PHYSICAL REVIEW B

VOLUME 42, NUMBER 6

15 AUGUST 1990-1I

Variational quantum Monte Carlo nonlocal pseudopotential approach to solids:
Formulation and application to diamond, graphite, and silicon

S. Fahy
Department of Physics, University of California, Berkeley, Berkeley, California 94720;
Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720;
and AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974-2070

X. W. Wang and Steven G. Louie
Department of Physics, University of California, Berkeley, Berkeley, California 94720
and Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720
(Received 16 March 1990; revised manuscript received 2 July 1990)

A new method of calculating total energies of solids and atoms using nonlocal pseudopotentials in
conjunction with the variational quantum Monte Carlo approach is presented in detail. The many-
electron wave function is of the form of a Jastrow exponential factor multiplying a Slater deter-
minant. By using pseudopotentials, the large fluctuations of the energies in the core region of the
atoms which occur in quantum Monte Carlo all-electron calculations are avoided. The method is
applied to calculate the binding energy and structural properties of diamond, graphite, and silicon.
The results are in excellent agreement with experiment. Excellent results are also obtained for the
electron affinities and ionization potentials of the carbon and silicon atoms.

1. INTRODUCTION

The variational Monte Carlo method, as applied to
quantum-mechanical ~ many-body  problems, was
pioneered by McMillan' to study liquid *“He and first ap-
plied to fermion problems by Ceperley, Chester, and
Kalos.2 More recently, the Green’s-function quantum
Monte Carlo approach to the many-electron problem has
been applied very successfully to the electron gas,’ to
light molecules,* and solid hydrogen.® However, a
straightforward application of the method to real materi-
als containing heavier atoms has been severely hampered
by the very rapid growth in the required computation
time with increasing atomic number.>’ This growth is
caused primarily by the fluctuations in the energies of
electrons in the core region. The motivation to overcome
this restriction on quantum many-body calculations is
high, especially for strongly correlated electronic systems
with d and f electrons that are of major current interest
and importance. Even in condensed-matter systems
where the electronic structure can be said to be reason-
ably well understood, the standard approach of
Hohenberg-Kohn-Sham local-density-functional theory®
(LDA) has consistently failed to give accurate binding en-
ergies’ although other structural properties may be in
good agreement with experiment.

A natural scheme for solving (or at least avoiding) the
problems associated with Monte Carlo calculations for
the heavier elements is to factor out in some manner the
relatively inert core electrons, leaving only the chemically
active valence electrons to be treated in the Monte Carlo
simulation. This idea of treating the valence behavior
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only of solids has traditionally been implemented in
single-particle theories (e.g., in local-density-functional
theory) by the pseudopotential or effective-core-potential
approach.'”!*  Using pseudopotentials, the effective
atomic number is reduced by including the inert core
electrons with the nucleus and treating the interaction of
the valence electrons with the core and nucleus combined
via an effective potential. The *‘atomic charge” associat-
ed with the pseudopotential is approximately that of the
nucleus plus the core electrons, rather than that of the
nucleus alone. Thus, in the case of silicon, for example,
we reduce the effective ‘““atomic charge” for the system
from 14 to 4.

However, in the standard pseudopotential approach,
the price paid for this removal of the core electrons from
the problem is that the resulting effective potential is
angular-momentum dependent.' Angular-momentum
dependence has usually been achieved by allowing a pseu-
dopotential which involves angular-momentum projec-
tion operators and which is thus nonlocal in the angular
coordinates. Such a nonlocal potential poses severe prob-
lems for the Green’s-function Monte Carlo approach and
substantial effort has been made to try to circumvent this
nonlocality in various ways in the Green’s-function quan-
tum Monte Carlo (QMC) method.”!*~ 17 We have chosen
to-accept a nonlocal pseudopotential of the standard form
while remaining within the conceptually and computa-
tionally simpler variational Monte Carlo approach,
where, as we shall see, the nonlocality of the pseudopo-
tential poses less of a problem. As in all variational
methods, the applicability of this approach hinges largely
on one’s ability to employ trial wave functions sufficiently
accurate for the level required in estimating the energy
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(or other quantities) associated with the ground state of
the many-body system. As we shall see, we can achieve
an accuracy in calculating the energy of carbon- and
silicon-based systems, which is substantially better than
that achieved by Hohenberg-Kohn density-functional
theory within the Kohn-Sham local-density approxima-
tion, and very close to that obtained in a Green’s-
function Monte Carlo calculation.

Through the use of nonlocal pseudopotentials, the
present method'® of performing variational quantum
Monte Carlo (QMC) calculations for solids and atoms ex-
tends the range of practical applicability of the QMC
method for many-fermion systems to real solid-state sys-
tems involving heavier (Z >2) elements. The approach
has been used to calculate the correlation energy and
structural parameters of diamond and silicon and the
cohesive energy of graphite. The lattice constants for
both diamond and silicon are within one percent of the
experimental value. The calculated cohesive energy is
7.45+0.07 eV/atom for diamond, as compared to the ex-
perimental value of 7.37 eV/atom,' and 7.40+0.08
eV/atom for graphite, compared to 7.40 eV/atom from
experiment.’® This result is thus in significantly better
agreement with experiment than the values of 8.63
eV/atom and 8.64 eV/atom for the cohesive energies of
diamond and graphite, respectively, obtained using the
Hohenberg-Kohn-Sham local-density-functional (LDA)
formalism. Typically, LDA binding energies are too
large by 15-20 %. The LDA gives a cohesive energy for
silicon too large by 0.4-0.6 eV/atom, while the present
calculation gives a result of 4.88+0.07 eV/atom, in
agreement with experiment. However, the comparison
with experiment for silicon is not nearly as clean as in the
case of diamond and graphite, where the cohesive energy
is very-well-determined experimentally;'® the experimen-
tal results®®~ 2 for the cohesive energy of silicon show a
scatter over a range of values from 4.62 to 4.97 eV/atom.
The atomic ionization energies and electron affinities for
both carbon and silicon are in very good agreement with
experiment.”® Overall, the results indicate that the
method can obtain 90-95% of the valence-electron
correlation energies in both atomic and solid-state sys-
tems.

The rest of the paper is organized as follows. In Sec. II
we will review the basic ideas behind the variational
Monte Carlo method in general, and, in particular, its ap-
plication to fermion systems. We discuss in detail the
specific form of the correlated wave function used in the
present approach in Sec. III. Section IV contains a dis-
cussion of the many-body Hamiltonian within a nonlocal
pseudopotential approach, along with a detailed outline
of its evaluation in conjunction with the correlated wave
function. The results of the approach as applied to
carbon- and silicon-based systems are given in Sec. V, and
the main conclusions of this study are in Sec. VI. In Ap-
pendix A, we present some details of the evaluation of the
one-body term in the Jastrow factor. Appendix B
discusses unbiased sampling of the energy, and Appen-
dices C and D give some details of the statistical evalua-
tion of spherical integrals necessary for the calculation of
the nonlocal potential energy.
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II. THE VARIATIONAL MONTE CARLO METHOD

The spirit of the variational Monte Carlo approach we
will describe in this section is the same as that of all vari-
ational estimates for the energies of quantum-mechanical
systems.?” We choose an explicit parametrized form of
trial wave function and evaluate the expectation value of
the exact Hamiltonian for this wave function. The pa-
rameters in the wave function are varied to minimize this
expectation value, which then provides an upper bound
on the ground-state energy of the system. If we choose
the form of the trial wave function with sufficient insight
and ingenuity, we hope to obtain not only an upper
bound on the ground-state energy, but an accurate esti-
mate of its value.

Since we deal explicitly with the many-body wave func-
tions and Hamiltonian, for a system with N particles,
finding this expectation value involves doing a 3N-
dimensional integral,

E=[W*ry, ... ,c)) HV(r,, ..., ty)dr, - -dry , (1)
where ¥ is a normalized many-body wave function. The
form of the wave function usually forbids an analytic
evaluation of the integral, and the very large dimension
(3N) of the configuration space renders impossible the
usual fixed-grid techniques of numerical integration. A
standard approach to such multidimensional integration
is the Monte Carlo method.”® In the Metropolis algo-
rithm,” the integral of a function is calculated by
evaluating its average over the points of a random walk
through the configuration space of the system:

ff(R)dy(R):U’)E% éf(R,»W, , 2)

1=1

where p is the appropriate measure or probability distri-
bution for the problem, n is the number of steps in the
walk, R; are the points in configuration visited by the
walk, and W, are weighting factors assigned to these
points in the evaluation of the integral. The weighting
factors depend on p and the relative probability with
which a walk on average visits the points R, (see below).
In this way a statistical estimate of the required multidi-
mensional integral is obtained. For sufficiently long
walks, the average (f) over the walk has a normal
(Gaussian) distribution with an average value equal to the
true value of the integral and a standard deviation equal
to some constant divided by the square root of the num-
ber of steps V'n in the walk.*

The random walk through the configuration space of
the system does not proceed so as to sample all points
with equal relative weight. A crucial ingredient®® in the
efficiency of the walk is the idea of ‘“importance sam-
pling,” which means, roughly, that points which contrib-
ute more to the integral in question (and in that sense are
more important) are sampled more often than points
which contribute little. More precisely, the random walk
is governed so that a point R in the 3N-dimensional
configuration space is visited during the walk with a
probability distribution P(R). The role of importance
sampling is to reduce drastically the variance of the
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Monte Carlo estimator of the integral for a given length
of the random walk. Usually, in Monte Carlo integra-
tions of the type we are discussing, there is a “natural”
probability distribution or measure with respect to which
all quantities are integrated. For example, in classical
statistical mechanics,” to find the average of any quanti-
ty Q over the canonical ensemble we take

(Q)=~% [Q(R)exp[ ~BE(R)]dR , 3)

where Z is the partition function. Here the probability
measure is specified by

d,u(R)E—;—exp[ —BE(R)JdR . @

In quantum-mechanical problems,' the probability mea-
sure is determined by the square modulus of the normal-
ized wave function:

du(R)=|¥(R)|*dR . (5)

If the random walk proceeds so as to sample the points in
configuration space with the probability distribution of
the natural measure of the problem, then the weights W,
in Eq. (2) are equal to unity.! In the more general situa-
tion, W(R)=du(R)/[P(R)dR].

In order to achieve the probability distribution P(R)
asymptotically for points in the random walk, the
configuration of the particles at each step of the walk is
generated from the previous configuration by changing
the coordinates of one particle at random in the following
way: Choose a vector Ar so that each of its components
has a uniform distribution in the interval [ —S,S], where
S is a fixed “step length” chosen in a manner described
below. Then we decide whether to accept or reject the
move

r,—r1,+Ar=r; . (6)

If n=P(R')/P(R) is greater than 1, we always accept
the move and make the trial configuration R’ the next
configuration on the random walk [P(R)=|W¥(R)|? in the
present case]. If 7 is less than 1, we accept the move with
probability 7. If the move is rejected, we make the old
configuration R the next configuration on the random
walk. The coordinates of each particle in turn are
changed in this manner, starting with the first particle,
and returning to the first particle when the last one has
been updated.

When the walk proceeds for long enough (typically
several hundred steps per particle in the present applica-
tions, where the number of particles is of the order of one
hundred) the relative probability of visiting the
configurations R and R’ is P(R)/P(R’). To see this, 28
consider many such walks proceeding independently at
once. The distribution of walks will reach equilibrium
when the number of points moving from R to R’ equals
the number going in the opposite direction, from R’ to R.
Suppose R can be reached from R’ in one step. Let
P(R —R') be the probability of accepting a move from R
to R’ and N (R) be the density of points at R. Since the
probability density of choosing R’ as a trial configuration
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from R is the same as that of choosing R from R’, then at
equilibrium

N(R)P(R—R')=N(R')P(R'—R) . (7

This equilibrium density, N (R), will be the correct distri-
bution if

P(R) _ N(R) )
P(R’) N(R')
This gives us the condition on the rule for accepting
moves:
P(R'—R)
P(R —R")

_ P(R)

P(R') ©)
There are many ways of satisfying this relation. A stan-
dard and simple one is the method we use, where

. | PwY
P(R —-R )—mm-ll, P(R)

(10)

If the relation (9) holds for all points which can be
reached by one step from R, it is easy to see that it must
also hold for all points R’ which can be reached in a finite
number of steps from R. The walk is said to be ergodic if
any two points in the configuration space can be reached
from each other by a finite number of steps of the walk.
We will assume that the walks are ergodic for all practi-
cal purposes and sample all of the configuration space
effectively. We note that the estimation of expectation
values of variables with respect to P(R) given in Eq. (2)
automatically normalizes the distribution P(R) when the
W, are equal to unity. In the more general case, the dis-
tribution can be normalized by dividing by ¥ W, instead
of by n, as is done in Eq. (2).

In the practical calculation of averages over the ran-
dom walk we do not use the simple sum in Eq. (2) over
the points of the walk which are accepted. Rather, fol-
lowing Ref. 2, we use an equivalent form which incorpo-
rates information about trial moves which are eventually
rejected. If R/ is the trial position at the ith move in the
random walk, then the average over the walk is taken as

(f)E% 2 {[1—P(R,—R)]f(R,)
=1

+P(R,—R/)f(R])} . (1)

This estimator has the same average as the simple sum
over accepted configurations of the walk but usually has a
smaller variance, since it reduces the fluctuations caused
by acceptance of unlikely configurations.

III. THE MANY-BODY WAVE FUNCTION

For bosons the many-body wave function is a sym-
metric function of the positions of the particles. In
studying the ground state of liquid He by the variational
Monte Carlo method,! McMillan used a form of the
many-body wave function given by the Jastrow func-
tion31—3
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W(R)=W(r),...,ty)=exp [— 3 ulr;)]|, (12)

i<i<j<N

where u (r) is a function of r, chosen variationally to min-
imize the energy of the state. The function u is chosen to
enhance the probability of pairs of He atoms being
separated by a distance where their interaction energy is
a minimum. In this way, although a price is paid in in-
creased kinetic energy of confinement, the total energy is
reduced.

In the present work, we will be concerned not with bo-
son problems, but exclusively with fermion problems
where the many-body wave function is antisymmetric.?
The nuclei in the solid will be treated simply as sources of
an external potential and will be held fixed at the ideal
lattice positions. Only the many-body wave function of
the valence electrons will be considered. In the Hartree-
Fock approximation, the simplest antisymmetric function
is used, viz., a single Slater determinant. One of the ad-
vantages of this approximation is that the variational
problem can be expressed in terms of a set of self-
consistent single-particle equations, the Hartree-Fock
equations, which can be solved directly. However, apart
from the antisymmetric form of the wave function, there
is no correlation between the electrons in this approxima-
tion. The introduction of correlation should keep the
electrons from coming close together, particularly those
of opposite spin, which are not correlated in any way in
the Hartree-Fock approximation, thus reducing the
Coulomb interaction energy.

In analogy with the boson problem, a convenient and
physically appealing way of introducing correlation is to
multiply the Slater determinant by a Jastrow factor,* as
in Eq. (12). This form of correlated wave function has
been used as the starting point for many methods in the
past.>¥ 737 Our approach follows the work of Ceperley,
Chester, and Kalos? on uniform fermion systems. When
u (r) is a positive and decreasing function of r, the proba-
bility of two electrons coming close together is reduced
and the repulsive electron-electron interaction energy is
reduced. As in the boson problem, the kinetic energy and
other terms in the energy are increased by the introduc-
tion of the Jastrow factor and so u () is chosen variation-
ally to obtain the optimum energy. This many-body
wave function can be conveniently sampled using the
variational quantum Monte Carlo approach, although in
practice its optimal form cannot be determined exactly
via a self-consistent single-particle theory, as can the
Hartree-Fock wave function.

A further complication arises in the inhomogeneous
systems we will study, over and above that of Fermi
statistics. In principle, the two-body term in the Jastrow
factor is no longer a function u (r;;) of the distance r;; be-
tween electrons i and j, but rather a function u (r,—,r/) of
each coordinate separately. [Formally, the solution of
the Euler-Lagrange equation for arbitrary u (r;,r;) may
be stated as follows:*® for the optimal u, the energy of
the system when particle 1 is constrained at position r,
and particle 2 at r, is independent of the values of r; and
r,.] An even more serious consideration is that the pres-
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ence of the Jastrow factor alters the single-particle densi-
ty obtained from the Slater determinant alone in an inho-
mogeneous system. Even neglecting three- and more-
body terms in the Jastrow factor, which can be envisaged
but might be guessed on physical grounds to be relatively
unimportant in homogeneous and inhomogeneous sys-
tems alike, the interplay between the one- and two-body
terms in the Jastrow factor and the single-particle wave
functions of the Slater determinant in minimizing the en-
ergy is complex and has not been solved exactly. The
Fermi hypernetted-chain approach allows one to develop
a self-consistent approach to this problem,*’ but only
within the approximations of that method for the energy
as a functional of the Jastrow factor and Slater deter-
minant.

In practical application of the variational Monte Carlo
approach, we will be forced to make restrictions on the
forms of the one- and two-body terms we use in the Jas-
trow factor, although the energy will be evaluated exactly
for any given form, so that the results remain variational.
Perhaps a central result of the present work is that a
surprisingly simple form of the Jastrow factor can give
excellent results for the energies of the systems we have
considered. In particular, the many-body wave function
we use is of the form

W(R)=W,(R)d"(R)d*(R) . (13)
The Jastrow factor ¥, is of the form
(4,N) L,N)

z Xs(rzs)— 2 uss'(rij)

(5,0)=(T,1) (T, D) =(s,i)<(s",))

¥,;(R)=exp

(14)

The two-body term u (r;;) is assumed to depend only on
the distance r;; between the particles and on their relative
spin. The effectiveness of this approximation can only be
assessed after the fact by the results obtained from it.
The results we present below clearly demonstrate its ade-
quacy at least in the sp electron systems we have studied,
where 90-95 % of the correlation energies are obtained.
The term d° is the Slater determinant for electrons with
spin 5. The one-body term x(r;) in the Jastrow factor
could be formally incorporated into the Slater deter-
minant by multiplying each single-particle orbital by
exp[x(r)]. However, it is convenient in the calculation to
keep it in the Jastrow factor, using it to vary the single-
particle density to minimize the energy.

The two-body function u (r,;) in the Jastrow factor is
chosen for the solid to be of the standard form*

ulr)=A(1—e ""Fy/r, (15)

where 4 and F are variational parameters. This function
has the general behavior one intuitively expects: u is
large and positive for r =0 and decreases to zero as
r— . From the Euler-Lagrange equation for u men-
tioned above, it follows®® that, as two electrons approach
one another, the divergence of the Coulomb interaction
between them must be accompanied by an equal and op-
posite divergence of the kinetic energy. This yields the
following condition (for three-dimensional systems) on
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the derivative of u (in atomic units) at r =0:

du

dr (16)

‘—— for opposite spin
r=0

1

2
1
4

for parallel spin .

This “‘cusp” condition holds in both the atom and the
solid and is independent of electron density. A relative-
spin-dependent value of F is used to satisfy this condition.
As discussed in previous work on the uniform electron
gas,’>*" the behavior of u as r— oo is dominated by the
zero-point motion of the plasmons in the solid, leading to
a 1/r dependence with a coefficient equal to ez/hwp. Al-
though the solids we are studying are insulators, this con-
dition should not be expected to change much there,
since the plasma frequency is substantially larger than the
band gap.*! Indeed, the experimentally measured plasma
frequency in diamond and silicon is virtually identical to
that obtained from the uniform electron gas with a densi-
ty equal to the average valence charge density for the
crystal.

We have varied the value of 4 while maintaining the
cusp condition at » =0 for both parallel and opposite spin
electrons and have found its optimal value in diamond to
be just that obtained from consideration of the zero-point
plasmon motion. In graphite the experimental plasmon
spectrum is no longer dominated by a single peak®*! at the
ideal value calculated from the average valence charge
density. However, even in this case we find the variation-
ally obtained optimal value of A4 to be only 5% larger
than the ideal value for a uniform electron gas at the
same average density. The difference in energy due to
this difference in A4 is negligible. Of course, there is no
obvious reason why the intermediate-range behavior u
should be ideal for a particular choice of 4 and F, even if
the short- and long-range behavior is correct. With this
in mind, we have examined the effect on the energy in di-
amond of adding to u an intermediate range term of the
form C exp[ —(r/r,)*], where 47r /3 equals the average
crystal electron density and C is a variational parameter.
This term leaves the slope at the origin and the long-
range behavior of u unchanged. We find the optimal
value of C to be very close to zero and the gain in energy
from the introduction of this term to be negligible.

For atoms, we have used both the form of u (r) for the
solid and the form

u(r)=—ar/(1+br), (17)

where a is fixed by the cusp condition at r =0 for oppo-
site and parallel spin and 3=V a /b is a single variational
parameter. The energies obtained from the two forms
agree within statistical noise of 0.04 eV per atom.

The one-body term Y(r) in the Jastrow factor allows a
variational adjustment of the electron charge density in
the presence of the two-body term u (r;;). Its importance
has previously been observed in the context of
hypernetted-chain calculations for inhomogeneous sys-
tems. The two-body term tends to make the charge den-
sity more uniform than that obtained from the Slater
determinant alone, reducing charge density in higher
density regions and increasing that in lower density re-
gions. This is an unavoidable effect of the introduction of
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the two-body term in an inhomogeneous system, al-
though the intuitive motivation for its introduction is to
change the pair-correlation function, not the single-
particle density, which may be already assumed to be
quite well optimized by the solution of the mean-field
single-particle (Hartree-Fock or LDA) problem. In the
calculations discussed here, we either simply set

x(r)=1aln[p, , =o(r)/py=o(r)], (18)

where p(r) is the charge density and « is a variational pa-
rameter, or in the case where the LDA charge density
(i.e., that from the Slater determinant of LDA orbitals
alone) is significantly different from the QMC charge den-
sity for Y =0 and u 0, as is the case in the atoms and in
graphite, we iteratively find y(r) by setting

xX(r)= Y x;(r), (19)

where Y, is given by the previous expression [Eq. (18)]
and

Xi+1(r)=1aln[p, u=0(r)/PX,(r)] . (20)

In practice, as discussed in detail in Appendix A, we cal-
culate the Fourier components of Y, so that the y which
is finally used in the many-body wave function is the form

X(r)= 3 x(G)exp(iG-r) . 21
G

This form allows for rapid calculation of y and its deriva-
tives during the random walk.

The Slater determinant d° for electrons with spin s is
the determinant of the Slater matrix, D, where

D;=¢,(r}) . (22)

Here the ¢, are a set of N single-particle wave functions.
For simulation of infinite systems, they satisfy periodic
boundary conditions on the simulation region. (For
simulations of crystals, the simulation region consists of
some integral number of crystal unit cells.) In practice, a
suitable choice of such single-particle wave functions is
the set of wave functions obtained from the correspond-
ing local-density-functional calculation.® In the systems
discussed here, the LDA wave functions are essentially
indistinguishable from the Hartree-Fock wave func-
tions.*®**? Thus it appears that any reasonable mean-field
approximation for the single-particle problem gives the
same wave functions. This is not universally true, and in
systems where the LDA and Hartree-Fock wave func-
tions differ significantly, the use of either set is more
suspect. In all cases it is not possible to rigorously justify
the use of either LDA or Hartree-Fock wave functions in
the Slater determinant when a Jastrow factor is present.
However, important atomic (electron-ion) information is
embodied in these wave functions which would otherwise
be difficult to reproduce with a simple parametrization of
the single-particle wave functions. This is clearly re-
vealed by the fact that the energy of the many-body wave
function calculated in the quantum Monte Carlo method
follows the same convergence with respect to the number
of basis functions used to solve for the LDA wave func-
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tions as does the LDA energy itself; e.g., a lowering of 0.2
eV per atom in the LDA total energy of diamond due to
the inclusion of d states in the linear combination of
atomic orbitals (LCAQ) basis is matched by the same
reduction in the QMC energy when these more accurate
LDA wave functions are used in the Slater determinant.
Ultimately, one must always appeal to the variational na-
ture of the QMC calculation and incorporate as much in-
tuition about the chemical nature of the system into the
many-body wave function as possible to minimize its en-
ergy. In this context, it would be most interesting to
have available chemically accurate wave functions for
both atoms and solid-state systems generated from the
Fermi-hypernetted-chain approximation in the presence
of a Jastrow factor.

The value of the Slater determinant at each move of
the Monte Carlo walk can be calculated as follows.?
Note that changing the position of one of the particles
changes just one row of the Slater matrix. Also recall
J

WJ(Rnew) (LN)
V(R o) ("= (11)
(s', )% (s,0)

In keeping with the periodic boundary conditions in the
simulation of infinite systems, we sum (s’,j) over all im-
ages of the particles in the simulation region.

From Egs. (24) and (25) we see that calculating the ra-
tio of the new to old wave functions takes order N arith-
metic operations. If the move is accepted the matrix D
must be updated, an operation which requires order N
operations. The new matrix D can be calculated from the
old by the substitutions

ﬁjk/qs, k=i
ﬁsk: ~ ij
J Djk_—qT

(26)

N
> Do (ry)
1=1

, k#Fi .

Thus we see that the special properties of the Slater
determinant allow efficient evaluation of the ratio of the
old to new wave functions along the Monte Carlo random
walk, a very important point in the practical implementa-
tion of the method.

Although trivial in principle, the evaluation of the
single-particle wave functions in the Slater determinant is
a matter of considerable computational importance and
difficulty. In order to avoid excessive computation time
in their evaluation, they must be expressed in a reason-
ably compact representation suitable for rapid numerical
calculation. On the other hand, the representation must
give accurate numerical values if useful information is to
be obtained from the Monte Carlo simulation. In crys-
tals, the single-particle orbitals may be written in Bloch
form, ¢, (r)=exp(ik-r)u,,(r), where u is periodic. We
adopt a composite of LCAO (Ref. 43) and plane-wave*
representations for ¢. The method is in some ways rem-
iniscent of the Ewald summation technique*’ and is simi-
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that the inverse of the transpose of a matrix is equal to
the matrix of cofactors divided by the determinant.
Moreover, the cofactor of an element (i,j) in a matrix
does not depend on the matrix elements in the ith row or
the jth column. Using these facts, it follows that if we
change the ith row of the matrix to get a new matrix, the
ratio of the new to old determinants is given by

d N

7"_5_‘1" =q,= 2 Djl,oldDjz,new ’ (23)

old J=1

where 1_3 is the inverse of the transpose of the matrix D,
i.e., D=(D")"'. Thus in the case of the Slater deter-
minant for spin s, the ratio is

N
quz E D j‘r,old¢j(rinew) . (24)
j=1

The ratio of the Jastrow factors for the old and new
configurations is

[u(r5 =1 al )= 2 (155 =1 e D] =X (5] 1) T X ) | - (25)

f

lar to the mixed-basis*® approach to single-particle
electronic-structure calculations. Our density-functional
calculations for diamond and graphite provide the wave
functions in the LCAO representation as output. In the
evaluation of the wave functions in the Monte Carlo pro-
gram, we leave the short-range Gaussian orbitals in their
original representation and take the plane-wave represen-
tation of the long-range orbitals prior to the Monte Carlo
calculation. Each single-particle wave function is ex-
pressed as a sum of both localized Gaussian orbitals and
plane waves. Thus, to evaluate the single-particle wave
functions at a particular point, we need to determine the
Gaussian orbital sites within a cutoff radius large enough
to ensure that the short-range orbitals from sites outside
that radius are negligibly small at the point. The Gauss-
ian part can be evaluated directly from the LCAO repre-
sentation®® of the LDA wave functions:

uloc(r);— 2
R,a,l,m
Ur—=RI<R )

6

Calmfalm(r—R)exp[ik‘(R_r)] 5

27

where u denotes the periodic part of the wave function,
f aim are the LCAO basis functions, C,,,, are the LCAO
expansion coefficients of the wave function, k is the k
point to which the wave function belongs, and R, is the
appropriately chosen cutoff radius. The plane-wave part
is evaluated directly as a sum of exponentials:

> CgexpliG-r), (28)
G
(IG <G )

upw(r)E

where G are vectors of the reciprocal lattice with length
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less than an appropriate cutoff, G_,. Several hundred
plane waves can be used in practice in this summation
since the exponentials and dot products can be evaluated
very efficiently on vector processors.

Considerable care must be exercised to ensure that the
calculation of the kinetic energy from the representation
of the single-particle wave functions is consistent with the
calculated values of the wave functions. Surprisingly
small discontinuities in the wave function due to too
small a cutoff radius for the inclusion of neighboring sites
can cause substantial errors in the total energy obtained.
Internal consistency in the evaluation of the kinetic ener-
gies and values of the wave functions is even more impor-
tant than the accuracy of the representation of the LDA
single-particle wave functions. For crystalline silicon, a
plane-wave LDA calculation was performed to calculate
the single-particle wave functions in advance and a pure
plane-wave representation was used to evaluate the
single-particle wave functions in the QMC calculation for
the results reported here. Some calculations were also re-
peated in the mixed representation to cross check results.
Some of the diamond results were also cross checked by
transforming all the Gaussian basis orbitals into plane
waves and repeating the calculations in the resulting pure
plane-wave representation. In the atoms, the wave func-
tions are tabulated on a very fine radial grid of several
thousand points, and calculated by interpolation.

IV. THE HAMILTONIAN

In this section we describe the many-body Hamiltonian
used for infinite crystals within the pseudopotential'' for-
malism. The essential ingredients in the Hamiltonian are
an external potential (due to the ions in the crystal), the
kinetic energy of the valence electrons, and the Coulomb
interaction between the valence electrons.

The external potential has two parts to it: a local part
and a nonlocal part. The local part is diagonal in the
coordinate representation of the electrons and can be
written as

— s__
Eloc - 2 Vlon(r[
R,(s.1)

R), (29)

where the R are the positions of the ions in the crystal
and the V , (r) are the local pseudopotentials of the ions.
The nonlocal part is much more complicated and we
leave writing its precise form until Sec. IV B. We merely
note at this stage that it is not diagonal in the coordinate
representation of the electrons and involves the evalua-
tion of the many-body wave function for positions of the
ith particle on a sphere about each atom.

The kinetic energy has the usual form,
#

Ekmetnc -

2 vizx,t) ’ (30)

(s,1)

and the Coulomb interaction between the electrons is
given by

eZ
=1

Eel—el—i s s| ? 31)
(s,i) (s,7")#(s,1) 11']» ri
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where, in keeping with the periodic boundary conditions
of the simulation region, the sum over (s’, ) is taken over
all images of the particle (s’,) in the simulation region.

In this Monte Carlo calculation we do not in fact sam-
ple the total energy of the 2N particle system at each
point of the random walk. Rather, we calculate the ener-
gy of the particle being moved at each step of the walk; if
particle (s,i) is being moved, we only include the terms
involving (s,i) in the above expressions for the total ener-
gy. In this way we obtain an unbiased estimator of the
energy per particle (defined as the total energy, divided
by the number of particles). See Appendix B for further
discussion of this point.

A. The local pseudopotential

Here we describe in detail how the local pseudopoten-
tial energy is evaluated during the Monte Carlo random
walk. The resulting expression is used to calculate the
energy of the particle most recently moved in the
random-walk process. We leave the description of the
more complex problem of the nonlocal pseudopotentials
until Sec. IVB. The pseudopotentials we use are those
generated by the scheme of Hamann, Schliter, and
Chiang'! for use in local-density-functional calculations.®
These smooth ionic potentials tend rapidly to the all-
electron electrostatic potential of the nucleus plus core
electrons, —Z . /r, beyond a cutoff radius r, of the order
of one atomic unit and give valence eigenvalues (and
eigenfunctions outside of r,) virtually identical to the all-
electron density-functional calculations.

A fundamental objection might perhaps be raised to
the use of these potentials on the grounds that they are
objects derived from density-functional-theory calcula-
tions of the atom and should only be used within the con-
text of density-functional theory in the solid. From a
purely logical standpoint, this objection is well founded
and the use of such pseudopotentials cannot be rigorously
justified. Presumably, for systems in which core-valence
exchange and correlation play a very important role, this
approach could give poor results. However, calculations
such as those of Hybertsen and Louie*’ for quasiparticle
energies indicate that this is not the case in many insula-
tors, semiconductors, and metals. We expect that the
pseudopotentials generated from density-functional
theory will give a reasonable description of the core-
valence interaction for the variational calculations. Also,
since the ground-state properties are determined by
differences in total energies, the dominant many-body
contributions to these differences would be from changes
in the valence-valence electron correlations, and the
core-valence effects are expected to cancel out or to play
a relatively minor role.

At worst, we can consider these to be model calcula-
tions designed to approximate the behavior of the corre-
sponding real system. The validity of the model can then
be judged a posteriori by the accuracy of the predictions it
makes for the properties of the real system. The genera-
tion of a one-body pseudopotential rigorously derived
from all-electron many-body calculations for use in
valence-electron many-body calculations remains an open
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problem. Indeed, it is not even clear how such a problem
should be formulated in principle or what properties of
the all-electron many-body eigenfunctions should be
reproduced in the valence-electron many-body eigenfunc-
tions. An appropriate solution to this problem is of great
interest.

The LDA local pseudopotential at any point in the
crystal is a sum of the potentials of the ions evaluated at
that point:

V)= Viallr—=Ri,l) (32)
R

10n

where R, are the positions of the ions and V,,,(r) is the
(spherically symmetric) potential due to the ion at a dis-
tance r. In fact, as it stands, the sum in Eq. (32) does not
even converge for the infinite crystal because of the long-
range 1/r tail of the ionic pseudopotential. However, we
implicitly assume that we include the electrostatic poten-
tial of a counterbalancing uniform negative background
charge equal in density to the average charge density of
the ions. [The interaction of the electron at the point r
with this uniform background charge is in turn balanced
by an equal and opposite interaction with the positive
background introduced in the evaluation of the electron-
electron interaction (see below). When these are added
we are left only with the true interaction of the electron
with the combined electron-ion system.]

Even with the addition of the uniform negative back-
ground, the sum in Eq. (32) converges very slowly as a
function of the number of nearest neighbors included. A
much more satisfactory approach is to divide each ion
potential into a —Z, /r part and a deviation from

Z ., /r behavior. As we mentioned above, this devia-
tion from —Z,_, /r has a range of only a few atomic units
and can be expressed at any point in the crystal as a sum
of contributions from a small number of neighboring
ions. The 1/r part can be evaluated by the usual Ewald
summation technique,*® in which the sum is divided into
a ‘“‘real-space” part and a “Fourier-space” part, each of
which converges rapidly. The terms in the real-space
sum converge like erfc( —V'ar)/r, where erfc is the com-
plementar)/ error function, and those in Fourier space
like (e ~97/%*) /G2, Here a is a parameter which can be
varied to optimize the efficiency of the method. (The
converged value of the real- plus Fourier-space sums is
independent of . )

Combining the deviation from —Z, /r behavior with
the real-space part of the Ewald sum gives the potential
at a point in the crystal as a sum over the positions of the
ions plus a sum over reciprocal-lattice vectors:

Vir)= S Ve (Ir—=Rio,))

(r=R, [ <R

on’

+ 3 VAGIS(G

G
(G <Gmax’

Jexp(iG-r) . (33)

S. FAHY, X. W. WANG, AND STEVEN G. LOUIE 42

Here R, and G_,, are cutoff radii in real and Fourier
space, respectively, chosen to give the required accuracy
in the value of ¥ (r). The potentials in real and Fourier
space are given by

Z. _
V{fm(r>=Vion<r)+—‘r°—"[1—erfc(\/ar)] , (34)
2
4‘;rexp(2 G /4a) for G0
G Vcell
viG)= - (35)
— - for G =0,
Vcella

where V., is the volume of the crystal unit cell. Compa-
rable convergence is obtained for the real and Fourier
space sums when aR2, =G2  /4a. The structure fac-

tors S (G) of the ionic charge are

S(G)= > —Zonexp(—iG-R;,,) . (36)

R Eumt cell

The real-space potential ¥R (r) is tabulated on a fine ra-
dial mesh and evaluated by interpolation at each step of
the random walk. The Fourier-space potential is also cal-
culated in advance.

In the atomic calculations, the local potential is evalu-
ated at the position of the electron by interpolation from
values tabulated in advance on a fine uniform radial grid.

B. The nonlocal pseudopotential

We now develop the basic equation for evaluating the
contribution to the energy per particle from the nonlocal
pseudopotential of the ions within the Monte Carlo
scheme for importance sampling of the many-body wave
function. The resulting equation is used to calculate the
energy of the particle most recently moved in the
random-walk process. Some details of the numerical
evaluation of the integrals involved in the nonlocal ener-
gy are presented in Appendixes C and D.

First we write down that part of the many-body Hamil-
tonian which arises from the nonlocal pseudopotential of
the ions. This must be a simple (linear) sum over all the
ions of terms due to the pseudopotential of each individu-
al ion. Also, it must be symmetric in the electronic vari-
ables and linear in the number of electrons. These are
nothing more than the usual conditions for any external
potential acting on a system of indistinguishable parti-
cles. We state them explicitly here in order to make clear
that the nonlocality of the pseudopotential in the coordi-
nate representation of electrons does not invalidate them.
Thus, the nonlocal part of the Hamiltonian must have the
form

2 2 Hy' 37)

nonlocal

where R varies over the sites of the ions, s varies over the
electron spin, and i =1,N varies over the electrons of
spin s. Hyg'is the nonlocal pseudopotential due to the ion
at R acting on the (s,i) electron coordinates. The single-
particle operator Hy' is the translation by R of the nonlo-
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cal pseudopotential H* of the ion situated at the origin;  tential centered at the origin. The sum over the crystal
ie., can then be easily done using Eq. (38) to evaluate the oth-
‘ A er terms in the nonlocal energy. The potential at the ori-

Hy{ =TR'H> Ty, (38)  gin has the form'°
where Ty is the translation operator (acting on all the H>'= E[ fo dr Vi(r)P; . 39

electronic variables) corresponding to the translation R.

Since the total crystal nonlocal potential is a sum over =~ Here P, is the angular momentum / projection operator
the potentials of the ions, for notational simplicity we will  acting at a distance r from the origin on the (s,i) electron
concentrate on evaluating the energy due to a single po-  variable; it is defined in coordinate representation by

!
PP W(rl, ., =) S Y,,,,(er)fl dQ, Yr(Q)W(r],...,ci=r,...,1%), (40)
m=—1 t r=r

where the Y, are the spherical harmonics, Q, is the angular part of the spherical coordinates of r, and 8(x) is the Dirac
delta function. [The action of H*' can be understood as follows: fix at particular values all the electron variables in the
argument of the many-body wave function except the (s,i) variable and consider the resulting function f (r}); the action
of H%" on f is precisely the same as the action of the usual (one-body) pseudopotential on single-particle wave functions
in, for example, the Kohn-Sham equations.® This is always the way the action of a single-particle operator is general-
ized from the “independent-particle” situation to the “interacting-particle” case.]

The contribution of this term in the Hamiltonian to the energy of a many-body state [¥ ) is given by

E(|\l’)):<‘ll‘ [ZHS’f] ‘\y>= E (WIH

V) . (41)

Since | W) is fully antisymmetric in the electron variables,

S (WIH W) =2N(VIH" W) . (42)

s,

So we only need to consider one term in the sum, let us say the (s,i) term:

H>'Y

4
v (43)

E(w)=(W|H* W)= [dr] [ - [ackwH"9= [ar] [ - [dr} W]

The Monte Carlo random-walk technique with importance sampling automatically integrates all quantities with
respect to the weight |W|%. Thus, in order to calculate the one-particle energy E*', we want to perform importance
sampling on the quantity

H>'¥
v
Making use of Eqgs. (39) and (40), we can see that the value of this function at any point (r],...,r5,...,r}) in
configuration space is given by
!
SV 3 Y00 [ dO.YEQWr], .. =T, k)
’ m ’ . (44)
Wirl, ..., ..,k

We can simplify this expression a bit by recalling that Y,,,(0,0)=0 for m#0. Choosing the z axis along r{ then gets

rid of the sums over m and we have the contributions from the different angular-momentum potentials ¥,(r) for
1=0,1,2,..., as

W(rl,...,el=r,...,r})
Wrl,...,el=r,...,1})

EP(r=0=V,(nY,0,0) [  Yi(Q,) dQ, , 45)

where (.. is the angular part of the spherical coordinates of the vector r’ when r points along the z axis.
In the general case where the atom is not at the origin but at a position R*°™, the nonlocal energy due to the atom
consists of contributions from its different angular-momentum potentials Vem(r) for 1 =0,1,2, .. .:

‘l’(rf,...,err’,...,r,{v)

W(r],...,r'=r,...,r})

E[atom,s,i(rf:r): V[atom(;:)YIO(o’())f‘ ) Y;:)(Qr')

—Ratom| —;

dq, , 46)
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where 7=|r—R*°™| and (), is the angular part of the
spherical coordinates of the vector r'—R*°™ when
r—R*°™ points along the z axis.

In principle, the expression for the energy due to one
atom in Eq. (46) should be summed over all the atoms in
the crystal to give the total nonlocal energy for electron
(s,i) from Eq. (37). However, the nonlocal potentials are
very short ranged (=2 atomic units) (Ref. 11) and so we
need only sum Eq. (46) over one or two neighboring
atoms in most cases.

It is immediately clear that the integral in Eq. (46) can-
not be evaluated analytically and must be performed nu-
merically. One approach would be to use a fixed grid of
values for Q. and use a summation over values of the
many-body wave function at those points to estimate the
integral. However, this method is clearly subject to sys-
tematic bias which may converge very slowly with
respect to the grid size. A more satisfactory approach in
the present context is to evaluate the integral in a statisti-
cal fashion; i.e., we choose values for (). at random ac-
cording to an appropriate probability distribution and
use the summation over the values of the many-body
wave function at those points (with appropriate weight-
ing factors) to obtain a statistically unbiased estimator of
the integral.

The variance of such an estimator can be greatly re-
duced by a judicious choice of sampling scheme. We ex-
pect the many-body wave function (as a function of r’,
keeping the other electrons fixed) to have predominantly
the angular-momentum character of the single-particle
wave functions in the Slater determinant; viz., in most
cases of interest, largely s, p, or d character. The vari-
ance of the estimator of the integral in Eq. (46) will thus
be greatly reduced if the estimator is exact (i.e., has zero
variance) for functions of pure s, p, or d character. Any
fluctuations in the estimate of the integral will then come
only from higher angular-momentum components in the
many-body wave function. In Appendix C, we show how
such sampling schemes can be developed to give exact
evaluation of the s and p pseudopotentials for all s, p, and
d wave functions.

Since the variational Monte Carlo method is intrinsi-
cally statistical in nature [even if the nonlocal integral in
Eq. (46) were evaluated exactly for all functions] there is
no point in evaluating Eq. (46) exactly if in doing so we
expend a very large amount of computing time. In fact
(see Appendix D), the optimal balance between spending
time evaluating the nonlocal energy and spending time
doing other computational work is reached when the ra-
tio of time spent evaluating the nonlocal energy to time
spent on other work equals the ratio of the variance of
the estimator of Eq. (46) to the variance of the exact
single-particle energy along the random walk.

V,In¥=V,In¥, +V,Ind =V, In¥, + év,d =Vy(r)—

and

(s', ))#=(s,1)
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C. The kinetic energy

Since the random-walk samples points in configuration
with the probability distribution |W|? the quantity we
want to sample in evaluating the kinetic energy is

A S T A
2m y*w 2m ¥

To perform this evaluation we follow essentially the same
procedure as in Ref. 2. Define

(47)

1 #
T, =———V/nVy, 48
T om 48
and
, 12
F,=|-—| VIn¥. 49)
2m
Then it is easily shown that
7 ViV ,
- =2T,—F~ 50
2m V¥ S (50
From Green’s theorem, it is easy to show that
(T)=(F?)=(Kkinetic energy) . (51)

These relations are particularly important because they
hold for all wave functions when sampled properly. They
do not hold for each point along the walk and are
satisfied only when the walk proceeds for a long enough
time and with the correct probability distribution, viz.,
[W|%2. When working with the complicated numerical
wave functions of real systems they are the only exact an-
alytic check on the internal consistency of the method.
However, following Ref. 2, we do not use these relations
in the evaluation of the kinetic energy itself. Rather, we
explicitly evaluate the kinetic energy from Eq. (50) be-
cause the variance of this quantity is much smaller than
variance of F? or T.

To evaluate T, and F? we need to consider the specific
form of the many-body wave function,

V=y,d ,

where ¥, is the Jastrow factor and d is the Slater deter-
minant,

N
d=d,uq=d,g > D}:,o]d%(r}‘) ,

;=1

(52)

where d 4 is the Slater determinant for the previous posi-
tions of the electrons (not the trial positions, where the
kinetic energy is to be evaluated). Note that neither d 4
nor D },, depend on r,.

Then

1 N
2 Vlu(rlj)+; 2 D;i,oldvl(ﬁj(r?) ’
J=1

(53)
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2
Vin¥=Vn¥, +Vind =Vn¥, — 5V,-d +$V?d
=Vix(r)— 3 Viul(rj)—

(s', j)#(s,i)

Since we have analytic expressions for y [in terms of its
Fourier components, as in Eq. (21)], 4 [from Egs. (15) or
(17)], and for the ¢; [in terms of their Gaussian and/or
plane-wave expansion, as in Egs. (27) and (28)], V and V*
of these quantities have corresponding analytic expres-
sions which are used to calculate them in Egs. (53) and
(54). The two-body term u(r;) is summed over the
infinite array of images of j for crystalline calculations,
and so its evaluation involves an Ewald sum for the 1/r
part, as discussed in Sec. IVD below for the electron-
electron interaction. In calculating Vu and V2u, the ana-
lytic expressions for the derivatives of the Ewald sums
are used.

D. The electron-electron interaction

In keeping with the periodic boundary conditions im-
posed on the wave function in Sec. III, we would like to
have an electron-electron interaction which also has
periodic behavior when the simulation region is periodi-
cally extended to all space.’® We imagine that each elec-
tron (and each ion) in the simulation region has an
infinite array of images in space. The simulation region is
then a super cell for each of these arrays. The interaction
of particle i with particle j is then defined to be the elec-
trostatic interaction of the electronic charge at position i
in the simulation region with electronic charges at the
infinite array of image positions of particle j (including
the one in the simulation region itself):

2

(i,]) }s: 1(S+rj)—r,»| for i#j , (55)
where S varies over the superlattice for repetition of the
simulation region. As it stands, this sum does not con-
verge for the infinite lattice. However, we handle such
lattice sums in the same way as in evaluating the local po-
tential in Sec. IV A; i.e.,, we add a neutralizing positive
background to the sum over images of j to get an Ewald
sum for the interaction potential.

Upon Fourier transform, the potential in Eq. (55) gives

the usual expression for the exchange energy® in a box
with periodic boundary conditions,
E=11 3 z e’ (56)
* 2N Jk k'12 ’

where n, is the number operator for a plane-wave state k
which is compatible with the periodic boundary condi-
tions on the simulation region, and ¥V is the volume of the
region.

We must add another term to the electron-electron en-
ergy which corresponds to an interaction of particle i
with its own images:

3513
1Y 1Yo
— 3 DjacViti(r)) | +— 3 D5 aVid;(r]) . (54)
q9 ;= q ;=
—

vii= 3 % (57)

This term goes to zero in the limit of an infinite simula-
tion region. We introduce it in our Hamiltonian because
when the simulation region is finite, it gives a better ap-
proximation to the properties of the infinite system.

To see this, we note that if we use an electron-electron
interaction given by Eq. (55) alone [without the “self-
image” term of Eq. (57)] the depletion of the charge den-
sity near the electron i due to exchange and correlation in
the many-body wave function is periodically repeated on
the lattice of the simulation region. Thus we get, not
only the electrostatic interaction of the electron with its
own “‘exchange-correlation hole,” but with an infinite ar-
ray of images of this hole. Recall that, in the uniform
electron gas, the electron-electron energy is the electro-
static interaction energy of an electron with this charge
depletion:*°

2
Ee,_elzf%[l— r)]n(r)dr, (58)

where g(r) is the pair-correlation function and n(r) is
the density. If the exchange-correlation hole is spherical
and completely contained within one simulation region,
the “self-image” term given by Eq. (57) exactly cancels
the electron interaction with all the image holes outside
the simulation region. In general the exchange-
correlation hole will not be spherical or may not be en-
tirely contained within one simulation region and, even
with the introduction of the self-image term, there will be
dipole, quadrupole, and higher multipole electrostatic in-
teractions with the image holes. However, even in these
cases, the energy per particle of the finite system with the
self-image correction is much closer to that for the
infinite system than it is without the self-image term.

In practice, the electron-electron energy is evaluated
by the Ewald summation technique:*®

Eel el 2 V(rur %ZEwald 5 (59)

(s )

where the Ewald sum 2,4 is given by

S VRIS+r)—ril]
S,s’, 1
(s, [)#(s,1)

+ 3 VHk)[p(k)exp(ik-r{)—1]+C, . (60)
k
The sum on k is over the reciprocal lattice corresponding
to the simulation superlattice. The Fourier transform of
the charge of the electrons is
(LN

pk)= 3

(s, )=(1,1)

exp(—ik-r}) . (61)
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As in Sec. IV A, the “real-space” potential V' is the usu-
al 1/r potential multiplied by an erfc function:

2 Vo
AURE Uy (62)
The “Fourier-space” terms are given by
2 12
4e exi(sz /4a) for K0
vik=1 _ (63)
"‘*‘V—a— for k=0 .
The “self-image” term is given by
Co= 3 VRUIShH+ 3 Viik)—2Via/m) . (64)

S (#0) k

The converged value of the Ewald sum is independent of
a. The value of a is chosen to give equivalent conver-
gence in real and Fourier space, as in Sec. IV A.

V. RESULTS AND COMPARISON TO EXPERIMENT
A. Atoms

We have applied the method described above to deter-
mine the ionization energy and electron affinity of atomic
carbon and silicon. Calculations were carried out for the
total energy of the neutral, positively, and negatively
charged atoms. In each case, we fixed the parameter a in
the two-body term u (r;;) in the Jastrow factor using the
cusp condition and searched the b,a parameter space to
determine the optimal u and Y functions to minimize the
total energy. Since the atoms are spin polarized, we have
different y functions for different spin types.

0.75 T T T T

carbon valence charge density

015 - —

0.0 | M L
0.0 2.0 4.0 6.0 8.0 10.0
r(a.u)

FIG. 1. Calculated valence electron charge density of the
carbon atom. The solid line is the LDA calculated result; the
jagged curve is the QMC result with the two-body term u(r,))
only in the Jastrow factor; the crosses are the QMC results cal-
culated with both the one- and two-body terms [x(r,) and
u(r,)] included in the Jastrow factor (see text).
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For the atoms considered, we find that both the one-
body and two-body terms are equally important in lower-
ing the energy of the system when compared to that of
the single Slater determinant wave function. Without the
one-body term x(r) in the Jastrow factor, the presence of
a nonzero u(r;) significantly alters the charge density
from that of the Slater determinant alone. This is illus-
trated in Fig. 1 for carbon. Since the correlation term
u(r;) reduces the probability of two electrons getting
close to each other, its effect is to reduce the charge den-
sity in the high-density regions and increase it in the
low-density regions. The resulting charge density is then
too diffuse as compared to experiment. As seen in Fig. 1,
the optimal one-body term x(r) brings the charge density
back to a distribution which is very close to the LDA re-
sult. For neutral carbon, the one-body term lowers the
energy of the atom by 1.8 eV, compared to the optimized
energy for a Jastrow factor with the two-body term only.
The optimal values of the parameters in the two-body
term of the Jastrow factor are substantially different with
and without the one-body term since different two-body
terms affect the charge density differently. The lowering
of energy due to the one-body term keeping the two-body
term constant at the final optimal parameters (i.e., the
lowering in energy due to the change of the charge densi-
ty shown in Fig. 1) is 4.5 eV in the neutral carbon atom.

We present in Table I the calculated ionization ener-
gies and electron affinities together with experimental re-
sults. Both C™ and Si~ are unbounded in the LDA.
This has forced us to take a somewhat different approach
to the generation of the single-particle orbitals; since we
cannot generate LDA wave functions for the negative
ion, instead we have used single-particle wave functions
generated from a Hartree-Fock calculation for the
valence electrons only, with the same (LDA generated)
atomic pseudopotentials as for all the other calculations.
These single-particle wave functions are then used in the
Monte Carlo calculation for the negative ion. In all the
LDA calculations a spherically symmetrized potential is
used to solve for the single-particle states. The present
approach gives values in good agreement with experi-
ment to within +0.15 eV. The calculated second and
third ionization potentials differ more from experiment,
but one does not expect transferability of the pseudopo-
tential over so large an energy range.

We also tried a scheme for generating single-particle
wave functions for the negative ion where we fractionally

TABLE I. Ionization energy and electron affinity of atomic
carbon and silicon (in eV). The expected statistical error in the
last digits is in parentheses.

Variational
QMC Experiment?
Carbon ionization energy 11.43(5) 11.26
Electron affinity 1.20(10) 1.27
Silicon ionization energy 8.20(5) 8.15
Electron affinity 1.40(10) 1.39

#Reference 15.
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TABLE II. Terms in the total energy of the solid (64-electron
simulation at a lattice constant @ =3.63 A) for a single Slater
determinant of LDA wave functions and for a Jastrow-Slater
function with a two-body term only in the Jastrow factor, as dis-
cussed in the text, and with LDA wave functions in the deter-
minant. Energies in eV/atom.

Slater Jastrow-Slater

determinant (u only)
Local potential —87.1 —173.6
Electron-electron —29.2 —39.0
Kinetic 121.3 116.8
Nonlocal potential 15.8 12.8
Ewald sum —171.0 —171.0
Total —150.2 —154.0

occupied the states in the LDA calculation so that the to-
tal ionic charge is —0.5, this being the largest negative
charge for which the LDA produces bound wave func-
tions. However, this scheme yielded less satisfactory
wave functions, giving electron affinities for C and Si of
1.05+0.10 eV and 1.21+0.1 eV, respectively. This sensi-
tivity of the electron affinity results to the single-particle
wave functions clearly reflects the need for appropriate
and accurate single-particle wave functions in the Slater
determinant.

We note that since the number of three-body interac-
tions is very different for these atoms in the three
different charge states shown, our results show that
three-body terms in the Jastrow factor appear to be not
significant at the level of accuracy of the pseudopotential
approximation itself, and can lower the energy by no
more than approximately 0.2 eV/atom. A similar con-
clusion is suggested by comparison of our results for the
Si atom with those from the Green’s-function Monte Car-
lo pseudo-Hamiltonian calculation of Bachelet, Ceperley,
and Chiocchetti.!* The absolute energy of our LDA cal-
culation is lower by 0.04 eV than their pseudo-
Hamiltonian LDA result for the silicon atom®' (the two
pseudopotentials are not identical). Our variational
Monte Carlo calculation with the pseudopotential is only
0.15 eV higher in energy for the atom than the Green’s-
function Monte Carlo calculation with the pseudo-
Hamiltonian. Allowing for the fact that the two many-
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body Hamiltonians are not identical, nevertheless, it is
reasonable to conclude that the amount of correlation en-
ergy absent in the variational wave function of the form
we have used is no more than 0.1-0.2 eV/atom.

B. Graphite and diamond

The method has been applied to study the binding en-
ergy and structural properties of diamond and graphite
using simulation cells with periodic boundary conditions,
as described above. Cell sizes containing up to 216 elec-
trons (or 54 carbon atoms) were used. It is found that the
size dependence for larger simulations is mainly deter-
mined by the convergence of the single-particle terms in
the total energy, as given in LDA band theory by the k-
point sampling of the Brillouin zone.

Table II presents the results for a specific simulation
showing the various contributions to the total energy of
diamond. As seen from the table, inclusion of a Jastrow
factor with only the two-body term u (r;;) lowers the total
energy of the solid by 3.8 eV/atom. With the introduc-
tion of the Jastrow factor, the electron-electron energy is
substantially reduced as expected because of the added
correlation among the electrons. However, contrary to
findings in uniform systems, the kinetic energy is also de-
creased. It is the electron-ion interaction energy which is
greatly increased. The general trends in the atoms,
graphite and silicon are similar. This difference in behav-
ior in the kinetic energy may be understood in terms of
the effect of u (r;) on the wave function in the bonding
region where the charge density is high. Distributing the
charge density away from these regions leads to both a
decrease in the kinetic energy and an increase in the
electron-ion energy. The introduction of the one-body
term into the Jastrow factor further lowers the energy of
diamond, but only by 0.3 eV/atom, compared to 4.5 in
the carbon atom (as discussed above). In diamond, the
optimum parameters in the two-body term do not depend
significantly on the presence or absence of the one-body
term. In graphite, where the charge density is substan-
tially more susceptible to change by the two-body term in
the Jastrow factor (due to the presence of large, very low
density regions in the interlayer region) the lowering of
the energy by the one-body term y is 4.2 eV/atom, much
larger than in diamond. Thus we see that the influence of

TABLE III. Total energies (in eV/atom) of the carbon pseudoatom and of diamond (with finite-size
correction) for (a) the LDA calculation, and for Monte Carlo calculations with (b) a single Slater deter-
minant of LDA wave functions, and (c) the Jastrow-Slater function with one- and two-body terms in the
Jastrow factor. The experimental cohesive energy results (d) are adjusted to allow for the zero-point
phonon energy (0.18 eV/atom) of the solid. The expected statistical error in the last digits is in

parentheses.
Carbon Cohesive
atom Diamond energy
(a) LDA —146.79 —155.42 8.63
(b) Slater determinant —145.55(7) —151.3(2) 5.85(25)
(c) Jastrow-Slater —147.93(3) —155.38(6) 7.45(7)
(d) Experiment® 7.37

2See Ref. 19.
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the one-body term on the energy varies greatly from sys-
tem to system.

The total energies calculated with and without the full
Jastrow factor (i.e., both the u and y terms are included)
in the wave function are presented in Table III for dia-
mond at the minimum-energy lattice constant together
with the atomic results. The QMC results for the solid
include a finite-size correction beyond the 216-electron
simulation obtained from the difference between the
LDA energy calculated using k points compatible with
periodic boundary conditions on this simulation region
and that calculated with a fully converged k-point set.
This energy difference is 0.2 eV/atom. We have found
that the finite-size correction to the QMC energy calcula-
tions for regions containing between 64 and 216 electrons
follows within 20% that of the corresponding LDA cal-
culation. This fact merely demonstrates the relatively lo-
calized nature of the exchange-correlation hole in this
system. We also include the phonon zero-point energy of
0.18 eV/atom in the energy of the diamond crystal. Us-
ing the Slater-determinant-only results as Hartree-Fock
energies, we obtain for the correlation energies of the
valence electrons in the atom and the solid the values of
2.41+0.1 eV and 4.11+0.2 eV/atom, respectively. This is in
agreement with calculations®® for the valence electron
correlation energies in a tight-binding calculation using a
similar ansatz for the many-body wave function, but
evaluating the energy by diagrammatic techniques. Our
result for the Hartree-Fock cohesive energy of 5.85+0.25
eV/atom is also in agreement with the results of Ref. 36.

Also present in Table III is the cohesive energy of dia-
mond calculated using the present approach together
with the LDA value using the Ceperley-Alder form>>?
for the exchange-correlation energy as parametrized by
Perdew and Zunger and the experimental number. The

-155.0 T r T

-155.2+ .
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energy (eV/atom)

-155.8+ 1
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lattice constant (a.u.)

7.25

FIG. 2. Calculated total energy of diamond as a function of
the lattice constant. The curve is a fit of the Murnaghan equa-
tion of state to the calculated points. The error bars indicate
the standard deviation of the mean in each Monte Carlo calcu-
lation.
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quantum Monte Carlo calculation gives a cohesive energy
of 7.45%+0.07 eV/atom, as compared to the experimental
value of 7.37 eV/atom. This result is in significantly
better agreement with experiment than the LDA value of
8.63 eV/atom. (Typically, LDA binding energies are too
large’ as compared to experiment by 15-20 %.) The very
close agreement between the LDA and QMC total ener-
gies for diamond seems to be fortuitous, in the light of
the corresponding result for silicon (see below) and
should not be used to draw the conclusion that the error
in the LDA binding error comes in general from an error
in the atomic energy only.

Figure 2 shows the calculated total energy of diamond
as a function of lattice constant. The theoretical points
are fitted with a Murnaghan equation of state®* (the solid
line). The resulting structural parameters are shown in
Table IV, along with those of silicon. These results for
the structural properties are within one standard devia-
tion of the experimental values®**> and are at the same
level of accuracy as the LDA, which was already very
successful®® in predicting the equation of state of dia-
mond. The pressure derivative of the bulk modulus is not
reliably estimated from the present calculation, due to
statistical noise in the energies.

Since the electronic and geometric structure of graph-
ite, which is a highly anisotropic semimetal with very
large inhomogeneity of charge density, differ substantial-
ly from those of diamond, the calculation of its cohesive
energy represents a significantly different challenge to the
present method. In particular, one might wonder in ad-
vance whether the spherically symmetric and translation-
ally invariant form of the two-body term of the Jastrow
factor in our wave function would be an adequate ap-
proximation for graphite. As we have already men-
tioned, the effect of the one-body term on the total energy
is an order of magnitude greater in graphite than it is in
diamond. However, our result for the cohesive energy is
in excellent agreement with experiment. We obtain a
QMC cohesive energy for graphite that is identical to the
calculated diamond cohesive energy, within the statistical
noise of 0.07 eV/atom. The measured cohesive energy of
graphite is found to be only 0.025 eV/atom larger than
that of diamond."’

We have not been able to reliably estimate the correla-
tion energy in graphite because of difficulty of obtaining a

TABLE IV. Calculated lattice constants and bulk moduli for
diamond and silicon. The expected statistical errors in the last
digits of the calculated numbers are in parentheses.

o

a, (A) B, (GPa)
Diamond
Present calc. 3.54(3) 420(50)
Expt. 3.567° 443°
Silicon
Present calc. 5.40(4) 108(10)
Expt. 5.430° 98.8°¢

#Reference 54.
"Reference 55.
‘Reference 58.
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TABLE V. Total energies (in eV/atom) of the silicon pseudoatom and of silicon solid (with finite-size
correction) for (a) the LDA calculation, and for Monte Carlo calculations with (b) a single Slater deter-
minant of LDA wave functions and (c) the Jastrow-Slater function with one- and two-body terms in the
Jastrow factor. The experimental cohesive energy results (d) are adjusted to allow for the zero-point
phonon energy (0.07 eV/atom) of the solid. The expected statistical error in the last digits is in

parentheses.
Silicon Cohesive
atom Solid energy
(a) LDA —102.76 —108.05 5.29
(b) Slater determinant —101.34(7) —105.0(1) 3.66(13)
(c) Jastrow-Slater —103.42(3) —108.30(6) 4.88(7)
(d) Experiment 4.84(13)*
4.71(03)°
4.77(13)°
4.62¢
4.76°
4.97(13)

*Reference 20.
PReference 21.
‘Reference 22.
dReference 23.
‘Reference 24.
Reference 25.

converged Hartree-Fock energy within the present
scheme. Although the finite-size correction of the full
QMC calculation (with both Jastrow factor and Slater
determinant) follows that of the LDA calculations with
great accuracy, this is not true of the QMC calculation
using the Slater determinant only. This is due to the
singular nature of the Hartree-Fock self-energy near the
Fermi level,”” a problem which does not arise in the insu-
lating diamond structure. As is well known,* the intro-
duction of correlation removes this unphysical anomaly
in the self-energy. In this sense the LDA behavior is
much closer to the correlated wave function.

C. Silicon

We have calculated the cohesive energy and structural
properties of silicon following the same procedure as for
diamond. The results for the cohesive energy are summa-
rized in Table V. The energy of the solid as a function of
atomic volume is shown in Fig. 3 and is fitted to a
Murnhaghan equation of state. The structural parame-
ters resulting from the fit, shown in Table IV, are in ex-
cellent agreement with experiment,*® as are the values ob-
tained from LDA calculations.

Due to the scatter in the experimental results for the
cohesive energy, silicon provides a less stringent test of
the present calculation than does diamond. Thus, al-
though the calculated number is within the range of the
experimental results, we cannot say for sure if the com-
bination of LDA pseudopotentials with variational
many-body wave functions is as satisfactory in the solid
for silicon as it is for carbon.

It is likely that the larger core of silicon renders the
pseudopotential approximation less accurate there than
in carbon, but, even within the framework of LDA calcu-

lations only, this effect is hard to estimate accurately®
because of the various numerical approximations em-
ployed in pseudopotential and all-electron LDA calcula-
tions. Moreover, the pseudopotential may not be as
transferrable between different environments in many-
body calculations as it is in LDA calculations. Our
“Hartree-Fock” cohesive energy (obtained from the
difference between the single Slater determinant results
for the atom and the crystal) is 3.6610.12 eV/atom, in

T T T T
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- 1 1 ! 1
108.652 9.8 102 108 11.0 114

lattice constant (a.u.)

FIG. 3. Calculated total energy of silicon as a function of the
lattice constant. The curve is a fit of the Murnaghan equation
of state to the calculated points. The error bars indicate the
standard deviation of the mean in each Monte Carlo calcula-
tion.
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good agreement with other Hartree-Fock calculations for
silicon,® but unfortunately these are also performed with
a pseudopotential approximation.

The correlation energy for the silicon atom in the
present calculation (obtained from the difference between
the energy of the single Slater determinant wave function
and that of the Jastrow-Slater wave function) is 2.1
eV/atom, compared with a value of 1.81 eV/atom from a
recent calculation®® using coupled-cluster diagrammatic
techniques and a local-orbital basis. The effects of finite
basis size on the calculation is estimated in Ref. 60 to be
0.6 eV/atom, giving an “infinite basis” limit of 2.41
eV/atom. The correlation energy of the silicon crystal
obtained in the present calculation is 3.5 eV/atom, com-
pared with a finite-basis result from Ref. 60 of 2.61
eV/atom. The finite basis correction for the result in Ref.
60 is estimated to be 0.98 eV/atom, giving an infinite
basis limit of 3.59 eV/atom.

In the light of a review of the original experimental re-
sults (in particular, the most recent result), the “recom-
mended value” for the cohesive energy of silicon quoted
in the JANAF tables®' seems low and its quoted uncer-
tainty optimistically small (see the scattered data in Table
V). The cohesive energy is derived from the heat of sub-
limation and other thermodynamic data. However, sub-
limation rates are affected by surface contaminants®!?*
and the partial pressure of elemental silicon is difficult to
measure accurately.’? Aside from the quoted statistical
uncertainties, systematic errors are difficult to eliminate,
or even to assess, in these experiments. Since the most
recent measurement of the heat of sublimation was in the
early 1970’s, it would be interesting if developments in
vacuum techniques and sample preparation since that
time would now allow a more accurate determination of
the cohesive energy of silicon.

VI. CONCLUSION

In conclusion, we have developed a scheme for the cal-
culation of total energies of the valence electrons in
atoms and solids using nonlocal pseudopotentials in con-
junction with variational quantum Monte Carlo tech-
niques. We find that a correlated many-body wave func-
tion of surprisingly simple form can yield 90-95 % of the
correlation energy in the carbon- and silicon-based sys-
tems studied. The results give excellent agreement with
experimental energy differences for carbon-based systems.
The structural properties are also in good agreement with
experiment. For silicon, the results are similarly in excel-
lent agreement with experiment.

The computational effort involved in these QMC
solid-state calculations is approximately 5-10 times that
of the corresponding LDA calculation. (One lattice con-
stant for diamond in Fig. 2 takes about one hour on a
single-processor Cray X-MP supercomputer.) This ratio
is of course strongly dependent on the size of the crystal
unit cell. The LDA computation grows roughly as the
cube of the cell size, while the QMC computation grows
roughly linearly with cell size.

With the full many-body wave function available, it is
clear that many quantities other than the energy may be
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calculated. In particular, quantities inaccessible in the
LDA approach, such as pair-correlation functions and
single-particle occupation numbers, can be readily calcu-
lated in the present method. Work is continuing with
this method to extend the total-energy calculations to
transition-metal systems and also to calculate pair-
correlation functions, Compton profiles, and quasiparti-
cle energies within a variational many-body approach.
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APPENDIX A: CALCULATION
OF THE ONE-BODY JASTROW TERM y

The charge density p for any of the many-body wave
functions must itself be statistically estimated and care
must be taken to eliminate noise from the resulting func-
tion y. In the atoms, the function y is taken to be spheri-
cally symmetric (even though the atoms considered are
open-shell systems), and the angle-integrated charge on
each interval of a uniform radial grid of several thousand
points is calculated over a random walk for each of two
many-body wave functions (e.g., with and without the
factor y). The ratio of the charges on the intervals for
the two different many-body wave functions is then calcu-
lated. The logarithm of this ratio is smoothed by a
seventh-order polynomial fit through the points giving
the final y which is scaled then by the variational param-
eter a. For the iterated Y, it is the final sum over y;,
rather than the individual y;, which is smoothed. This
gives better numerical stability of the final result.

In the solid, the smoothing is done in Fourier space.
The Fourier components of the charge density for vectors
in Fourier space on the reciprocal lattice of the crystal up
to a cutoff length are accumulated over a random walk
for each many-body wave function. For each point on
the walk and each reciprocal-lattice vector G, the
Fourier transform exp(—iG-r;) of the position r; of the
particle being moved is accumulated. The resulting
charge is then symmetrized according to the known sym-
metry point group of the crystal by averaging the values
obtained for symmetry-related Fourier components in the
walk average. (Note that although the true charge densi-
ty of the many-body ground-state wave function has the



full crystal symmetry, the estimate of this quantity ob-
tained over any particular random walk will not.) Final-
ly, the symmetrized charge is smoothed by multiplying
the resulting Fourier components for vectors of length g
by a Gaussian decay factor, exp(—yg?). This smoothing
is equivalent to replacing the 6-function of charge density
p(r)=8&(r—r;) in real space which comes from each par-
ticle along the random walk by a normalized Gaussian
p(r)=(47*y) > exp(—|r—r,|*/47y). The logarithm of
the ratio of the two smoothed charge densities is calculat-
ed by fast-Fourier transform of the densities to real space,
where the ratio and logarithm is calculated at each point
on the transform grid. The resulting function is
transformed back to Fourier space again so that y which
is finally used in the many-body wave functions is
represented in Fourier space:

x(r)=3 x(G)exp(iG-r) . (A1)
G

The value of y is determined variationally to minimize
the total energy of the solid. In the case of diamond and
graphite, ¥ has an optimal value of 0.1 in atomic units; in
silicon its optimal value is 0.18 a.u. The total energy
varies by no more than 0.1 eV with variations of ¥ up to
50% from these values.

APPENDIX B: UNBIASED SAMPLING
OF THE ENERGY PER PARTICLE

Although this seems like a very straightforward pro-
cess, subtle errors can arise if we are not careful about the
precise way in which we sample the energy. Sometimes, a
sampling algorithm which seems intuitively correct will
give biased answers.

Consider the following algorithm.

Each particle is updated in turn (particle 1 first, parti-
cle 2 second, etc., and when we update the last particle,
we go through the list again). If the move is accepted, we
evaluate the energy of the particle being moved, say the
ith particle of spin s, and add it to the average; if the
move is rejected, we keep the last calculated single-
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particle energy [which, in general, is not the energy of the
(s,i) particle in the old configuration], and add it to the
average. Thus, we have an old energy and a new energy.
The new energy is the energy of the particle being moved
at its new (trial) position. If the move is accepted the
“old” energy is set equal to the new energy, otherwise it
is unchanged. The average is always updated with the
“old” energy, after the move has been accepted or not ac-
cepted.

What is wrong with this algorithm?

The problem here is that the energy of particle i at po-
sition r; only enters the list for the average if the
configuration {r}}(N_ ;) has been reached by a pro-
cess where particle (s,i) is the last to be moved. The en-
ergy of a particle at r; is never included when we end up
at configuration {rj'}jslr‘,‘};):”‘” by rejecting a change in
the position of r,.

Let us calculate the probability density of getting a
configuration R ={r} }{}*Y_(; ,, and using particle (s,i)
as the particle whose energy is evaluated, according to
the given algorithm. For unbiased sampling, this proba-
bility density should be |W(R)|?>/2N. [This result arises
from the assumptions that the walk is at equilibrium and
that the configuration probability density is correct, i.e.,
=|W(R)|%.. Since we move each particle in turn, the
probability that we are moving particle (s,7) at any given
(randomly selected) point in the walk is 1/2N.] Let V be
the volume around r; from which it is possible to move in
a single step to r;. (This is a cube of side twice the max-
imum step length.) The probability density of choosing a
trial position in a volume ¥ around the old position r’ is
uniform, and so the probability density of choosing posi-
tion r; as a trial position is 1/V when r’ lies in the volume
V around r{. Once r; is chosen as a trial position, we de-
cide whether to accept it or not according to the usual
rule. If we accept it, we add the energy at r; in the
configuration R to the energy average. Thus, the proba-
bility density of evaluating the energy at r; in the
configuration R by a final move of particle (s,i) is equal
to

fydr’min{I\If(...,rf,...)lz,I\P(...,r',...)lz}

(B1)

Equality occurs in the last part of Eq. (B1) only if the probability density at R is less than that at all configurations
which can be reached from R by one step. We will continue to include the energy of particle (s,i) into the energy aver-
ages in subsequent moves of the walk if we reject the trial positions of particle (s,i +1), (s,i +2), etc. This will enhance
the probability density of evaluating the energy at r} in configuration R, clearly giving too large a value when equality
occurs in the last part of Eq. (B1). In general, the probability given in Eq. (B1), enhanced by the rejection of subse-
quent moves, will not equal |W(R)|*/2N. Roughly speaking, the sampling process biases against a point r{ which has
points of lower probability density nearby.

The correct algorithm is to set the “old” energy equal to the energy of the (s,7) particle in its old position if the move
is rejected, and equal to its energy in its new position if the move is accepted. The probability density of being at
configuration R and rejecting a move of particle (s,i) equals
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1

2_2
|W(R)| N

The sum of the probability densities on the right-hand
side of Egs. (B1) and (B2) always equals |W(R)|*/2N, and
so the “correct” algorithm does indeed sample the energy
correctly.

APPENDIX C: STATISTICAL INTEGRATION
OF THE NONLOCAL PSEUDOPOTENTIAL

We will develop in this appendix a scheme for random-
ly selecting a grid of n points, {Q;}7_;, on the unit sphere
and associated weights, { W,}7_, for use in the projection
of the /th angular-momentum component of an arbitrary
function. The grid is to have the following properties:

1. The sum over the grid points of any function
defined on the unit sphere will give an unbiased estimator
of the integral of the function over the sphere; i.e.,

<2 W,.f<0,.)>=ff(md9, 1
1=1

where the notation { ) denotes the average value taken
over grids chosen at random according to the selection
scheme.

2. The grid scheme for integration of the / angular-
momentum potential is to be exact for projection of func-
tions of angular momentum up to /_,, in the following
sense: the relation

> WYR(Q)Y,,, (92,)=8,5, (C2)

i=1

is to be satisfied exactly for any particular grid chosen,
for values of I’ up to /__,, and m between —[/" and I'.

The first condition tells us that the average of the esti-
mator is correct for all functions and the second condi-
tion that the variance of the estimator is zero for func-
tions of angular momentum less than or equal to /,,,.

We can achieve the first objective by taking any fixed
grid of points on the sphere with fixed weights summing
to unity and rotating the coordinate axes in which the set
is fixed so that the rotated z axis has a uniform solid angle
distribution and the final x and y axes are rotated with a
uniform planar angle about the final z axis. The grid in
this rotated set of axes is used to evaluate the average in
Eq. (C1). It is easy to show that each point of the original
grid covers the entire sphere with a uniform solid angle
distribution by this rotation scheme. Thus the integra-
tion scheme samples all functions without bias.

In order to achieve exact angular momentum [/ of all
functions up to angular momentum /', it is sufficient to
find a fixed grid which sums all Y., to zero, for
1<I"<I1+1I'". McLaren® has discussed such grids in de-
tail. The vertices of the regular tetrahedron, octahedron,
and icosahedron with constant weighting factors provide
grids of 4, 6, and 12 points which give exact integration
of all functions with /'"<2, 3, and 5, respectively. In

1 2
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cartesian coordinates, the four tetrahedral grid points are
(1/V3, 1/V3, 1/V3), (1/V3, —1/V3, —1/V73),
(—IZ\/S, 1/V3, —1/V3), and (—1/V3, —1/V3,
1/V'3). The six octahedral grid points are (*1,0,0),
(0,£1,0,0), and (0,0%1). The 12 icosahedral points are
(0,£A,*xp), (£A,0,£p), and (£A,£p,0), where
A=[(5—Vv'5)/10]"? and p=[(5+V'5)/10]'/% For ap-
plications in carbon and silicon, we have found the
tetrahedral grid to be sufficient.

APPENDIX D: OPTIMAL AMOUNT
OF SAMPLING OF THE NONLOCAL POTENTIAL

Let us suppose that we take M ‘“‘samples” of the nonlo-
cal potential at each step of the walk. For instance, if we
are using the four-point grid which is exact for the s pro-
jection operator acting on s, p, and d wave functions, as
described in Appendix C, by one “sample,” we mean one
randomly chosen four-point grid. The variance associat-
ed with the statistical evaluation of the nonlocal pseudo-
potential (as opposed to its exact evaluation at each point
of the walk) will then be o2,,,./M, where o, is the
standard deviation of one four-point grid estimate of the
nonlocal energy. [We should emphasize at this point that
there is a variance in the nonlocal energy along the ran-
dom walk even when the integral in Eq. (46) is evaluated
exactly at each point. This variance is due to the varia-
tion of the nonlocal potential within the unit cell of the
crystal. It is intrinsic to the problem and is quite
separate from the variance due to statistical evaluation of
the integral in Eq. (46).]

If T,onoc 18 the computation time spent taking one
“sample,” the time spent sampling the nonlocal potential
at each step of the random walk will be MT ... Let us
denote the computation time spent doing all other work
for each step in the random walk by T, and define the
quantity x =T ;.. /T ionoe- Then the total time for an
n-point walk is proportional to (x +M)n.

If we assume that the statistical variations due to sam-
pling the nonlocal potential (instead of exact evaluation
of the spherical integral) are independent of the statistical
variations in the exact single-particle energy along the
walk,® then
(02,02

exact nonloc/M) ’ (D1)

3&'—-

2 —
Ttot —

where o, is the combined standard deviation in the n-
point walk average of the single-particle energy due to all
variations, and o,,. is the standard deviation of the ex-
act single-particle energy along the walk.

For optimal sampling we want to minimize the total
variance of an n-point walk average subject to the con-
straint that the total computation time is kept constant;
i.e., (x + M)n =t is constant. Writing » in terms of x, M,
and ¢, we have
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2 (x +M) 2

tot ! (0 exact

+ Urzmnloc /M) . (D2)

Setting the partial derivative with respect to M equal to
zero, we find that the optimal value of M is achieved
when
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-X_.: ngacl (D3)
M Urzlon]oc ™M

So the best strategy is to have the ratio of time spent do-
ing other work to time spent sampling the nonlocal po-
tential equal to the ratio of the variance of the exact ener-
gy to the nonlocal sampling variance.
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