanishing

unit cell. Let 87 {, =Qq ' [ dr Bﬁ il (r). The superscript  terms are summarized in Table I. This pattern of these

s will refer to a ‘“short-wave part,” e, lowest non-vanishing orders is most easily understood by
87 S)(r)=8a 1) (r)— 87 ). considering the electric fields.

A. Linear response

3,25

In linear response, >’ the long-wave-induced charge density is given by

=§OfBde %w_2¢ [R(n,k|H,G, (+w)H,|nk)+R{nk|H,|nk)]tio 'F(n,k|H G, (+w)$|nk) ,

(5.4)

where H, is the k-p Hamiltonian, and H, 1s the leading term of the expansion of H, 4 in q (typically q-p). H, is the
second term in this expansion (typically 1g 2). The “typical” identifications are not made in this work in anticipation of
nonlocal potentials, such as nonlocal pseudopotentials®® or the “scissors operator.”® The one-electron Green’s operator
is

Gn_k(a))z(ﬁnk+(z)_Hk)Al . (5.5)

In Eq. (5.4), the Green’s operators may be (a) unrestricted, (b) projected away from the state |nk ), (c) projected away
from all states of energy €,,, or (d) projected away from all occupied states. Let G, =(g,,—H,) !, projected away
from the subspace of wave functions with energy €,,. The kets |n,k) are periodic in the unit cell, and obey
Hkln,l?) =e,,k|n,l~(). Also, n is a band index, and the symbol “occ” limits the sum to the occupied states. The wave
functions themselves carry an additional phase e’X", i.e., |n,k) =e'*"|n,k). The notation BZ refers to the Brillouin
zone at the domain of integration, and @, is the unit-cell volume divided by (27)>. The superscript s implies that only
the short-wave part of the term is used; i.e., ¢ {S(r)=¢ ) (r)—¢ L. Inside a matrix element, ¢ ' is an operator which
is local in real space. The range of the summation over n and possibly + extends to the end of the expression; terms
without an explicit = dependence occurring in the range of a = summation simply sum to twice the expression written.
Time-reversal symmetry has been used to derive Eq. (5.4), and most of following formulas. Specifically, we take
(r|n,k)=(r|n,—k)*, and both states have the same energy and occupancy. The operator H, has odd parity, and H,
and ¢ {!¥ have even parity. The symbol 7 operating on a matrix element is defined as

R{nk|O|n,k)=Re(n k|ReO|n k) +iRe{n k|ImO|nk) .
Similarly, the symbol ¥ operating on a matrix element is defined as
R{n,k|O|n,k)=Im{n,k|ReO|n,k)+i Im(nk|ImO|n k)

for any operator O.

Non-Hermitian operators enter the discussion in several ways: the product of Hermitian operators is not, in general,
Hermitian; G, (w) may have an imaginary part if w is above the absorption threshold; moreover, ¢ is, in general, com-
plex. Below the absorption threshold, ¢!} is purely real, but ¢ {!(r) is purely imaginary. Above the absorption
threshold, there is no general phase relation for o\

Application of the f-sum rule (discussed in Sec. VI) for insulating crystals leads to

on () = Of dkzw'2¢1 [R(n,k|H,G, (+tw)H,|n,K) —R{n,k|H,G, H,|nk)]

iim—‘:ﬂn,lelG,,k(J_rm)J‘l‘,;’|n,E) , (5.6)

a formula which does not hold for metals. (The terms ‘“‘semiconductor” and “insulator’ are used interchangeably in
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this work.) Computationally, Eq. (5.6) is superior to Eq. (5.4) because a cancellation implicit in a Brillouin-zone integral
is performed analytically, not numerically. The situation may be further improved by noting that

Gol@)+G o (—0)—2G,, =20G,, Gy (0)G —0) (5.7)
and, for reference,

G lw)— Gy (—w)= 206G, (0)G ( —o) . (5.8)
Applying Eq. (5.7) to Eq. (5.6) yields

— occ - -
om L) =2Q0fazdk2¢‘11,’,7€(n,lelG,,kG,,k(w)Gnk( o)H,|n,k)—iF(nk|H G, (0)Gy(—0)d ¥Ink), (59
n

which eliminates the manifest finite differences of Eq. (5.6). Formulas like Eq. (5.6) are typical of those generated from
a diagrammatic analysis.®?’ The “product form” of Eq. (5.9) eliminates a “subtle cancellation” noted in Ref. 8.
The short-wave-induced charge density is given by

87 (19(r) Qof dk2ﬁ<nk|r><ric,,k(+m n, k) +io "¢\ F(n,k|r) (r]|G, (Tw)H,|n,k)

—ZQof dkzﬁ’(n kir) (rl(e,y —H )G (@)G o —0)$ (1 |nk ) +i F(n,k|r) (1| G, (0)G, (—w)H,|n,k)

(5.10)

for metals and insulators alike, making use of Eq. (5.8). Below the absorption threshold, 87 {!(r) is purely imaginary,
and 87 |!) is purely real. The Green’s operator may be restricted in Eq. (5.8) the same four ways as for Eq. (5.4).
The w—0 limits of these formulas are, in the case of insulators,

57 (1) =20 f dkzqs, R{n,K|H,G}\H,|n,k)—iF(n,k|H GLE\|nk) (5.11)
and
&a (r)~2(20f dk27f(n,k|r)(rlG,,k¢””|n k)—ig\DF(nklr)(r|GLH,Ink) . (5.12)

For metals, a leading term of O (w %) would enter the long-wave response, Eq. (5.11); the short-wave response, Eq.
(5.12), remains correct.

B. Second-harmonic generation

The process of second-harmonic generation in the one-electron, self-consistent-field picture has three steps: (1) an
external field at frequency w is imposed, and screened with a self-consistent linear response formalism, (2) the screened
fields at frequency w induce a bare charge density at frequency 2w, and finally (3) the bare charge density at frequency
2w generates forced and free electromagnetic waves at frequency 2o, first discussed by Kleinman.?® A large response is
generated when the “pulse matching” condition is achieved between the forced and free waves.?® This subsection is de-

voted to step (2)—the bare charge density induced at frequency 2w; step (1) has been dealt with in the preceding subsec-
tion, and elsewhere. ! =3 13,142

The long-wave-induced charge densities are given by

81 G, =0, [ _dk 2 i~ F U = F n, K| H, G, (+20)H, 1K) T2F(n, K| H, G, (+0)H, n,K)
+F(n,k|H G, (+20)H G, (tw)H,|n,k)
+1F(n,k|H,G,(—0)H,G,(0)H,|nk)]

+o 2 \D2R(n,k|H,G, (+0)$ 1S |n, k) +R(n,k|H,G, (+20)H,G, (+©)§ ' |n,k)
+R{nk|H,G,(£20)¢ 3G, (to)H,|n,k) +R{n,k|H,G(t0)H G, ( F0)& "' |n,k)]
+io [£F (nk|H G, (£20)¢ G, (£0)d |13 (n, k) +1F(n,k|$ |G, (—w0)H G, (0)d S |n, k)] (5.13)
for [m|=1. In Eq. (5.13), the Green’s operators may be (a) unrestricted, (b) projected away from the state |n,k ), or (c)

projected away from all states of energy €,,. Terms involving more than one Green’s operator may not be projected
away from all occupied states as in case (d) for linear response. If this projection is employed one recovers what
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Aspnes? calls “vce” terms or “virtual-electron” terms. The difference between these and the full expression are called
cvv” terms or “virtual-hole” terms. At zero wave vector, the long-wave-induced charge 87 {3’ =0 vanishes at all fre-

quencies and to all orders in the expansion in powers of g; this is a derived result which is required to avoid a net in-
duced charge.

The short-wave-induced charge densities are given by
_ occ - -~ ~ . -
Y1 ‘2%3’,,,)(r)=ﬂ0f32dk S o AR n k) (1|G,(£20)H,|n,k) + R (n,k|r) (1|G,(+20)H,G,(tw)H |n,k)
n,*

+1R{(n,k|H,G,(—)|r){1|G,(0)H,|nk)]
+io~ 14)“’[+.‘7(n,EIHlG,,k(iw)[ﬂ(rlG,,k(¢w)$‘11,j)|n,i>ii7(n,§lr)(rlG,,k(iZw)HlG,,k(t ¢4 In,k)
+F(n,k|r) (1|G(+20)8 WG, (+0)H,|n,k)]
+[R{n,klr) (1| G, (£20)¢ (%G, (£0)d 190,k ) + LR (n,k|$ |G, (— )T (1|G (@) (1 n, k) ] .
(5.14)

The rules for restricting the Green’s operator are the same as for Eq. (5.13). Below threshold, 87 $35,.,(r) is purely real

and 87 2}, is purely imaginary. This pattern is the reverse of that obtained for the corresponding linear-response
terms.

In the static limit, the induced charge densities are
&1 2, Qof dkE 6\ —12F(n,K|H,G/\ H,|n,K)+12F(n,K|H,G, . H G} H,|nk)

+6F(n,k|H,G} H G H,|nk)]
+¢ D4R {nk|H,G} 8\ |n,k) +4R(n,k|H,G, H G 8 n,k) +10R{n,k|H,G,, ¢ WG H,|Ink)
+27R{n,k|H,GLH,G% 6 ''0In,k) +4R{(n,k|H G} ¢ G2 H,|n,k)
+10%{n,k|H, G,ka Goud 1k ]
+i[ —2F(n,k|H G, 5G2 6 nk) —4F(nk|H G2 b %G, In,k)
—2F(n,k|$ G, H ,GL b nk)] (5.15)

for long waves, assuming that an apparently diverging term vanishes, i.e.,
occ

0=0"2¢ Qof dk247{(n,k|H2 w89 n,K) +aR(n,kK|H,G, H G, ") n,k)

+2%{n,k|H,G,$¥G, H,|Ink) , (5.16)

in analogy with the f-sum rule needed in the linear case. The proof of Eq. (5.16) is presented in Sec. VI.
For short waves in the static limit, the induced charge density is given by

&a %) (r)= ﬁOfBdez (@8R n,k|r) (r|G> H,|n,k)+8R(nk|r){r|G}H, G, H,|Ink)

+2R(n,k|H G\ |t)(t|G, H,|n,k)+4R{nk|r){r|GLH,G}H,|n k)

—R{n,k|H G It ){r|G}H,|Ink)+2R (nk|r){r|G, H,GH,|nk)]
+i¢ D[ —2F(n,k|H, G, |t)(r|GL 1 |n, k) —4F(n,k|r)(r|GL b \G, H,|nk)
+2F(n,k|H G 1) (1] G,y 5|0, k) —2F(n, k|1 ) (r|G b G2 H, |n,k)
—2F(n,klr)(r|G, H,GL ¢ \19In, k) —4F(n,k|r)(r|GLH,G, " |nk)]

+[2R{n,k|r)(1]G, 8 G, b \19|n, k) + R (n,k|d G, It) (1|G, 8 |n, k)] (5.17)
assuming that

AGiy )ZﬁofBzdkz 2R n,k|r) (|G, H,In,k)+2R{n,k|r){r|G, H,G,,H,|nk)

+R(n,KIH, G|t (x|G,H, In,K) (5.18)

an assumption which is similar to Eq. (5.16), and is justified in Sec. VL.
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A subtlety arises in this limit owing to the existence of terms of the form 67 Oq)! these terms should be included if a
strictly dc phenomenon is considered, but not for a “low-frequency” phenomenon. The expressnons in Egs. (5.15) and

(5.17) are simply the @—0 limits of Eqgs. (5.13) and (5.14), without a contribution from 87 q) For metals, terms of

O (w~?) arise in the charge densxty for both long and short waves in second-harmonic generation. In the more familiar
linear response, the terms of O (w ~2) are only associated with the long-wave response to a long-wave perturbation.
The “diagrammatic”-type formulas of Egs. (5.13) and (5.14) may be put into a “product” form using formulas similar

to Egs. (5.7) and (5.8). Recasting these formulas eliminates numerical finite differences of up to third order. The long-
wave charge is given by

oce

8m 2, = Qof dkzz( DY —12F(n,k|H, G, ()G — ©)G i (20)G  ( —20)H, |1,k )

+12F(nklH, (e,y —Hy ) G @)G i —0)G,, (20)Gpy { —20)

XH G, ()G (— )G, (20)G, (—20)H,|n,k )

+6F(nk|H (e,,—H ) G,y (0)G( — ©)G 3 (20)G y ( —20)
X H G (0)G,y(—©)G,(20)G i ( —20) e, — HOH, 1,k )

_246027( ni|H1(€"k—Hk )Gnk(w)Gnk( —a))G,,k(2w )Gnk( _260)

XH Gy (0)G(— )G, (20)G, ( —20)H,|n,k) ]
+¢\D[4R(nk|H,G,,G,(0)G, (—0)§{|n,k)
+2R(n,k|H (e, — H\)G , (20)G, ( —20)H G, G, (0)G  ( —0)$ S| n, k)
+4R(n,k|H,G,,(20)G,( —2w)H,G, (o —)¢ i) n,k)
+87f(n,ElH1GnkG,,k(2w)G,,k(—2co)HlGnk(a))G"k( (s,,k—Hk¢”“|n,k)
—80*R(n,k|H GG, (20)G . ( —20)H |G, Gy (0)G oy ( — ) 11 n,k )
+2R{n,k|H (e, — Hy )G, (20)G oy —20)6 )G, G\ (0)G oy ( —w)H | |0,k )
+4R{(n,k|H,G,,(20)G,,( —20)$ G, ()G, ( —0)H |1,k )
+8ﬁ<",E|HIGnank(2w) —20)4 |G (0)G,( —0)e, — H H, n,k)
—Swzﬁ(n,ﬂH,G,,kG,,ka)G —20)¢ %G G (©)G o ( —0)H  |n,k )
+2R(n,k|H (e, —Hy )G 0)G oy —0)H |G, G (0)G py (—0)$ 1) n, k)
—2R{(n,k|H,G,(0)Gy( —0)H G, ()G ( —©)$ !9 n,k)
+2R(n,k|H, Gy G ()G —0)H |G,y (0)Gp( — ) ey —H )G | n, K )
—20*R{n,k|H,G,; G, (0)G,( —0)H GG, (w0 —w)$ '} In,k)]
+i[ —4F(n,k|H,G,(20)G,( —20)¢ )G, ()G (— ) e — Hy )b |10,k )
—2F(n,K|H (e, — Hy )G (20)G i —20)8 (G i (0)G i — ) (1) 0, K )
—2F(n, k¢ {5 (e, — Hy )Gy (0)G oy —0)H | G ()G (— ) (1) [n, k) T
(5.19)
In deriving Eq. (5.19) the right-hand side of Eq. (5.16) was subtracted from the ¢!} term of Eq. (5.13). Hence, this
equation is restricted to insulators. Similarly, to obtain the “product” form for the short-wave induced charge at the

second-harmonic frequency, it is necessary to subtract the right-hand side of Eq. (5.18) from the ($!!))? term of Eq.
(5.14); hence Eq. (5.20) is also restricted to insulators. The result is
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= (2s)
87 33m)

+2R{n,klr) (rl(e,,
+4R (n,kIr) (1]G, (20)G
+8R (n,klr) (1G,G,(20)G,,(
—80* R n,k|r ) (1]G, G, (20)G
nk — H G (0)G, (
—R{n,k|H,G,(0)G,,
—’R{n,k|H,G,,G,(0)G,(—
nk —H )Gy (0)G
w)lr)(rl(e

+2R{n,k|H,(e

+ig D[ —2Fn,k|H,(e
+27<H,E‘H1Gnk((z))c k(

—2F(n,k|r)(r|(e

_'47< n,E1r><r|G,,k(2a))G,,k(

—2F(n,k|r) (rl(e,— Hy )Gy (20)G

—4F(n,k|r)(r|G,, (20)G,,(
+[7‘3(H,E|r><r|G,,k(2a))$(ll,f,’G,,k(co)

+R{n,k|d G, (

The static limits in Egs. (5.15) and (5.17) may be obtained
from Egs. (5.19) and (5.20) by inspection. (In practice,
the static limits were obtained by series expansion, so re-
covering the static limits is a check.) Note that in Egs.
(5.9), (5.10), (5.19), and (5.20), the Green’s operators
occur in o or +2w pairs. The induced charge density is
seen to be an even function of frequency.

Historically, the discovery of optical second-harmonic
generation in crystals in 1961 (Ref. 30) sparked a theoret-
ical description as a second-order time-dependent pertur-
bation of one-electron bands.?"* The difficulty in this
development of a manifest divergence in the static limit
was resolved to a certain extent a decade later by
Aspnes,?° who showed (a) for a vector-potential perturba-
tion, cubic symmetry could be used to eliminate diver-
gent terms, and (b) for a scalar time-dependent perturba-
tion, assuming only local potentials in the ground-state
Hamiltonian and neglecting short-wave induced poten-
tials, the divergent terms could be eliminated by a sum-
mation over the Brillouin zone. Aspnes’s final result, the
sum of his Egs. (2.19) and (2.20), is similar to Eq. (5.15) of
the present work if the short-wave terms are neglected
and H,=1lg? which permits the simplification
(n,ElHlG,‘,‘kHzln,E)=%q2(n,E}H1G:kln,E):O. The
local-field corrections to x'?' have not been reported pre-
viously to my knowledge. Simplified local field correc-
tions}}of the “point dipole” type are given by Bloember-
gen.

=0 f dkz (6 [8R (n,KIr) (£ GG 200)G i

-Hk )G,,k(2a) )Gnk(

Hk )Gnk( Za))G,,k(

_ZQ))H](Enk

—20)¢ 1€~ H, )G, (0)G, ( — )
U, KD + R (K| ) (r|G o —20)85G

o)) (rlG, ()b 1n,k) ] .
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—2C())H2|H,E)

—20)H, G, G, ()G
—20)H, G, ()G —)H, |n,K)
—20)H (g, — H\ )G, (0)G, ( —w)H,|n,k)
—20)H,G, G (@)G, ( —0)H | |n,k)

—o)H,|n,k)

o)l Xrl(e,—H )G, (0)G, ( —w0)H In,k)
)|t (r|G, (@)G, (—0)H,|n,k)
o)) (r|G, G ()G ( —0)H |n,k )]
)| (1|G o (0)G y (— ) | n,k )
H )G, (0)G (—0)$ 1S |n,k)

—zw)HlGnk( nk $(]rr)r| ’E)
—H )Gyl 0)F s

—20)6 %G, (0)G,\ (—)

G — @) 1n,k)

(5.20)

V1. F-SUM RULE
FOR SECOND-HARMONIC GENERATION

By use of Goldstone’s theorem,** the energy of a sys-
tem with applied perturbation H'(k,q,3) is

s,,,k+q</3>=e,,k+<n,E|H' b (GnkH’)jIn,E> . (6.1)

j=0

Here, the perturbing Hamiltonian is a combination of
k-p terms (such as H, and H,) and other terms, denoted
collectively by B. The Green’s function G, (€, —H, )~
always yields a function orthogonal to the ground state
In,k). A second expression for the energy comes from
the Taylor series,

8n,E+q(B): €nk(3)+q'vkenk(ﬁ)

+1q-V,q- Ve, (B)+0(g?) . (6.2)

The function ¢,,() may be expanded in powers of /3 as
well. Now, 0= fBzdk V.f(k) for any function f which
is periodic in the Brillouin zone. Since all terms arising
in the expansion (6.2) are of the form V,f(k), their in-
tegrals over the Brillouin zone will vanish.

To obtain the f-sum rule for crystals,35 let
H'=H,+H,. The auxiliary variables 3 are not needed
at this stage. Equating the terms of order in g? in Egs.
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(6.1) and (6.2),
0=§0fBde(n,E[H2\n,E) +{(n,k|H,G, H,Ink) .

(6.3)
|

If 3 is a single scalar variable, then it is permissible to ex-
pand €,,(B)—¢,,=B(3e,(0)/3B)+0(B?). Let H'=H,
+H2+B}_I, where H is some perturbation which is in-
dependent of q and B. Equating terms in Egs. (6.1) and
(6.2) that are the coefficients of terms of order g8, we

find

0= ﬁOfBzdk(n,EiH?_G,,kﬁ[n,E)+<n,E|I7G,,kHzln,E)+(nEleG,,kH1Gnk17|n:k)

+{(nk|HG, H,GH,|n,k)+{nk|H,G,,HG,H,|nk) . (6.4)

This result may be simplified if we impose the parity requirements of Sec. V A, namely H is odd in k and H, is even. If

we further assume H is even in k, then Eq. (6.4) reduces to

O=ﬁofBde27?(n,E|H2G,,k17\n,E)+27{<n,E|H,G,,kH1G,,kI7[n,E)+7€<nE1H1G,,kﬁG,,kH1In,E) .

If we specify H=¢\!*, Eq. (6.5) reduces to Eq. (5.16) as a
special case. Similarly, H=|r){r| reduces Eq. (6.5) to
Eq. (5.18). Taking H as odd in k reduces Eq. (6.4) to a
tautology, as each term will cancel in =k pairs.

VII. DETERMINATION OF y'?

The second-harmonic generation tensor is defined by
the relation

P, =X EgE, , (7.1)

where P is the polarization and E is the electric field.
Throughout this section, the variables refer to the corre-
sponding macroscopic electrodynamic quantities (called
“long-wave parts” elsewhere in this paper). The Einstein
summation convention is used for the Cartesian indices
a, B, and y. The frequency labels 2w for P and o for E
are suppressed. In our bulk system, the polarization will
be in the form

P(r)=Pe%ar (7.2)

Equation (5.13), (5.15), or (5.19) determines the macro-
scopic induced electron number density,

dn(r)=Q, '6m {2 ear (7.3)

using the definition, Eq. (5.3). The polarizability is relat-
ed to the induced charge density by

V-P(r)=e dn(r) , (7.4)

where —e is the charge on the electron. From Eqgs.
(7.2)—(7.4), it may be seen that
2iq-P=Q; ledn ) . (7.5)

2m

The longitudinal electric field is given by
E(r)Z%VtzS(r):éq(bOe'q", (7.6)

where the unusual coefficient arises because the potential

is defined to be an energy, following the convention of
quantum mechanics rather than electrodynamics. Com-
bining Eqgs. (7.1), (7.5), and (7.6),

_ 2
8 Gy =— ;Qoxiféyqangy% : (7.7)

By picking different directions for the wave vector q, the
10 linear combinations of X(azﬁ)y that have distinct angular
dependence may be determined, namely Y1, X222, X333

XietXiiHXan XXt Xeie Xaar T Xt X
X3t Xt Xk Yot XontXae Xzt Xt X
and  Xpit X2 tXsi2 T X2 X213 Xa2r- (The  super-

script on Y has been suppressed.) For second-harmonic
generation, Y.z, =X, there are up to 18 independent
quantities to be determined. For certain crystal classes,
there are additional relations among the tensor elements.
Tables for all crystal classes have been given by Shen?’
and Nye.*® The zinc-blende structure (with symmetry’’
43m or T,) has but a single independent tensor element,
so one direction of q suffices to determine y'* in this
case. (Here, any direction other than X, §, or Z will
suffice for q.)

Knowledge of the induced charge density is not
sufficient to determine the polarization in a crystal.?*
Hence, the present developments do not allow for deter-
mination of all the components of the tensor x'? in the
most general situation. If the induced currents were
known, the polarization could be determined from the re-
lation J=1J .+ 0P /dt; such a formulation would always
permit the determination of all tensor components. For
atoms,’ other finite systems, and the jellium surface, '
calculation of induced charges without induced currents
is sufficient. Calculations in the “spherical-solid” approx-
imation'! have also found the polarizability by taking
moments on an induced charge, which represents a
neglect of intercell charge transfer;?* Johnson et al. ar-
gue that the charge is sufficiently localized in the alkali
halides that the neglect of the intercell contributions is a
good approximation. '
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VIII. SUMMARY

Formulas for second-order nonlinear longitudinal
response in semiconductors have been set down in a one-
electron, self-consistent-field formalism. The analogous
linear-response formalism has been shown to predict the
dielectric constant of silicon and germanium to some
49%.%? The key features of the formulation are (1) use of
the inhomogeneous Schrodinger equation to simply the
formulation, (2) the use of the f-sum rule for crystals to
secure certain analytic cancellations in the response for-
mulas, and (3) a ‘“product” form (product of Green’s
operators) for the response that avoids numerical finite
differences which might otherwise be present in the for-
mulas. The formulation is sufficient to predict certain
linear combinations of elements of the second-harmonic
generation tensor. For certain crystal structures, includ-
ing the case of zinc blende, this information is sufficient
to determine the complete tensor. More generally, a
current-current response theory should be formulated. It
is hoped that an accurate ab initio calculation of the
second-harmonic generation coefficient y'* for a semi-
conductor such as GaAs will be forthcoming.
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APPENDIX: WAVE-FUNCTION
NORMALIZATION

In Sec. III, the probability conserving property of a
Hermitian Hamiltonian was exploited to simplify the
wave function normalization constant Z. A somewhat
more pedantic approach is to define an expansion

o J
Z(t)= 2 MNZ Dy= 3 M IFRIZ Peilar (A1)
j=0 j=0 I=-j
Since Z(¢) is real, Z {’=Z Y*. We may identify terms
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separately for each pair of j and / in Eq. (3.2). Hence,

HM&

EPEI O PP 0/ A I
-

(A2)

To bolster the general argument that Z is not time-
dependent, some of the low order terms will be seen to
vanish by direct argument.

First we consider

Z [ = ) + (i) (A3)
From the j=1 line of Eq. (2.6),

o100 = (U VL 106) (a4
Since V\J) =y} _(1/}00)|1/1(”)— (PO )*. From
Egs. (A3) and (A4), Z 1) =0, as desired.

For the terms
ZB= @) + WP D + Bl (A

we consider only the case in which V'3 =0; if this term

is nonzero, the argument given for Z | may be applied
to show that this term makes no contribution to Z ‘)
The wave functions in Eq. (A5) may be written using Eq.
(2.6) in terms of the Green’s operator G(w)=(e+w
—H,)"'. If @ is nonzero and nonresonant, this inverse
exists. Moreover, G (w) is Hermitian. The terms in the
induced wave function may be written as

WD =G (£ P2 1)

(A6)
[Y3H) =G (20)V)G

G(+a)V) [9®

Application of Eq (A6) to Eq. (AS) and the time reversal
relation V) =y ylelds the expression

(2)_<¢(0}|G(+2w Vll)G +o)V l)l¢00)>

+{(YP1V (G Fw)G(+)V ) |9

+(YPIV I (G F o)V G(F20) |y (A7)
Now, G (0)|¢L) =0 ) and
G(©,)G (0y)=——[G (0,)— G ()] . (A8)
Wy @,
These relations are sufficient to show Z ‘}=0. Argu-

ments of this type may be extended to the higher terms.
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