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Operator ordering in eff'ective-mass theory for heterostructures. II. Strained systems
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A new kinetic-energy operator ——'A'm a V'm~a ' Vm a suitable for effective-mass treatment
of strained heterostructures is introduced. Here, m (r} is the local effective mass and a(r) is the lo-
cal lattice constant. By comparison of exact results with e8'ective-mass results for solvable test mod-
els, values of a, P, and 5, which ensure asymptotic agreement, are determined. Based on qualitative
similarities between the test models considered and realistic systems, the boundary conditions
[(1/a)P =continuous], [{a /m )4)' =continuous] are proposed for abrupt heterointerfaces for
conduction-band states in strained systems. When a single-band effective-mass equation is applic-
able to hole states, however, we propose that the continuity of P and (1/m)P' should be imposed in-
stead.

I. INTRODUCTION

In the preceding paper, ' the problem of operator or-
dering in effective-mass theory for semiconductor hetero-
structures was addressed. The approach was to compare
exact results for solvable test cases with the correspond-
ing results from different candidates of effective-mass
equations in order to sort out the right candidate, if any.
The one-parameter family of kinetic-energy operators
considered was

where m(r) is, in general, a position-dependent effective
mass. It is a one-parameter family since 2a+P= —1.
The operator (1) fulfills by construction the basic require-
ment of hermiticity. Binary heterostructures with abrupt
interfaces were chosen as test models, and for analytic
convenience the component materials were modeled as
one-dimensional Kronig-Penney lattices. Closed-form
conditions, both for extended miniband states in superlat-
tices and for bound states in quantum wells and in local
potentials at heterointerfaces, were obtained exactly and
compared with the corresponding conditions found from
effective-mass theory. It was demonstrated that asymp-
totic agreement between effective-mass results and exact
results can only be achieved with a=O and P= —1. For
heterostructures involving materials with equa/ lattice
constants, asymptotic agreement for, e.g. , the lowest sub-
band edge and the quantum-well ground-state energy was
explicitly shown in the limit of zero band offset between
the two materials. For unequal lattice constants, howev-
er, no such asymptotic agreement existed in the general
case. In many practical applications the condition of
equality of lattice constants is mell fulfilled. However,
strained heterostructures have recently attracted much
attention because of possible applications and interesting
physics. An effective-mass description that takes into
account effects of spatially dependent lattice constants is
thus called for. Also, as a matter of principle, the ab-
sence of asymptotic agreement is unsatisfactory and

makes one wonder whether this could be cured by an al-
ternative effective-mass treatment.

In this paper a natural generalization of the kinetic-
energy operator (1) is proposed to deal with strained het-
erostructures, viz. ,

a =-'m~a'pm~a "pm~a'. (2)

Here, E'(r) is the position-dependent conduction-band
edge, and U(r) is a possible extrinsic potential (for exam-
ple due to impurities).

In order for the left-hand side of (3) to have, for hetero-
structures with abrupt interfaces, no stronger singulari-
ties than the right-hand side, the boundary conditions

m a /=continuous; m +~a P'=continuous (4)

must be satisfied at heterointerfaces. To determine a, P,
and 5 we use the same strategy as in Ref. l and compare
exact results for solvable test cases (with abrupt heteroin-
terfaces) with effective-mass results obtained via the new
boundary conditions (4). It will be demonstrated that
asymptotic agreement in the zero-offset limit only can be
achieved with

a=O, P= —1, 6=0 or —1 .

The appropriate value of 6 (0 or —1) depends on the
properties of the conduction-band edges in question.

The rest of the paper is organized as follows. In Sec. II
we consider models for superlattices, quantum wells, and

It is Hermitian by construction and reduces to the opera-
tor (1) when the lattice constant a is the same throughout
the heterostructure. However, for a spatially varying lat-
tice constant a(r) the effect of the additional factors will
be felt. With the operator (2), the new effective-mass
equation describing states close to a conduction-band
edge, say, has the form

,'fi m a —Vm—~a Vm a P=[E E'(r) U(r—)]$ . —

(3)
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local potentials at heterointerfaces and show how the pa-
rameter values (S} are determined. In Sec. III, a hand-

waving argument, which makes the conclusions reached
in Sec. II plausible, is presented. The application to real-
istic strained heterostructures is discussed in Sec. IV. A
short summary is given in Sec. V. where

d + V(x)Q=EQ,
mo

(6)

tively, where p1,pz are integers and a1,az are lattice con-
stants. The Schrodinger equation to solve is

II. DETERMINATION
OF BOUNDARY-CONDITION PARAMETERS

In this section the form of the boundary conditions
will, for solvable test cases, be determined by comparison
between exact results and results from effective-mass
theory. For definiteness and analytic convenience we
only consider states energetically close to conduction-
band edges. The exact solutions are identical to the ones
in Ref. 1, while the effective-mass solutions are only
slightly altered due to the new and more general bound-
ary conditions (4). Details in the mathematical deriva-
tions will therefore be omitted in the presentation given
below.

A. Superlattices

The superlattice is modeled as alternating layers of
different Kronig-Penney materials. The layer widths of
the layers are P1a, and Pzaz for material 1 and 2, resPec-

V, — g 5(x —(n —
—,')a, }

moa, „
for 0 & x (p ia1,

V(x) = '

Saz»
V2

— g 5(x (n——
—,')a~ —p, a, )

ptloaz „
for p1a1 X p1a1+pzaz,

and

V(x +p, a &+p&a2) = V(x) .

a, and nz are dimensionless strength parameters, and

mo is the free-electron mass. In between the 5-function
wells in material 1 (2) the potential is set to the constant
value V, ( Vz). The solution of (6)—(8) proceeds by stan-
dard transfer-matrix technique. Minibands exist for ener-
gies that satisfy the condition (Ref. 1)

2b2 1 1 b1 sinu 2
2 cos(p& u, )cos(pzu2) —r), 7}2sin(p, u, )sin(pzu2 ) . +

b1sinuz azb2 1

(9)

where we have defined the auxiliary variables q;, u;, b;,
and g; as follows:

gap in one of the materials (the barrier material), howev-

er, and then the auxiliary variable v;, defined via

and

q; =E—V;,2' oa.

cosu, = ~cosq; —a;q; 'sinq; ~, O~ u; ~ n l2

b,. =q,. slnq, . —z,.q,. +z,.q,. cosq,

7};=sgn(cosq; —a, q, 'sinq, ) =+1 .

(10)

(12)

(13)

coshv; = ~cosq; —a;q; 'sinq; ~, (14)

is used instead. Condition (9) still holds under the re-
placement u;~ —iv, . For notational simplicity we stick
to the u variables in the discussion of superlattices below.

For superlattice states energetically close to the
conduction-band edges of the constituent materials, the
effective-mass equation to solve is

——'R~m~a m~a m a P=[E —E'(x))P (I&)
d

dx dx

The definition of u; (11) is only appropriate for energies
that correspond to a band in pure bulk material i. Mini-
bands may also occur for energies that correspond to a

Once more the transfer-matrix technique is used, and the
condition for minibands, analogous to the exact condition
(9), is

25+1 P— a 25+1~P—a z ~1q1 a1 m zqz
2 cos(p, q, )cos(p2q2 )

—sin(p, q, )sin(pzqz ), +
a1 +'mzqz az +'m, q,

Here,

fz
q . =E—E~

2m,-a,.

With 5=0, condition (16) reduces to the eff'ective-mass

condition obtained in Ref. 1.
The question now arises whether there exist situations

in which the approximate eff'ective-mass condition (16) is
in close agreement with the exact condition (9}. In Ref. 1

it was shown that near a band edge u, will be asymptoti-
cally equal to q, (i.e., the same function of the energy E).
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n=1, 2 3, . . .

which corresponds to the energies

$2 2 2
Ec —p +

2moa;
(19)

At these conduction-band edges one finds the effective
masses

a;
i n mo ) n 1~2~3

n m

(20)

In Kronig-Penney lattices conduction-band edges occur
for

For energies close to the conduction-band edges the pa-
rameter b, , defined in (12), is, to lowest nonvanishing or-
der in u;,

m,
n odd

mo

mo
u;, n even.

277 n m;

(21)

When the two conduction-band edges in question are of
the same type, i.e., have same band index n, condition (9)
reduces to the asymptotic form

a2 m2 u] a] m] u2
2cos(pius)c s(p2u2 '" p)ui '" p2"2 +

a] m] u2 Q2 m2 u]
(22)

for odd n, and to

Q] m2 u] Q2 m] u2
2 cos(p i u, )cos(p~ u 2 )

—sirl(p i u, )sin(pi u 2 ) +
a2 m] u2 a] m2 u]

(23)

for even n. These conditions are to be compared with the
effective-mass condition (16). For odd-n bands asymptot-
ic agreement can only be achieved with

P= —1 and 5=0,
while for even-n bands,

P= —1 and 5= —1

(24)

(25)

is required. It should be stressed that in order for condi-
tions (22) and (23) to be valid, the energy in question must
be close to the conduction-band edges of borh materials.
This can only be fulfilled if the band offset

(26)

Perturbation expansion of (27) in the vicinity of the
conduction-band edges and comparison with the
effective-mass condition (28) yields, naturally, values of p
and 5 in accordance with (24) and (25). To illustrate the
asymptotic agreement, we plot in Fig. 1 the exact and
effective-mass quantum-well ground-state energies, both

0.55-
E
'4n

is small.
0.50- A=2

B. Quantum wells

a2 b2 sinu]
2rlivlzcot(p i u i ) =

a, b, s&nhu2

a, b, sinhv2

Q2 62 Sinu
1

(27)

The efFective-mass condition is obtained analogously as

2cot(p, q, )= a +' m~ a +' m~

"+] m~- a" ] m~—Q] 2 92 2 1 ql

where q2 is defined via the relation

$2~ 2
q 2

2 22m2Q 2

(29)

A quantum well can be considered as the limiting case
of a superlattice with increasing barrier width and thus
does not represent an independent test. We choose ma-
terial 2 to be the barrier material and take the p2~00
limit. The condition for a bound state is'

0.45
0.0 1.0 l.5 2.0

Vote

FIG. 1. The quantum-well ground-state energy computed ex-
actly (solid) and approximately (dashed) using effective-mass
theory with appropriate boundary conditions for an odd-n
(n =1) and an even-n (n =2) band. Here, a, /a1=1. 05 and
V g=896 /2Mpa&1. For n =1 we choose a&=0.5, a2=1, and
use the boundary conditions (4) with P= —1 and 5=0. For
n =2 we similarly use a, =2, a, =4, P= 1, and 5= —1. The
effective masses are the same in the two cases so the discrepan-
cies between the effective-mass results are due to different
boundary conditions only. The ground-state energies are mea-
sured from the band edge of material 2 (barrier). Here,
f',s =2moa& V,~/R is a dimensionless offset. Data points corre-
sponding to @1=6,7, 8, . . . are shown. Asymptotic agreement
between effective-mass results and exact results is obtained in
the zero-offset limit in both cases.
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for an odd-n and an even-n band, as functions of the offset

V.a.
2

m;~ s, tan(s;Q, +5, ) =0,
=1 a

(42)

C. Local potential

The last example we consider is a local potential U(x)
localized at a heterointerface between two materials.
Again we model the materials as Kronig-Penney lattices,
and we choose the local potential to be a square well, i.e., and

tan5, = —q;/Q, (43)

where the new auxiliary variables Q, and 8; are defined
via the relations

—
Vo for $2 2 —x $1 1

0 otherwise. (30) Q; =[2m, a; (E E+—Vo)/R ]' (44)

sinU,
tan(s; U;+5; ) =0,

t=1
(31)

where in addition to the definitions (10)—(14) we have
defined

Here the width parameters s, and s2 are integers. The
condition for bound states is'

By setting 5=0 the condition (42) reduces to the one ob-
tained in Ref. 1.

In Ref. 1, it was demonstrated that the auxiliary vari-
ables U, and U, are close to Q, and q, , respectively, when
both the band offset and Vo are small. By inspection of
the effective-mass condition (42) and the limiting cases
(38) and (40} of the exact condition, one observes that
asymptotic equivalence only can be achieved if P and 5
are chosen as in the superlattice case, namely

g;B,sinhv;
tan5, =—

q, b;sinU,
(32) P= —1 and 5= ——'[1+(—1)"], n =1,2, 3, . . . . (45)

and

Q, =[2moa; (E —V;+ Vo)/fr ]'

cosU; = ~cosg, —a, g; 'sing, ~, 0~ U; ~/2

r), =sgn(cosg; —a;Q; 'sinQ, ),

8; =Q, 'sinQ; —a;Q; +a;Q; cosg; .

(33)

(34)

(35)

In analogy with the superlattice case, condition (31) can
be simplified when Vo is small and the energy of the
bound state is close to both conduction-band edges in
question. To lowest nonvanishing order in U, we have
for B,

III. HEURISTIC ARGUMENT FOR P= —1

AND 5= ——'[1+(—1)"]

The value of 5 just obtained is universal in the sense
that 5 is the same for different situations as long as the
same bands are involved. 5, however, is not generally
universal, and this is at first glance worrisome since it is
not obvious how to generalize to realistic situations. It
would be useful if one could obtain some insight into why
5 oscillates between 0 and —1 with increasing band index
n. Therefore a heuristic explanation is now offered.

In standard effective-mass theory for, e.g., impurity
states in homogeneous semiconductors, the leading term
in the wave function is in the one-dimensional case,

m;
2 , n oddmo'

mo
U, , n even

2% n Pl;

and (31}and (32) reduce to

2

tan(s; U, +5, ) =0,
, a, m,

tan6, =—

(37)

(39)

g(x) =P(x)u„o(x) . (46)

(47)

For the Kronig-Penney conduction bands involved in the
discussion in the previous section, the properly normal-
ized Bloch states at the band edges have the form

Here, u„o is the Bloch function at the band edge labeled
n If the p. robability density ~P(x)~ should be a coarse-
grained representation of ~g(x)~, the periodic modula-
tion u„o in (46) must be normalized according to

for odd n, and
n vrxu„=v'2 sin

a
(48)

tan(s, U, +~,-)=0, (40)

1
tanv, =—

tan6,
(41)

for even n.
The condition for bound states from effective-mass

theory is

when the 5-function wells are located at 0, +a, +2a, . . . .
In the envelope-function approach for semiconductor

heterostructures, solutions of the effective-mass equation
are found for each constituent material separately, and
the envelope functions are matched at the material boun-
daries. This approach motivates the following argument.

Consider a heterointerface between two Kronig-
Penney materials (1 and 2) with unequal lattice constants
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a, and a2 (Fig. 2). Continuity of the true wave function

f and its derivative g' requires, when the form (46) is as-

sumed, that

bands, however, one can show that the boundary condi-
tions

and

01 n0, 1 02 n02, (49)

and

(53)

4 lu n0, 1+flu n0, I 42 n0, 2+ 42un0, 2 (50)

are fulfilled at the heterointerface. For definiteness we as-
sume for the moment that the conduction-band edges in
question are of the same type in both materials, i.e., cor-
respond to the same value of n. For odd n the value of
u„0 at the heterointerface is &2 independent of the lattice
constant (Fig. 2). Condition (49) thus reduces to

(51)

which corresponds to the parameter values a =0, P= —1,
and 5=0 [see (4)]. For euen n, u„0 vanishes at the inter-

faces, and (49) contains no information about the match-
ing conditions for ((1. Since the interface value of u„'0 is
inversely proportional to the lattice constant Q, however,
condition (50} requires

02

Q) Q2
(52}

which by (4) indicates a=0, P= —1, and 5= —1. The
discontinuity of u„'0 at the interface when a, Aa2 is seen
in Fig. 2.

To illustrate further the use of this simple argument,
we also consider the case when the two conduction-band
edges in question are of different type. When two
different odd nband-s are involved (e.g., n1=1,n2=3),
the boundary conditions that give asymptotic agreement
are the same as for n, =n2. With two different even-n

1 ~1, 1

m) n)
' m2n2

(54)

ensure asymptotic agreement between effective-mass re-
sults and exact results in the present test cases. The con-
tinuity of (n/a)P (53) for even n also follows from the
heuristic argument above. Since u„o=0 and
u„'0=&2(nmla) at the interface, (nla)1)} must be con-
tinuous in order for (50) to be fulfilled.

Although these simple arguments predict the correct
boundary conditions, a word of caution should be given.
If, for instance, relation (50) is taken literally for odd n,
the condition P', =Pz is obtained. This erroneous result
rejects that the approximate form of the wave function
assumed in (46) has limited validity.

When one of the n"s is even and the other odd, no
choice of boundary conditions seems to secure asymptot-
ic agreement. This indicates that a simple one-band
efFective-mass theory is insufhcient.

IV. APPLICATION TO STRAINED
HETEROSTRUCTU RES

Care must always be taken when applying conclusions
reached in one-dimensional models to realistic three-
dimensional systems. Nevertheless, such simple models
often have provided useful qualitative insights. The
present model calculations suggest boundary conditions
to use in effective-mass calculations on strained hetero-
structures.

Let us consider for definiteness a strained quantum
well consisting of well material with bulk lattice constant

aw embedded between two thick slabs of barrier material
with lattice constant az &Qw. We focus on well widths

less than the so-called critical layer thickness so that a
dislocation-free strained layer will be energetically
stable. For a suSciently thin well it is also reasonable to
assume that all the strain will be incorporated in the well

layer. The well material is forced into the tighter crystal
structure of the barrier material in the two in-plane direc-
tion, and will relax, i.e., elongate, along the growth direc-
tion (Fig. 3). The net strain in the layer plane is given by

ag Qw
(55)

FIG. 2. Matching of Kronig-Penney conduction-band-edge
Bloch functions at a heterointerface between material 1 and 2.
The interface (dashed) is modeled by joining up two %'igner-
Seitz cells corresponding to the two constituent materials. For
n =1, the two properly normalized Bloch functions match at
the interface. For n =2, the wave function vanishes and the
derivative is discontinuous at the interface. The dots represent
5-function wells.

and similarly in the growth direction

Qw
(56)

Here, aw denotes the new lattice constant in the growth
direction. For tetrahedral semiconductors E', — 6'~~ and
since aw is set larger than az in our example, this indi-

l
cates aw) aw & a~. The difference between the new lat-
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FIG. 3. Schematic illustration of perfect accommodation of
strain. The mismatched well material in (a) is squeezed in the
in-plane directions and elongated in the growth direction (b).

boundary conditions, p= —1 and 5=0, should be used in
the effective-mass description of hole states.

Note that the utilization of the boundary conditions
prescribed above must be done in addition to including,
e.g. , strain-induced energy terms from deformation-
potential theory in the effective-mass Hamiltonian.
Note also that the assumption of abrupt changes in the
lattice constant at heterointerfaces is an
oversimplification of the situation encountered in many
real systems. A more gradual change over a few unit
cells can be imagined instead. Since a consecutive series
of small changes can be viewed as a gradual change on a
coarser scale, an effective-mass treatment involving a
nonabrupt position-dependent lattice constant may be
applicable to such systems. If so, the present work sug-
gests that the kinetic-energy operator (2), with the
choices of 5 and p stated above, should be used.

V. SUMMARY

tice constant in the growth direction (a~) and the barrier
lattice constant (as ) is therefore approximately twice the
difference in pure materials. In effective-mass theory the
strained-layer lattice constant to use in the boundary con-
ditions at heterointerfaces is presumably the lattice con-
stant a~, not the lattice constant of the pure material
(a~). This enhances the sensitivity to the choice of
boundary conditions.

Which value of 5 is appropriate for realistic systems7
The Bloch states at conduction-band edges in realistic
semiconductor crystals typically have an antibonding na-
ture. The wave function has a node between adjacent
atoms and resembles in that respect the n =2 case for
Kronig-Penney lattices. In Sec. III the value of 5 seemed
to be governed by the behavior of the band-edge wave
function at the heterointerface. This suggests that the
euen nbounda-ry conditions (P= —1,5= —1) should be
used for conduction-band states in strained heterostruc-
tures where both conduction-band minima in question
are of the same type (e.g. , In„Ga~ „As-GaAs systems).

A simple one-band effective-mass theory is in general
inadequate to describe valence-band states; a multiband
description is usually required. Ho~ever, for important
special cases the set of equations simplifies and reduces to
simple effective-mass equations for the hole states.
Valence-band wave functions at the zone center have a
bonding character without a node between neighboring
atoms and resembles in this respect the n = 1 ease for the
Kronig-Penney lattices. This suggests that the odd-n

1 . a—P =continuous, —
(t

' =continuous
a

for conduction-band states, and

1/=continuous, —P'=continuous
m

(57)

for valence-band states (when a one-band theory is applic-
able).
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A new effective-mass Hamiltonian for strained hetero-
structures has been introduced. Through comparisons
between results from exact model calculations and
effective-mass results, boundary conditions to use at
abrupt heterointerfaces have been obtained. A loose
qualitative argument, which predicts the right boundary
conditions, indicates that the form of the boundary con-
ditions is governed by the behavior of the Bloch wave
functions at the band edges in question. Based on quali-
tative similarities between Kronig-Penney band-edge
wave functions and band-edge wave functions in realistic
semiconductor crystals, the following boundary condi-
tions for strained heterostructures are proposed:
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