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Operator ordering in efFective-mass theory for heterostructures.
I. Comparison with exact results for superlattices, quantum wells, and localized potentials
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We study, for heterostructures with abrupt interfaces, the problem of operator ordering in the
effective-mass Hamiltonian with kinetic-energy operator —,

'm pm pm, for a position-dependent

effective mass. Here, 2a+P= —1. Through exact model calculations on superlattices, quantum
wells, and localized potentials we show that when effective-mass theory is applicable, a=0 and
P= —1. In all cases the efFective-mass theory has the status of an asymptotically exact treatment,
except for strained lattices.

I. INTRODUCTION

A simple and extensively used method for determining
electronic states and other properties in semiconductor
physics is the effective-mass approximation, by means of
which the complexities due to the periodic potential are
hidden in the effective-mass tensor. The effective-mass
theory was originally developed' to treat impurities in an
otherwise perfect crystal, and the treatment has been
shown to be asymptotically exact when the variations of
the perturbations of an otherwise perfect crystal are
sufficiently small over a unit cell.

In its simplest form the one-electron wave function (en-
velope function) for impurity state close to the conduc-
tion band obeys the Schrodinger equation with a Hamil-
tonian

$2H= — V +E'+ U(r) .
2m

Here, m is the effective mass (considered a scalar here),
E' is the single minimum of the energy dispersion func-
tion E(k), and U(r) is the perturbation of the periodic
crystal.

As a result of the recent development of crystal-growth
techniques for the production of nonuniform semicon-
ductor specimens, the effective-mass method has also
been used extensively as a computational tool for such
heterostructures. It is possible to produce, by means of
the molecular-beam-epitaxy technique, for example,
abrupt interfaces between materials, and for such layered
systems the conduction-band edge E' and the effective
mass m become position dependent. The most straight-
forward generalization of Eq. (1) uses the position-
dependent band edge E'(r ) in the potential-energy part of
the Hamiltonian. Since, however, a position-dependent
effective mass m(r) and the momentum operator p do not
commute, a question concerning the correct form for the
kinetic-energy operator arises.

The basic requirement is, of course, that the Hamil-
tonian is Hermitian. The class of operators

H„;„=—,
' pc, (m 'pm 'pm '+m 'pm 'pm '), (2)

a, P, r, r, P, a,

In order to apply the effective-mass method, one has to
know the values of the parameters occurring in (2). One
can contemplate several ways of accomplishing this.

As a first question, one can ask whether there are any
inherent limitations on the kinetic operators (2). In a re-
cent article, " we investigated the Schrodinger equation
with (2) as the kinetic operator, and showed that the
many-term operator (2) is equivalent to a two-term opera-
tor"

&k;„=—,'m pmtpm r+ —,'m rpm ~pm (4)

and, in a model calculation, we demonstrated that any
gives divergent energy eigenvalues for heterostructures
with abrupt interfaces, on physical grounds an unaccept-
able result. One is thus led to consider the restricted
form

H =
—,
' m 'pm ~pm '+ E, ( r ) + U(r )

as a possible candidate for an effective-mass Hamiltonian
for heterostructures. It is a one-parameter family of
operators, since 2a+p= —l.

According to Morrow's analysis, the works of White
and Sham' and of Kahen and Leburton'" correspond to
the case with a=O and P= —1, while the works of Zhu
and Kroemer' and of Ando and Mori' correspond to
the case with a= —

—,
' and P=O.

In Ref. 11 we also presented a consistency argument in
favor of the values a=y=0, or, equivalently, p= —1.
The argument was based upon an application of Eq. (5) to
a test case, a 5-function potential U(r) situated at the in-
terface between two materials. The 6 function was con-
sidered as the limit of narrow and deep square wells, and
the bound-state energy turned out to be independent of

where a, +p, +y; = —1 and where the coefficients c; sum
to unity, are all Hermitian quantum-mechanical opera-
tors corresponding to the classical kinetic-energy expres-
sion p /2m.

Equation (2) includes special cases that have appeared
in the literature, viz. ,

lp 2 + ] p 2m 1 i ] m 1 /2p 2m 1 /2» ] pm 1p
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the actual limiting procedure if and only if P= —1. This
type of argument remains in the class of criteria inherent
to the effective-mass Hamiltonian. Since it is based on a
rather special situation involving a singular potential, it
may not be completely convincing. We therefore keep an
open mind, and accept at this stage all possible parameter
values for P in Eq. (5).

A second approach for determining the value of P is to
compare, for a solvable test case, exact results with
effective-mass results, parametrized by P. This is the
strategy of the present article. The strategy is based upon
a belief that the value of /3 is universal. If P were not
universal, the usefulness of an effective-mass equation
would be severely limited. We will test to some extent
the universality of the results by varying the parameters
of the model, and also by considering different physical
situations. In Sec. II we treat model superlattices, in Sec.
III we specialize to a single quantum well, and in Sec. IV
we consider a local impurity potential in a heterostruc-
ture. A short note on the impurity potential case has al-
ready appeared. '

We select as test models binary heterostructures with
an abrupt interface, since this is the case usually encoun-
tered in practice. For analytic convenience, the homo-
geneous materials are one-dimensional Kronig-Penney
lattices.

It is a distinct possibility that for no values of the pa-
rameters will the Hamiltonian (5) yield results in agree-
ment with the exact solutions. If so, we must conclude
that effective-mass theory —at least in the form con-
sidered here —is not a valid description. As will be
demonstrated below, the effective-mass treatment does
not always have the status of an asymptotically exact
theory, but we show that when it is applicable, the Ham-
iltonian (5) with

a=O, P= —1

should be used.
The prescription (6) has been used previously, often

with no justification beyond hermiticity. Derivations in
the literature have been based upon assumptions too res-
trictive for applications to heterostructures with abrupt
interfaces. Sometimes current conservation is used as an
argument for some definite operator ordering. We want
to point out that a conclusive argument for heterostruc-
tures with abrupt interfaces cannot be cased on current
conservation. It is straightforward to show that the
probability current corresponding to the Hamiltonian (5)
1S

j=fim ~1m(Q*Vm P) .

At an abrupt interface between two homogeneous materi-
als 1 and 2, the requirement of current conservation
reduces to

II. SUPERI.ATTICES

A. Exact solution of the microscopic problem

in the first superlattice unit cell (O,p, a, +p2az ). The ori-
gin is chosen arbitrarily at the left-hand side of a
material-1 layer. Here, mo denotes the free-electron
mass.

The exact solution for the microscopic Schrodinger
equation proceeds by standard transfer-matrix tech-
niques. We introduce dimensionless transfer matrices T;
which connect the wave function 1( and its derivative
a;g ' at a position a distance —,'a; on the left-hand side of a
5-function well in material i with the same quantities at a
position —,a; on the right-hand side of the same 5-function
well. For example,

a, 1('(a, )

1((0)

a, g '(0)

For Kronig-Penney materials these transfer matrices
have a simple form:

Our test model of a superlattice is a binary heterostruc-
ture consisting of alternating regions of materials 1 and
material 2 (Fig. 1). The widths of the material 1 (2) re-
gions are p, a, (p2az), where a, (a2) is the lattice con-
stant in material 1 (2), and the p s are integers.

For analytic convenience each of the homogeneous re-
gions is a one-dimensional Kronig-Penney lattice, with a
5-function well placed in the center of the unit cells of the
separate materials. The potential level in between the
wells is denoted by V, (V2) in material 1 (material 2).
The periodic potential V(x) is sketched in Fig. 2.

We par ametrize the potential by dimensionless
strength parameters 0., as follows:

T

A2o.

V, — g 5(x (n ——
—,')a, )

1

moa1 „=1
for O~x &p, a,

V(x)= '

R O.2
Vz

— g 5(x (n ——
—,')a~ —p, a, )

moa2 „
pl 1

—+ —p1 1+p2a2

P*, VP, =
Pz V'Pz,

independent of a,g. Hence arguments based upon
current conservation cannot settle the operator-ordering
question.

0

p)0) pa

FIG. 1. The binary superlattice.
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cosq; —a;q; 'sinq;
T;(q;)= —

q,-sinq, —a, —a;cosq,

q,- 'sinq; —a;q; +a;q, cosq;

cosq, —a;q, 'sinq,

Here the dimensionless quantity q; is determined by the
energy eigenvalue E through

2

q, =E—
V, ,

Pl oQ,
(10)

and may be real or imaginary. We have used a;g ' as the
lower component of the state vector in order to have
completely dimensionless transfer matrices. There is a
price to pay for this. At the boundary between material 1

and material 2 we must transform from one type of state
vector to another:

where

r) = sgn( T" ) =+1 . (18)

The two eigenvalues of T are readily found to be

b, = (T—, )"=q, 'sinq, a—
, q; +a, q, cosq; .

Since each transfer matrix T; has determinant 1, we may
write (material-type label i now omitted)

q cosu b

—b 'sin u gcosu

A.~ = 'ge (19)
a, p' 0 a;/a a 1(' —'& a 1('

This defines the boundary transfer matrices T,z and Tz&.
In the special case of equal lattice constants they reduce
to the unit matrix, of course.

In terms of the transfer matrices now defined, the
transfer matrix T, for the complete superlattice unit cell
(starting at the origin) takes the form

The variable u will be useful later on, in the comparison
between the exact microscopic results and the effective-
mass result. We note that band edges in a homogeneous
bulk material correspond to u =0. And the sign variable

g distinguishes whether the band edge corresponds to the
center or the boundary of the Brillouin zone. From the
dispersion-relation connection between the Bloch wave
vector k and the energy,

Ts T[g Tp T~) T (12) cos(ka) =
—,
' tr T= r) cosu, (20)

ltrT, I
~2 . (13}

We must, therefore, evaluate the trace of (12).
To prepare for this, we introduce a convenient parame-

trization of the transfer matrices (9). Since

Allowed bands in the superlattice correspond to complex
eigenvalues of T„which requires

cosu =cos[(k —k')a] . (21)

For multiplicative purposes we need to diagonalize the
transfer matrix (17). It is easy to show that

we see that g = 1 corresponds to a band edge at k =k'=0
and rl = —1 corresponds to a band edge at k =k'=+n/a.
in the bulk materials. In both cases,

trT, =2(T, )"=2(cosq, —a;q; 'sinq, ), (14)

the expression in parentheses is less than or equal to unity
in absolute value in a band of bulk material i. For an en-

ergy that corresponds to a band in pure material i we in-
troduce a positive auxiliary variable u; via

cosu, = ~cosq; —a;q; 'sinq, ~, 0 ~ u; & n. /2,
and also for notational purposes the off-diagonal element

with

T=S

ig sinu

0 s-'

l'g sinu
(22)

VIx)

Vp-

V)

A similar parametrization will be useful for energies
that correspond to a gap in pure bulk material i. In this
case the trace of T,- exceeds 2 in magnitude and instead of
(15}we introduce an auxiliary variable U, via

coshu; =
~ cosq; —a;q, 'sinq; ~, U,

~ 0 .

The eigenvalues are now real:

(23)

a,

FIG. 2. The periodic potential.

=qe —',
again omitting the material-type labels i, and the previous
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relations (17)—(22) hold under the replacement u ~—iv.
For notational simplicity we use the u variables
throughout, and make this replacement when necessary.

It is now a straightforward matter to evaluate the trace
of the superlattice transfer matrix (12). The most in-
teresting energy regions are those which correspond to a
band in one material and to a gap in the other material.

I

In these energy regions superlattice minibands are ex-
pected to occur. If, to be definite, we assume that the en-
ergy corresponds to a band in homogeneous material 1

and to a gap in homogeneous material 2, then the vari-
able u2 will be imaginary below. Inserting the now diag-
onalized matrices into (12), it is a matter of straightfor-
ward algebra to verify the result:

a2b2sinu, a1b, sinu 2
l«T, l= 2cos(p~~~)cos(p~u~) —rj~r)2sin(p~&~)»n(ppu2) ~ +

a1b1sinu 2 a2b2sinu,
(24)

The band structure for the superlattice now follows from
this exact expression. Bands exist for those energies
where the trace (24) does not exceed 2 in absolute value.

We return to this relation for comparison after we have
carried through the effective-mass treatment of the same
model.

B. Solution of the effective-mass equation

For the superlattice problem the effective-mass station-
ary Schrodinger equation (5) takes the form

I

tential is constant. Hence the state vector

a, P' (27)

—q;sin(p;q, ) cos(p;q; )
(28)

transfers across the layer with the previous transfer ma-
trix (9), with a; =0. Since the width of the layer is p;a;
rather than a;, the transfer matrix now takes the form

q, 'sin(p;q; )

—
—,'A m m~ m P=[E E'(x)]P—.Q d d Q

dx dx
(25) Here the dimensionless q; (real or imaginary) is defined

by

Here, E'(x) denotes the local conduction-band edge for
the material at position x (we have electrons in mind; for
holes the valence-band edge would be relevant). For the
present model both E'(x) and the effective mass m (x) are
piecewise-continuous functions. The band edge takes the
values E', and Ez (Fig. 3), while the effective mass is m,
and mz, respectively, in the two materials. Both band
edges and effective masses can be expressed in terms of
the microscopic parameters of the model (see below).

The boundary conditions associated with the
Schrodinger equation (25) are

2fi
q, =E—E;2';a,

We note that the eigenvalues are simply

+ip, q,
A, +=e

(29)

(30)

Iq,
e '

p;

t =s —
Iq,

s
0 e

(31)

in this case. The transfer matrix (28) can be written in
the suggestive form

m /=continuous; m~ m /=continuous .
dX

(26} with

1 1

Unless these conditions are met, the left-hand side of (25)
will contain stronger singularities than the right-hand
side.

The transfer-matrix technique is once more the ap-
propriate tool. Across a single layer of material i the po-

E x)+

EG.
2

Ec
1

iq; —iq;
(32)

(33)0 (m, /mj)~a /a;

when crossing into material j.
The transfer matrix for the complete unit cell of the su-

perlattice now takes the form

The form is suggestive because (31) expresses the
effective-mass transfer matrix in material i (of width p;
unit cells) as the p, th iterate of another matrix. We re-
turn to this in Sec. II C.

In addition, the boundary conditions (26) must be tak-
en into account. They are conveniently expressed as a
transformation of the state vector (27) across each inter-
face. The boundary conditions require that a state vector
in material i must be multiplied by an interface matrix

m,. 0

FIG. 3. The conduction-band pro61e E'{x). —12—2—21—1 (34)
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and it is, once more, necessary to evaluate the trace of
this unit-cell transfer matrix. Direct matrix multiplica-
tion yields the trace

trt =2cos(p&q, )cos(p2qz)
P—

2 1 ql a) mz qz—sin(p, q& )sin(pzqz) +
a, m, qz azm, q

(35}

based on the expression (35), is equivalent to the exact
microscopic condition (13).

C. Comparison

In order to compare the exact microscopic expression
(24) with the corresponding effective-mass result (35), we
must determine the quantities that enter the latter, viz. ,
the conduction-band edges E and the effective masses m,
of the bulk materials.

The effective mass m at a band minimum at k =k' is
defined by the expansion of the dispersion relation

fiE(k)=E'+ (k —k'} +
2m

(37)

The properties of a homogeneous Kronig-Penney mod-
el are well known. Band rninirna occur for

q „=nm, n=1, 2, 3, . . . . (38)

It is easily seen that the trace of the transfer matrix (9)
equals 2( —1)"in these cases. The corresponding energies
are

(39)

In addition, there is a lowest band (n =0) with a band
minimum E o (V„which cannot be expressed so explic-
itly.

By expanding the dispersion relation

The main question is now to what extent the effective-
mass condition for allowed energies,

(36)

Since our strategy is to test the effective-mass pro-
cedure in the simplest possible situation, we restrict our-
selves to the case n )0, and to energies in the neighbor-
hood of the same conduction-band edge in both materials
(i.e., the same n).

Both the exact treatment and the effective-mass pro-
cedure contains a matrix that is iterated p; times. The ei-

+lll +lQ
genvalues of this matrix are +e ' and e ', respectively
[Eqs. (19) and (30)]. It is natural to suppose that agree-
ment can only be obtained if u, =

~q, ~. It is not difficult,
however, to see that this is not fulfilled. In the effective-
mass treatment q, is related to the energy via

$2—2

E=E,'„+
2m, a,

while in the exact treatment u,. is defined by

cosu; = ~cosq; —aq, 'sinq;~,

where the energy is related to q, via

(42)

(43)

a;
(44)

It is obvious that for a general energy, E, u, will be
different from q;. However, near a band edge, u; will be
asymptotically equal to q;. This is easily shown by ex-
pansion of (43) and (44) in (q; nn)to —firs. t order, and el-

imination of q;. More elegantly, one can use that since
u, =a; ~k —k'~, Eq. (21), the expansion (37) of the energy
in (k —k') is equivalent to the expansion

$2
E =E'+ u +

2m;a,
(45)

By comparison between (42) and (45) one concludes that
( u; /q; ) ~ 1 when the band edge is approached.

The fact that the effective-mass treatment can only be
asymptotically correct for energies in the neighborhood
of a band edge (if at all) comes as no surprise, since for
homogeneous materials this is so. We will consequently
restrict our further consideration to this limiting case.

Near the band edge the off-diagonal matrix element b, ,

Eq. (16), equals, to lowest nonvanishing order in u, ,

cos(ka) =cosq —aq 'sinq (40)

CX

m =mo
n

(41}

around the band minimum at k =k' and around q'= n vr,

one finds the effective masses b='
1

m;—2
mo

n odd

mo
u,-, n even .

21T n m.

(46)

(47)

at these conduction-band edges. Again the effective mass
for the n =0 band is less explicit.

Inserting all this into Eq. (24), we have the following con-
dition for band energies for n odd,

az mz u& a& m& uz
2 cos(p, u, )cos(p2u2 )

—sin(p, u, )sin(p2u 2 ) +
a] m] uz az mz u]

(48)

and, for n even,
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rounding material (Fig. 6). The well can support bound
states with discrete energy eigenvalues (for the transverse
motion). Determination of these energy values can also
be used to test the validity and form of the effective-mass
equation.

However„ this does not really constitute an indepen-
dent test, since the quantum well can be considered as a
limiting case of a superlattice when the width of the bar-
rier increases. Let us consider the pz~c limit of the
effective-mass inequality (50). First we specialize to ener-
gies in the interval of interest, i.e., E& E Ez, which
implies that qz is purely imaginary. We let qz=iqz
(qz )0), and divide both sides by cosh(pzqz). The result
1S

0.50

0 45 ——-
0.0 0.5 1.0

I

1.5 2.0
Vof f

2 cos(p ) q ) )
—sin p ) q ) )tanh(pzqz )

P-
Qz m)

Q& mz qz

P-
Q) mz

az m~& q,

2

cosh(pzqz)

(53)

The limit pz~oo is now straightforward and turns the
inequality into an equality:

P-
Qz Pl )

2 cot(p, q, ) =
mz qz

p-a) mz

az m~q,
(54)

We recall that q& and qz are related to the energy
through

gz —2 gz- 2

E=E'+ =E'— qz
1 2 2

2m &a &
2m2Q 2

(55)

The presence of the lattice constants a„az is only ap-
parent. By using q, /a& and qz/az as variables, one sees
that only the total well width a,p, enters the equations.

In precisely the same way the pz ~ ~ limit of the exact
condition (13) can be taken. From Eq. (24) we obtain (for
rfi=nz)

FIG. 7. The quantum-weil ground-state energy computed ex-

actly (solid) for an odd-n (n =1) band and an even-n (n =2)
band, and approximately using effective-mass theory (dashed)
with P= —1. Here, az/a~ =1.05 and V,~=80fi /2mop, a&. For
simplicity we have chosen a

&

=0.5,a& = 1 for n = 1 and

a, =2, a& =4 for n =2 to have the same effective masses in both
cases. Here, P,s =2moa z V,s/R is a dimensionless offset. The
ground-state energies are measured from the band edge of ma-

terial 2 (barrier). Only for n =1 do the effective-mass results
agree with the exact results in the zero-offset limit. Data points
corresponding to p l

=6, 7, 8, . . . are shown.

As an explicit illustration we show in Fig. 7 how the
exact and the effective-mass ground-state energy (relative
to the barrier band edge) varies with the offset V,ff.

When n is even, the effective-mass approximation is
asymptotically correct only when both materials have the
same lattice constant. We make this explicit in Fig. 8 by
showing the ratio of the effective-mass result to the exact
result (for the ground-state energy) as a function of the
lattice constant ratio az/a, for both an odd-n and an
even-n band.

az bz sinu]
2 cot(pt 1l i ) =

a& b~ sinhUz

a) b) sinhUz
(56)

az bz sinu L ps&

' —etc
1

It is clear that the effective-mass version (54) and the
exact condition (56) can only coincide under precisely the
same conditions that we found in the superlattice case,
viz. , for P= —1 and for energies close to both band edges.

For equal lattice constants this asymptotic equivalence
always holds; for unequal lattice constants it holds only
in odd-indexed bands (of the bulk materials).

c),//c;.
5

Ec
1

FIG. 6. A quantum well.

FIG. 8. The ratio of the effective-mass ground-state energy to

the exact value for a quantum well, as function of the lattice

constant ratio. Here, P= —1, p, = 10,

V,&=(80/p'-, )(A /2m0a, ). In order to have the same effective

masses for both bands we have used a, =0.5, a&=1 for n =1
and al=2,a, =4 for n =2. Energies are measured from the

band edge of material 2 (barrier). The n =1 results agree well

for all lattice constant ratios. For n =2, however, the results

agree only for a& ——a, .
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IV. LOCAL POTENTIAL

A. Exact solution

As a final example we consider an electron bound in a
potential well u (x) localized near a heterointerface (Fig.
9).

For simplicity we consider a square well,

—Vo for —s2a2 ~x ~s, a1

0 otherwiseu x (57)
FIG. 9. A localized potential in a heterostructure.

X =
a

(58)

with integer width parameters s1 and s2. The materials
are the same Kronig-Penney materials as in the previous
superlat tice case.

Let
4o

4o

[S —1T i (g )]ii= —a, '

[S
—1T i (g )]i2

(65)

X. +.= Ti(qi )Ti' «i )Xo (59)

Here, T, (q) is the transfer matrix (9), qi is defined in Eq.
(10), and we have introduced the new variable

Q; = [2m oa; (E —
V, + Vo ) /iri ]' (60)

be the state vector at position x =na, in material 1.
Starting from Xo we have

sinU,
tan(s, U, +5, ) =0 .'a, a,

(66)

Transforming towards x= —~ instead with the in-

verse transfer matrices, we obtain a similar condition on
itjo/ttto in order for the wave function to decay when

x ~—ao. Finally continuity of go and fo at the interface
yields the condition for bound states. In the Appendix
we show that this condition may be written compactly as

Ul
g]e

=S,
0

—1S1
g, e

(61)

within the range of the square-well potential.
Bound states can only occur for energies E that corre-

spond to a forbidden gap in material 1, where one eigen-
value of the transfer matrix in bulk material 1 is smaller
than 1 in magnitude. We diagonalize the T1 matrix, Eq.
(17), as follows:

'g1coshU 1

T;(q, )=
b 1 Slnh U1 'g]coshV1

We have defined positive auxiliary variables U, via

cosU;=~cosg, —a, g; 'sing, ~,
5, via

g, 8;sinhv,
tan6; =—

g;b;sin U;

and 8; the off-diagonal matrix element

B, =[T;(Q;)]'

=b, (Q, )

=Q, 'sinQ; —a, g; "+a;Q; cosg; .

(67)

(68)

(69)

with

sinhU1
S sinhv 1

1

b1'91 2b1sinhu1
(62)

0
S, 'T, ' (Q, )Xo . (63)Xs +n S191

0 e

The wave function decays towards zero when n ~ «x) only
when the upper component of

The positive auxiliary variable ui is defined in Eq. (23),
and g1=+1 as before. Inserting the diagonalized form
into Eq. (59) we have

flU le

Also

g, =sgn[T;(Q;)]" . (70)

We will return to this exact equation for the discrete en-
ergy levels after we have determined the corresponding
condition in the effective-mass treatment.

exp(qzx/a2), x & —s2a2

B. Solution of the efFective-mass equation

Since the potential energy is piecewise constant, the
effective-mass Schrodinger equation

—
—,'m mS m'P=[E —E'(x) —u(x)]P (71)

4x GX

is satisfied by

S, 'T, ' (Q, )Xo

vanishes, which puts a restriction on the initial values fo
and yo': exp( —q, x /a, ), s1a, (x .

cos( g~x /a 2+ c2 ), —s~a ~ & x & 0
P(x) ~ '

cos(Q, x/a, +c, ), 0&x &s,ai
(72)
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Here,

q,
—[2m a (E'—E)/A' ]'

Q; —[2m (E —E'+ V )/iri ]'
7 (73)

$2
i 2 i Ei Vp + U +

2m a 2
E

(80)
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'
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i Q,
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l

(74)
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with

tan~, = —U;/U; . (8&)

This is precisely the same relation as obtained in the
odd-n case, with one small difference. The difference is
that the lattice constants a; that occur in the denomina-
tor in (78) now appear in the numerator in (84).

In the case of equal lattice constants the conclusion is
the same as above: With zero offset and with P= —1 the
effective-mass treatment is asymptotically exact.

In the case of unequal lattice constants, however, this is
no longer true. We illustrate this in Fig. 11 for a lattice-
constant ratio of 1.25. The shallow-potential limit VO~0
produces asymptotic equivalence in the n =1 case, not
for n =2.

T;(q; )=
cosq,

—q;sinq; —2a;cosq,

q, 'sinq,

cosq; —Za;q; 'sinq, .

(87)

The strength of the interface 5-function well has been
chosen as the average of the potential strengths in the
two materials.

The effective-mass treatment is of course the same as
before, but the exact calculation gives a different result.
In this case it is natural to use a transfer matrix that
transfers the state vector from one 5 well to the neighbor-
ing 5 well (since the derivative is discontinuous at the 5
well we use the derivative on the right-hand side of each
well). The transfer matrix

D. Another interface setup

In order to check, at least to some extent, whether the
conclusions are dependent upon the details of the model,
we have also investigated a different setup. (The results
for this case, with equal lattice constants, have already
been reported. '

)

In this alternative version the interface is at a 5-
function well instead of between two wells:

Aa)
g 5(x —na, ), x &0

ill pQ )

does the job. The trace of the previous transfer matrix (9)
and the new one (87) is the same, of course.

The procedure for determining bound state is essential-
ly the same as before. One starts with a state vector Xo+

at the interface (at x =0+), and selects the initial condi-
tion that secures a decreasing wave function when trans-
forming x = + ~. Transforming towards x = —~, one
finds a similar condition on the state vector Xo at
x =0 . Finally the difference (fp+ —

lip )/lip is given by
the strength of the 5 function at the interface.

After some algebra this yields the following exact con-
dition for bound states:

2 a1 a2+ 5(x),
2mo a, a2

Aa 2

V(x) = ~—

Vz — g 5(x —na2), x (0 .
moan'

(86)

where

q; sinQ; sinhv;
tani; =—

sinq; Q; sin U;

Q; sinU,
tan(s; U;+ a; ) =0,

, a, sin
(88)

(89)

E

0.~0—

0.45—

0.40
0.0 0.5 1.0

Vp

2.0

Condition (88) is analogous to Eq. (66) for the previous
setup. Although the two expressions are different, the ex-
pansion of (88) in terms of deviations from the (essentially
coinciding) band edges yields, to lowest order, precisely
the result (82), obtained previously for even n.

The conclusion, therefore is now for all band indices n,
the same as for the previous even-n case: For equal lat-
tice constants the effective-mass treatment is asymptoti-
cally exact (in the vanishing offset limit). With unequal
lattice constants this asymptotic agreement does not
hold. Figure 12 corresponds to Fig. 10 for the previous

setup, and one sees that the qualitative aspects are identi-

cal and the quantitative results similar.

FIG. 11. The ground-state energy of a localized potential
computed via the exact relation (66) (solid) and via the
effective-mass equation (74) (dashed) with P= —1, respectively.
Here a2/a& =1.25 and s& =s2 =s, and the depth is chosen to be
VO=2(Hi /2moazs . We have chosen a&=0.5,a, =l for n =1
and a&=2, F2=4 for n =2 in order to have the same effective
masses for both bands. The offset is adjusted to zero. Data
points correspondoing to s =3,4, 5, . . . are shown. Here,
f p =2mpu2Vp/A' is a dimensionless potential depth. Ground-
state energies are measured from the band edges. One obtains
asymptotic agreement in the zero-offset limit only for n = 1.

V. SUMMARY AND DISCUSSION

In the present article we have compared exact model
calculations with results based upon the effective-mass
Hamiltonian (5).

One main result is that the effective-mass equation
yields, under certain conditions, asymptotically exact re-
sults, provided the parameters take the values a=0,
P= —1. Assuming the parameter values to be universal,
this selects uniquely the following form for the kinetic
operator:
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F,
E-e.c

Although the second condition is often well fulfilled in
practical circumstances it remains to construct an
effective-mass type theory for strained heterostructures.
As is shown in an accompanying article, ' the present re-
sults suggest how a modified effective-mass treatment,
with asymptotic validity, may be constructed.

APPENDIX

09
0.0 0.5

I
I

1.5 „2.0
V0

FIG. 12. A comparison of ground-state energies E,&,E,„, for
a localized potential determined via the effective-mass equation
(74} with P= —I, and by the exact relation (88) for the new in-

terface setup, respectively. We consider the lowest gap (n =1)
and have taken a~ =0.5,a2=1. The square potential is symme-

trically situated (s& =s& =s, a& =a&=a) with a depth chosen to
be Vo=2(Hi'/2moa's'. Data points corresponding to s =3,4, 5

are shown. Here, Po=2moa Volfi is a dimensionless potential
depth. Ground-state energies are measured from the lower
band edge. A, with offset (E I

—E2 =0.5''/2m0a'); 8, without
offset (E& =E2).

In evaluating expression (65), we must raise the
transfer matrix to an arbitrary power s:

S

g cosU B
—B 'sin U q cosU

T'(Q) =

cos(sU) r)B sin(sU)/sinU

rIB—'sin(sU)sinU cos(sU)

with

—sinU, sinhu, +b&q~rl&B, 'sin U& tan(s, U, )h(1)=
sinh(u, )g,B, tan(s, U, )+b, rl, sin U,

This is shown in a straightforward manner by first di-
agonalizing T(Q), as in Eq. (22). We have used the ab-
breviation (69) for the upper nondiagonal element, and
have omitted the material type label.

Multiplication by S,Eq. (62), and insertion into (65)
yields

1
Hk;„= — -V V' .

2 m(r)
(90) This may be written

This form was apparently first used by BenDaniel and
Duke. '

While most efforts on deciding the form of the kinetic
operator have been purely theoretical, some approaches
have also involved the utilization of experimental data.
Galbraith and Duggan compared effective-mass results
parametrized by p with photoluminescence excitation
spectra from GaAs-Alo 35Gao 65As quantum wells and
found p= —1 to give the best fit. In the same spirit, Fu
and Chao tried to determined p using optical data for a
set of GaAs-Al Gal As superlattices but found for
these cases the effective-mass results to be too insensitive
to the value of P to give a conclusive answer.

One condition for the effective-mass theory to work is
that the energies in question are close to both band edges.
A second condition is equality of the lattice constants.

g, sinU,
h (1)= tan(s, U, +St),

1

where

g)B, sinhu )
tan5, =—

g)b ) sin U)

Transforming towards x = —~ instead, we must obtain
by symmetry the equivalent result in material 2, except
for an overall sign. Continuity of 1(c and 1(to at the inter-
face leads to

h (1) h (2)
)

a& az

which is the condition (66) for the discrete energy eigen-
values.
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