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We analyze a two-dimensional system of electrons or holes, interacting via, in addition to the
electromagnetic fields, the Chem-Simons gauge fields (a„) equipped with the action
(Its/2)(e "~aqt)~ . For ~p~ =etN/2n (N =2,4, 6, . . . ), the ground state is unique and a spin singlet,
having completely filled Landau levels with respect to the Chem-Simons magnetic fields. For these
values of p, equations are derived that replace the London equations in BCS theory. It is shown

that a complete Meissner effect operates at zero temperature, Integer quantum Hall effects in the
Chem-Simons fields play a crucial role. The magnetic penetration depth coincides with that in BCS
theory as long as N « 1000.

The motion of the conducting electrons in the newly
discovered high-T, superconductors seems to be confined
to the copper oxide planes, and so is essentially two di-
mensional. It is customary in the literature to describe
experimental data in terms of the Ginzburg-Landau
theory, assuming the existence of a scalar order parame-
ter. Years ago Hohenberg' proved that in a strictly two-
dimensional space a Cooper pair condensate (f(x}g(x))
must vanish at finite temperature (TAO), at least in a
translationally invariant continuum theory. A few ways
out from this theorem have recently been discussed by
several authors, which allow a phase transition at TAO
of the Kosterlitz-Thouless type. In this paper we confine
ourselves to T =0 and show that a complete Meissner
effect operates in this simple two-dimensional model. It
remains an open question if the model analyzed in this
paper describes the new high-T, materials adequately.

The ground state of this model differs from that of the
BCS theory. There is no Ginzburg-Landau order param-
eter. Instead, new gauge fields, the Chem-Simons fields,

play the role of the order parameters. It is reserved for
future publications to show how Aux quantization and
the Josephson phenomenon emerge in this theory.

This work was motivated by Laughlin's claim that
fractional statistics in two-dimensional space plays a
crucial role in high-T, superconductivity. Similar models
have recently been analyzed by several authors. In
particular, Fetter et al. have also shown the existence of
a zero-temperature Meissner effect by analyzing the
linear response of the system to external electromagnetic
fields. Such models of superconductivity are sometimes
referred to as semion superconductivity or more general-
ly, as anyon superconductivity in the literature.

In quantum-field theory one consistent way of incor-
porating fractional statistics is to introduce the Chern-
Simons gauge fields at the Lagrangian level. ' Therefore
we are led to consider a system consisting of electrons (or
holes) P, electromagnetic fields A„(and F„„), and
Chem-Simons gauge fields a„(and f„,},whose Lagrang-

ian is given by
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where D„=t)„ie(A„+—a„) and 8 =F&2(b =f,i). n, is
the electron (or hole) density. The last term accounts for
the background neutralizing charges. We have intention-
ally dropped a possible magnetic moment interaction for
the Chem-Simons gauge fields so that the ground state is
a spin singlet. Note that one can always rescale a„such
that it has the same coupling e to electrons as A „does;
the relevant quantity is p. /e . The appearance of the
Chem-Simons fields a„ in our model must be due to
effective interactions froin a more fundamental Hamil-
tonian describing the high-T, superconductors. We shall
show that the model described by (1) exhibits a complete
Meissner effect for ~Its~ =e N/2' (N=2, 4, 6, . . . ) when
N«1000. For any integer value of N, (1) describes a
system of anyons. N =2 corresponds to the semion mod-
el. However, the magnetic penetration depth turns out to
be independent of N, coinciding with that of the BCS
theory.

A few comments relating the present work to that of
FHL (Ref. 6) are in order. The FHL Hamiltonian can be
obtained from Eq. (1) by expressing a„ in terms of the fer-
mionic field operators and by turning off the electromag-
netic gauge field A„. The approximation scheme used in
these two computations are different. FHL retain the
effects of the Chem-Simons interaction at the random-
phase approximation level. We treat both the gauge
fields (a„, and A „) equally but only upto the self-
consistent mean-field level.

Equations of motion are given in the mean-field ap-
proximation by
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Here (jp) is the expectation value of j": ((pIj"I%').
The electron field satisfies

1
iB0Q=HQ= — (D„+eBoi) e(—A0+a0)

2@i
(3)

(4)

We solve Eqs. (2) and (3) self-consistently by explicit con-
struction of I(p).

In the absence of external electromagnetic fields the
ground state is expected to be uniform. Then one of Eq.
(2) implies that pb' '=en„ i.e., electrons move in a uni-
form Chem-Simons magnetic field. In the Landau gauge
(a I

' = —b' 'x2 ), the Hamiltonian is given by
~ 2
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gauge invariance can be maintained only if N is an in-
teger. This is indicative of an underlying connection be-
tween gauge invariance on a torus and a unique feature of
states with completely filled Landau levels. ' This point,
however, is reserved for future investigation.

Let us restrict ourselves to gauge field configurations
uniform in the xt direction: A =A„(x2), a =a„(x2),
and A2=a2=0. Note E, =0 in this ansatz. We decom-
pose the Hamiltonian into 8 =Ho+ V, + V2, ~here

Vt= ——(at +At) iB—t
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Here a, =a', '+a', ". So long as V, +V2 is suSciently
small, the ground state I% ) is given by

Hg„k (X)=E„k P„k (X),

(0) (1)
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where the magnetic length l is given by
l = Ieb' 'I =e n, /Ip, I. We impose a periodic boundary
condition in the xi direction: f(t,xt+L, xi)
=g(t, x „x2 ). The limit L ~ (c is taken at the end. Solu-
tions to the Schrodinger equation are

g(t, x)= g a„k g„k (x)e
n, k, a
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where n =0, 1,2, . . . , k =2mp/L, (p CZ),
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t/i'„'k' (x), and therefore (j ), are determined as functions
of 5a„and 5A, . With these (j") the gauge fields must
solve (2) self-consistently.

It is important to recognize that for N =2,4, 6, . . . the
free Hamiltonian HO yields the ground state which exact-
ly solves Eqs. (2) and (3). Indeed, for V, + V2 =0,

and 03v =0 v .
The number density of states per Landau level is

N/2 —1
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The extra factor 2 comes from electron spin. For

I@I=e N/2n (N=2, 4, 6, . . . )

the lowest X/2 levels are seen to be completely filled.
The ground state is unique and a spin singlet. Note that
if there were a magnetic moment interaction, n + —, in c„
in (5) would be replaced by n +—,'(1 cr ) so that low—-lying
Landau levels would be completely filled for an odd in-
teger N instead. The ground state in this case describes a
ferrornagnet.

It has been shown by one of the authors" that in the
Chem-Simons gauge theory formulated on a two torus,

Similarly (j') =(j ) =(P o&g) =0 Hence E.qs. (2) and
(3) are solved consistently by A„=a0=a2=0, at =a(t t.

Weak external magnetic fields change the motion of
the electrons, consequently generating nonvanishing 6a
and 5A, which in turn affect the motion of the electrons.
Solving these back reactions self-consistently, we show
that magnetic fields are expelled from the interior of the
material. Under small changes in the gauge fields the
lowest N/2 Landau levels are kept completely filled so
that the dependence of the ground state on the gauge
fields can be determined in perturbation theory. Our
strategy is to first derive the equations which replace the
London equations in the 8CS theory, relating the
currents (J') to the electromagnetic fields.

The computations are straightforward. Note that
( n'k'o 'I V, I

nko ) ~ 5kk 5 ~ and
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Equations (7) and (8) determine &j"(x)) as a function of gauge fields. We introduce

&v/2 —1
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where g=(y/I) kl an—d rl=(xz/I) —kl. Then

&j (x ) ) =e K[C(y, k);x ],
e pf 2

( A, +a ',"}+ K[ rI C( y, k); x ], (10)

& q'~, 1((x, ) ) =—'K [a(y);x, ],
and &j (xi)) =0.

The integrands for the K [h (xi,y, k)] s of (10) significantly contribute only in the vicinity of y =xi because of the
Gaussian falloff of u„(g}and u„(rl ). Therefore, Ii (xz,y, k) can be exPanded in a Taylor series around xi, Provided it is a
smooth function of y, i.e., the penetration depth (l&, ) is much larger than the magnetic length (I). The relevant expan-
sion parameter turns out to be N(l/&{, )i-Ni10

Employing the orthogonality relations of the u„(z)'s and the recursion relation zu„(z) = (v'n + lu„+ &

+v n u„&}/v'2, one can easily show that

1
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It immediately follows from (10) and (11) that
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and &j ) =0. Here dots imply higher-order derivatives and b =b' '+b"'. The difference between & J') and &j') is
numerically negligible to this order. Equations (12}replace the London equations of the BCS theory.

Let us also note that a term proportional to A &+a &, which plays a central role in the BCS theory, is absent. The first
term in &j') exhibits the integer quantum Hall effect. ' (R=c =1 in our units. ) The first term in &j ) describes the
change in the number density of states per Landau level due to additional (Maxwell as well as Chem-Simons) magnetic
fields. Linearly increasing electric fields (foz+Ez ) &x: xz have two effects: they change the effective ma'gnetic length and
shift the average position in the x2 direction for a given x, momentUm k, which collectively gives the second term in

&j').
The result (12) may be summarized by an effective Lagrangian X. "' [ A „,a„]=X&&+X&, where

Xo= & I' „„— e"'&'a
k
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(13)



42 SVPERCONDVCTIVITY IN THE ANYON MODEL 345

Ne Nb'"= —a,E, , f„=—a,B, (14}

X& is related to the currents by 52&/5a„=( j'), which
for configurations under consideration reproduces (12) to
the leading order. The constant —(2mn, /eN) in the last
term accounts for the fact that B =O, b =2m.n, /eN in the
ground state.

The eff'ective Lagrangian X ""' corresponds to the
Ginzburg-Landau Hamiltonian in the BCS theory, from
which macroscopic properties may be deduced. The
Chem-Simons fields a„replace the Ginzburg-Landau or-
der parameter. It is remarkable that the Chem-Simons
term for a„ in X, exactly cancels the one in Xo. This
cancellation, which has been suggested by Banks and
Lykken for a different reason, is expected to suffer no
higher-order corrections as it is enforced by the integer
quantum Hall effect. '

It follows from (2) that

(7).
Crucial elements here are the integer quantum Hall

eff'ect and the balance represented by (14} between the
electromagnetic and the Chem-Simons fields. ' The
Maxwell equation involving J' is automatically satisfied,
provided E2=0. The charge neutrality condition (the
Maxwell equation involving J ) enforces the complete
screening of the total magnetic fields.

So far everything has been defined in two-dimensional
space. To relate it to the (real) three-dimensional one, we

recall that high-T, superconductors have a layered struc-
ture, and denote the interplanar spacing by 5. Then,

typical values we take n, =10' cm and 5=10 cm.
We choose m =7.5X10' cm ' thrice the value of the
bare electron mass. With these values one finds

A. =2.9X10 cm. The two relevant expansion parame-
ters in the problem are seen to be

so that b'" and foz can be eliminated from (12). Insert-
ing (14) into (12) and keeping numerically dominant
terms, one finds that Eq. (2) is reduced to

N e N =9.7X10 N,
4+m 2

(17)
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The penetration depth characterizing the Meissner effect
—x2/A,(B~e '

) isgivenby

X=Qm/e'n, . (16)

Although the mechanism is completely different, the ex-
pression for the penetration depth is exactly the same as
in the BCS theory. This can be understood as a result of
the Galilean invariance of the system. " In the boundary
region the kinetic energy density associated with currents
1S

—,'mn, u =mJf/2e n, ,

while the field energy density is —,'B . Hence, upon mak-

ing use of 82B =J& the total surface energy is minimized
when (1—

A, 5 )B =0 where A, is given by (16). We re-
mark that the Meissner effect results for either sign of B
with given p. The nonvanishing current (J ) is a super-
current, since E, =0.

The same conclusion concerning the Meissner effect
has been obtained by Fetter et al. (FHL), but the mech-
anism discovered above differs in its detail from FHL's.
There is no term proportional to A &+a& in the expres-
sion for (j ) in Eq. (12), which plays a central role in the
BCS theory and in the FHL approach. The gauge invari-
ance does not allow such a term in the absence of
Ginzburg-Landau order parameter. Unlike the ground
state of the BCS theory, there is no mixture of creation
and annihilation operators in the ground state ~% ) in Eq.

The expansion is valid for N (&1000. The correction to
the electric field is evaluated as E2= —10 NB, which
with (17}justifies our approximation scheme.

The Meissner effect results for magnetic fields perpen-
dicular to the copper-oxide layers in the three-
dimensional material, even if the Chem-Simons
coefficient p takes a different sign from one layer to the
next. ' lf this is the case, the effects of P- or T-violation
inherent in the Chem-Simons theory would be very
difFicult to see. '

In this paper we have shown that a coupled system of
electrons (or holes), electromagnetic fields and Chern-
Simons fields exhibits a complete Meissner effect at zero
temperature. Our results are best summarized by (12)
and (14), or by (13). It is likely that the magnetic flux

quantum in this theory will turn out to be 2~/Ne,
rejecting to the fact that the number of states in —,'N Lan-

dau levels changes in unit of N. If this is the case, N =2
(the semion model) describes the known high-T, super-
conductors. We are planning to come back to this point,
in addition to finite temperature effects and the Josephson
effect, in separate papers.

This research was supported in part by the U.S.
Department of Energy (DOE) contract No. DE-AC02-
83ER-40105 and by the McKnight-Land Grant at the
University of Minnesota. One of the authors (Y.H. )

would like to thank the Institute for Advanced Study for
its hospitality, and particularly F. Wilczek for his con-
tinuous guidance and stimulating discussions, and B.Sak-
ita for his helpful comment on the effective Lagrangian.



346 YUTAKA HOSOTANI AND SUMANTRA CHAKRAUARTY 42

'Current address: School of Physics and Astronomy, University
of Minnesota, Minneapolis, MN 55455.

P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973);

J. M. Kosterlitz, ibid. C 7, 1046 (1974); R. T. Scalettar et al. ,
Phys. Rev. Lett. 62, 1407 (1989);see also, R. Friedberg and T.
D. Lee (unpublished).

V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095
(1987); R. B. Laughlin, ibid. 60, 2677 (1988); Science 242, 525
(1988).

F. Wilczek, Phys. Rev. Lett. 49, 957 (1982).
5X. G. Wen and A. Zee, Phys. Rev. Lett. 62, 2873 (1989); and

(unpublished).
A. L. Fetter, C. B. Hanna, and R. B. Laughlin, Phys. Rev. B

39, 9679 (1989).
7Y-H. Chen, F. Wilczek, E. Witten, and B. I. Halperin, Int. J.

Mod. Phys. B 3, 1001 (1989).
T. Banks and J. D. Lykken (unpublished).

9G. S. Canright, S. M. Girvin, and A. Brass, Phys. Rev. Lett. 63,
2295 (1989).

' D. P. Arovas, R. Schrieffer, F. Wilczek, and A. Zee, Nucl.
Phys. B 251, 117 (1985);A. Goldhaber, R. MacKenzie, and F.

Wilczek, Mod. Phys. Lett. A 4, 21 (1989);J. Frohlich and P.
A. Marchetti, Commun. Math. Phys. 121, 177 (1989).
Y. Hosotani, Phys. Rev. Lett. 62, 2795 (19&9); see also, A. P.
Polychronakos, Nucl. Phys. B333, 48 (1990); S. Elitzer, G.
Moore, A. Schwimmer, and N. Seiberg, B326, 108 (1989).

This connection was first pointed out to one of the authors
(Y.H. ) by F. Wilczek.

t3See, e g , .Th. e Quantum Hall E+ect, edited by R. E. Prange
and S. M. Girvin (Springer-Verlag, New York, 1987).
R. E. Prange and S. M. Girvin, Ref. 13, Chap. 5.

'sP. G. de Gennes, Superconductiuity of Metals and Alloys
(Addison-Wesley, Redwood, 1966), Secs. 1—2, p. 3.
Electromagnetic interactions are of the same order as Chern-
Simons interactions in our model. It would be interesting to
find current-current correlation functions in FHL's scheme,
taking electromagnetic forces into account.

t7In principle, the magnitude
~ y, ~

also may vary from one layer
to the next which, however, could destabilize vortex
configurations, if they exist.
J. March-Russel and F. Wilczek, Phys. Rev. Lett. 61, 2066
(1988);B. I. Halperin, J. March-Russel, and F. Wilczek, Phys.
Rev. B 40, 8726 (1989).


