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We describe the electronic factors leading to structural stability in the class of transition-metal al-

loys exhibiting polytetrahedral packing (PTP). In a cluster expansion for the total energy, the
lowest-order terms which obtain the correct chemical trends correspond to angular forces. These
contain an energetic penalty for four-body clusters with 90' angles. Such clusters are uniformly ab-

sent in the PTP phases. The four-body contribution is roughly structure independent within the
PTP class.

I. INTRODUCTION

Polytetrahedrally packed (PTP) structures are those
which are built entirely out of tetrahedral packing units. '

In contrast, the fcc structure consists of both tetrahedral
and octahedral units, while the bcc structure is an inter-
mediate case with the octahedra containing second-
neighbor bonds. The tetrahedral packing leads to charac-
teristic polyhedra, which are labeled Z12, Z14, Z15,
and Z16, where the numbers refer to the coordination
number of the atom centering the polyhedron. PTP
structures are almost always found in alloys and com-
pounds rather than elemental systems. The simplest ex-
ample of a PTP structure is the 3 15 structure, which has
eight atoms per unit cell. Two of these are surrounded by
Z12 polyhedra, which are icosahedra, and the remaining
six by Z14 polyhedra. The remaining PTP phases, such
as the well-known 0. phase, contain much larger unit
cells. Inspection of phase diagrams for binary
transition-metal compounds reveals that the PTP phases
occur over a wide range of both composition and temper-
ature. Any satisfactory theory of alloy phase stability
must explain the presence of these structures in the phase
diagram.

PTP structures are of fundamental interest because
they are a precisely characterized packing of structural
units which are believed to be present in aperiodic sys-
tems. For example, it has been proposed that both
liquids and metallic glasses have a large degree of local
tetrahedral order. Some types of icosahedral phases are
believed to share structural motifs with PTP phases, and,
in fact, to be very closely related in structure. Recent
work on the Ti-Mn quasicrystal has demonstrated the
presence of nearly identical structural motifs in the quasi-
crystal and its crystalline transformation products. In
particular, it is now believed that both structures con-
tain icosahedral building blocks. This work strengthens
the evidence for a connection between the PTP phases
and icosahedral quasicrystals, since the PTP phases al-
ways exhibit partial local icosahedral order. Because the
atomic positions in the periodic PTP phases are precisely
established in many cases, it is possible to investigate the
local bonding energetics without having to make arbi-

trary assumptions about these positions. In addition, as
mentioned above, the PTP phases are of practical interest
because of their frequent appearance as undesirable brit-
tle "interloper" phases in transition-metal alloy phase di-
agrarns.

Our aim is to identify the lowest-order r-space interac-
tions which stabilize the transition-metal PTP phases as a
class. Because of the similar short-range order in these
phases, we expect certain terms in our cluster expansion
for the total energy to be insensitive to the differences
from one PTP structure to the next, thus establishing uni-

fying energetic factors which stabilize them. The treat-
ment of the PTP phases as a class, rather than on a case-
by-case basis, is motivated by previous empirical work by
Watson and Bennett, which has identified the stability of
the class of PTP structures with a characteristic range of
"effective d-hole counts" and limits on atomic-size ratios.
They conclude that the average filling of the d band is
crucial in establishing which alloys will form PTP phases,
while for the non-Laves PTP phases, the atomic-size ra-
tios are a less important factor. Previous theoretical
work on a few specific PTP structures, as well as the
empirical work, suggest that electronic effects are as im-
portant, if not more so, than the atomic-size effects (at
least for the non-Laves phases). This is particularly evi-
dent in the 315 "size-reversal" compounds, such as
V3Rh, in which the smaller (larger) atoms occupy sites
normally filled by the larger (smaller) atoms. Turchi,
Treglia, and Ducastelle have performed detailed analy-
ses ' of the stability of A 15- and Laves-phase com-
pounds, supporting the claim that the d-band filling is
crucial in determining the stability of PTP compounds.

In this work we use recently developed transition-metal
interatomic potentials to examine PTP structural stabili-
ty. These potentials have a functional form derived from
the moments of the electronic density of states using a
tight-binding Hamiltonian. We show that the dominant
electronic effects can be described by a four-body interac-
tion which penalizes squares of nearest-neighbor atoms,
and favors tetrahedral configurations. In a11 of the PTP
structures which we treat, this interaction provides a
large stabilizing contribution, which typically exceeds the
magnitude of the atomic-size effects. We are not, howev-
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er, able to discriminate reliably between different PTP
phases. In fact, all of the PTP structures which we con-
sider have essentially the same four-body energy.

The remainder of the paper is organized as follows. In
Sec. II we describe the derivation of the potentials from
our treatment of the total energy. In Sec. III we present
our results for the six PTP structures that we have con-
sidered. We emphasize the direct connection between the
energy and the geometry, and the energetic invariants
which are found in the four-body terms. Section IV con-
cludes with a discussion of the relevance of our results to
aperiodic systems.

II. METHODOLOGY

Our picture of the stability of the PTP phases is based
on effective interatomic potentials obtained from a mo-
ment analysis of a d-electron nearest-neighbor tight-
binding Hamiltonian H. ' '" The Hamiltonian is given by

H= g g s;~i, a) (t', a~+ g g h;, ~~i, a& (j,P~,
ij a, p

where i (j) are site indices, a (p) label the orbitals, e; is

the diagonal site energy, and the h; ~ are coupling matrix
elements, as determined by Slater-Koster theory. The
moments of the electronic density of states, which are
determined by the local atomic environment, are defined

by p„=Tr(H") and can be written' as sums of n-body

path terms involving the interatomic couplings h, ~ in the
tight-binding Hamiltonian. For example, the second mo-
ment

E„,= —,
' g P„(r„r~)+ 2 f dE p(E )E, (2)

where t)}„, is a repulsive pair potential and p(E) is the
electronic density of states (DOS). The factor of 2
preceding the integral accounts for spin degeneracy. The
DOS is determined using the maximum-entropy
method, ' and is given by

p(E)=exp —g A,„E" (3)

where the k„are Lagrange multipliers which are non-
linear functions of the moments. Given the total energy
as expressed in Eq. (2), the calculation of the effective in-
teratomic potentials proceeds directly.

The effective potential associated with an n-body clus-
ter is given by'

pi= g h ~h~

i,j,a, p

is given as a sum of radial pair contributions. The
higher-order inoments (n ~ 3) are angle-dependent func-
tions as long as the orbitals in the tight-binding basis
have angular momentum character /~1. This angle
dependence is responsible for the stability of the PTP
structures.

Given the moments, the total energy is calculated us-

ing

A'

V„' (r, , . . . , r„)=g p" "(r,, . . . ,r„),
m

——n ~j"I
(4)

where p" "(r„.. . ,r„)is the contribution of the direct-
ed n-body path to the mth moment, and E is an approxi-
rnation to the electronic band energy obtained from the
density of states (3). Equation (4) defines a linearization
of the dependence of E on the p„,which simplifies the
visualization of the energetics. The angular dependence
of the potentials comes directly from that of the associat-
ed moments. In the cases we have considered, the lineari-
zation gives errors of less than 10% in structural energy
differences. The pair energy is supplemented by a purely
repulsive term which prohibits unphysically close ap-
proaches and includes atomic-size effects. This repulsive
term is computed by fitting to the elemental equilibrium
lattice constants and bulk moduli on the fcc lattice, ob-
tained by self-consistent band-structure calculations. '

The form of the repulsive term we have used is given by

TABLE I. Parameter sets examined for common-band PTP-
fcc structural-energy differences. The units for scheme (a) are in

o $ o a
units of eV A, those in scheme (b) are in units of eV A, and
those in schemes (c)—(f) are in units of eV. For further discus-
sion of tight-binding couplings, see W. A. Harrison, Electronic
Structure ond the Properties of Solids (Freeman, San Francisco,
1980).

Decay scheme

(a) r
(b) (r —r )"

—q(r —r )

0

qro = 3;r„=2.221 A

(d)
—q( r —ro )

ro 4r() 2221 A
—q(r — )

0

qr0=3;r„=2.221 A
—q(r —r, )

qro =3;r„=2.493 A

—90.034
—0.876

—1.291

—1.460

—1.352

—0.935

38.509
0.375

0.646

0.730

0.578

0.400

—3.525
—0.034

0.0

0.0

—0.053

—0.037

P„,~(r, , r, ) = de

For ease of interpretability, the electronic band energy is
calculated within the common-band approximation, in
which single-site energy differences are ignored, and the
matrix elements coupling different sites are assumed to be
independent of the chemical identity of the constituents.
We have found that including corrections to this approxi-
mation results in only minor effects, mainly a 10% shift
in the region of d-electron counts for which the PTP
phases are preferred. We have used seven different types
of tight-binding parametrizations. ' The decay schemes
and ratios of tight-binding parameters that have been
used are shown in Table I. We find that the dominant
four-body term mentioned above is only slightly affected
by the choice of tight-binding parameters. The contribu-
tion of this term to the PTP-fcc energy difference, aver-
aged over the PTP structures that are treated, ranges
from —0. 16 to —0.20 eV for various parametrizations.
The chemical trends in the calculated structural-energy
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differences are likewise insensitive to the choice of param-
eters. In our calculations we use N=4, which corre-
sponds to including up to four-body potentials. The
motivation for this truncation is to obtain a simple r-
space physical picture of the rudiments of the structural-
energy differences. Quantitative calculations must, of
course, go to higher order. We have performed calcula-
tions for higher values of N (up to 16), and found that the
%=4 results typically account for roughly 50—60% of
the structural-energy differences. The dominant chemi-
cal trends are also obtained at this level.
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III. RESULTS

We have considered the energetics of six PTP crystal
structures: the A 15 structure, the MgCu2 Laves-phase
structure, the O.-phase structure, the y-phase structure,
the A1MgZn structure, and the TizNi structure. ' This
collection contains all of the characteristic polyhedra
defined by Frank and Kasper. ' The structural energies
are calculated with parameters appropriate for the V-Rh
system. ' This is chosen because it forms the relatively
simple A 15 structure, and its d-electron count and
atomic-size ratio are such that it is close to the middle of
the A 15 range obtained in the empirical study of Ref. 6,
and may thus be considered to b a "typical" A 15 system.
The structures are treated as fixed atomic volume, which
is obtained via Vegard's law from elemental volumes cal-
culated for the fcc lattice.

Figure 1 shows a decomposition of the structural-
energy difference between the PTP structures and the fcc
structure into two-, three-, and four-body terms. This
decomposition breaks the energy difference down into
pair terms coming from p2, p4, and the repulsion energy,
three-body terms from p3 and p4, and four-body terms

from p4. In addition, the pair terms coming from an
analysis based only on pz and the repulsive contribution
are shown (horizontal stripes) for each structure. We will
ca11 these the atomic-size terms. The A15 and MgCu2
structures have the V3Rh and VRh2 stoichiometries, re-
spectively; these are compared to the Cu3Au structure
and a combination of the Cu3Au and CuAu structures on
the fcc lattice. The remaining structures are much more
complex, and to simplify the interpretation we have sim-

ply used atoms with averaged values of the parameters of
the constituents; in these cases we compare to the fcc
structure. ' In each of the cases, we see a large stabiliz-
ing contribution from the four-body terms, of roughly the
same magnitude. In the A 15-, 0-, and y-phase structures
the atomic-size terms are fairly small and are dominated
by the four-body terms. However, in the MgCu2,
A1MgZn, and Ti2Ni structures the difference is size be-
tween the sites is so large that the atomic-size terms give
a very large destabilizing contribution, which exceeds the
electronic four-body terms. This is consistent with the
absence of the MgCuz phase in the V-Rh phase diagram.
As shown in Table II, the four-body terms are of compa-
rable magnitude in all the structures that we have exam-
ined. The predominance of the four-body terms in the
A15-, 0.-, and g-phase structures is consistent with the
poor correlation of observed PTP phases with atomic-size
ratios, particularly with the above-mentioned "size rever-
sals" in the A 15 structure.

Our cluster expansion for the total energy allows for a
convenient description of the relationship of the
geometries of the PTP phases to their associated energies.
Its simplest terms, the stability of the PTP phases may be
thought of as arising from a competition between
atomic-size effects and angular interatomic forces. The
four-body angular terms enhance PTP stability. Though
we will not describe the three-body terms in detail, we
have found that these terms reflect the atomic size in our
four-moment picture. ' The stabilizing effects of the
four-body terms can be readily understood by an analysis
of the corresponding atomic distribution functions for the
six PTP structures treated as well as the fcc structure.
Figure 2 shows the numbers of different types of four-
body clusters in these structures as functions of the angle
0 (the notation for the four-body clusters is defined in the
inset of the figure). For simplicity, we consider only
those clusters with P(45', since the others make much
smaller contributions. The major feature distinguishing
all of the PTP structures is the suppression of square
clusters with 0=90'. In the completely PTP phases

-0.2 A 15 MgCu& AIMgzn TABLE II. Four-body contributions AE4 to AE(PTP-fcc).

FIG. 1. Decomposition of energy difference between PTP
structures and the fcc structure. Histograms show two-moment
pair terms (horizontal stripes), four-moment pair terms (sparsely
hatched), three-body terms from the third moment (open),
three-body terms from the fourth moment (finely hatched),
four-body terms (cross-hatched), and total energy difference
(solid).

Structure

315
o. phase

g phase
MgCu.
A1MgZn
Ti,Ni

AE4 (eV/atom)

—0.17
—0.16
—0.16
—0.16
—0.18
—0.16
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(3 15, MgCuz, o, and A1MgZn), the 90' squares are ab-
sent. In the remaining two (y and TizNi), their contribu-
tions are very small. The four-body potential, plotted
below the distribution functions, has a pronounced max-
imum at 0=90'. Thus a11 of the PTP structures have a
relative stabilizing contribution from this effect. In addi-
tion, the average values of 0 in the two main groupings

are shifted in slightly from 60' and 120', which gives an
additional stabilizing contribution. We note that the
shape of our V4 is similar to that obtained by free-
electron theory. As mentioned above, the four-body
contribution AE4 to the stabilization energy is essentially
the same for all of the PTP structures (cf. Table II). This
supports the use of topology (tetrahedral versus octahe-
dral packing) as a valid concept in classifying alloy struc-
tures.

The strength and magnitude of V4 are strongly depen-
dent on the d-electron count Nd of the alloy. This effect
arises because of the factor BE jBp which is present in

Eq. (4). In Fig. 3 we show the band-filling dependence of
the prefactors for the two-, three-, and four-body terms.
The two-body terms are modulated by a factor which is
strongest at half-filling. The four-body terms, on the oth-
er hand, are modulated by an oscillatory function of
band filling, and display the most pronounced chemical
trends. For nearly-half-filled bands we see that the four-
body potentials are modulated by a positive factor, while
for nearly empty or filled bands the factor is negative.
The result of this oscillatory behavior is that square
four-atom clusters disfavor the fcc structure for nearly-
half-filled d-bands, while for the nearly-empty-band limit
such squares become energetically favorable. V4"
changes sign and begins to stabilize the fcc structure at
Nd =3.0 and 7.0. This region of d-electron counts favor-
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FIG. 2. Four-body potentials and angular histograms. Histo-
grarns show number of four-body clusters functions of angle 0
for various structures (geometry defined in inset). Shown at bot-
totn of panel (a) are plots of the four-body potential for /=0'
and 90.

FIG. 3. Prefactors of two- (top panel), three- (middle panel),
and four- (bottom panel) body potentials as a function of band
filling Xd. Here y„=5"'- 'p„/p," ' is a dirnensionless nth mo-
ment.



42 UNIVERSAL STABILIZING MECHANISM FOR TRANSITION-. . . 3349

(a)
A15

~ ~
C

C$

Mgcu&

o
a ~R ™~a

{u3Au

0.50 —,

u

0.25 ~l

0

Rh-Rh

V—Rh
V—V

I+Orooooee~+ ~

—0.25 I

2.5
I I

3.0
r (A)

I

3.5

A1MgZn

cn ao ao+ %

ing the PTP phases corresponds fairly well to the average
d-electron counts of 3.0—5.0 that we obtain from the PTP
phases tabulated in Ref. 6, assuming 1.5 s-p electrons per
atom. At the V3Rh stoichiometry, the V-Rh system con-
sidered here has Nd =4.5 if 1.5 s-p electrons per atom are
assumed, and is thus inside the PTP region.

Because of the connection [cf. Eq. (4}] between the
effective potentials and the moments, we can describe the
stabilizing contribution of the four-body terms in terms

of the shape of the density of states (DOS}. The fourth
moment, which the four-body potentials reAect, provides
a measure of the weight of the DOS around the band
center. ' If the fourth moment (scaled by the bandwidth)
is small, then the DOS will have a lower value near the
band center than for a density of states with a large
fourth moment. When the Fermi level falls in this "pseu-
dogap" resulting from the lower p4, the structure will be
energetically preferred relative to a structure without a
pseudogap.

As mentioned in Sec. II, the angular dependence of the
potentials arises from the fact that the Hamiltonian cou-
ples d-states. In the context of an s-band Hamiltonian,
the three- and four-body terms have no angular depen-
dence. Because the PTP structures have more four-body
clusters per atom than in the fcc structure, the four-body
contributions in an s-band model would disfavor the PTP
structures. It is the phase cancellation between contribu-
tions from different paths, arising from the angle-
dependent couplings, which makes the electronic
enhancement of PTP stability possible at all.

An analysis of the atomic-size terms is also revealing.
In Fig. 4 we show the distribution of near-neighbor sepa-
rations for all six of the PTP structures as well as for the
fcc structure. We also show the effective pair potentials
derived from pz and the repulsive terms. These poten-
tials reflect the atomic-size constraints present in these
structures. The atomic sizes of V and Rh are fairly simi-
lar, so the minima of the V-V, V-Rh, and Rh-Rh poten-
tials are not far separated. Thus the fcc structure is the
most favorable at the pair level, since all nearest-neighbor
bonds have the same length, and this length can be ad-
justed to coincide with the minima of the pair potentials.
All of the PTP phases, in contrast, display fluctuations in
bond lengths of 20% or more. If the atomic sizes are
similar, this provides a destabilizing contribution. If the
atomic sizes are distinct, a stabilizing contribution can re-
sult. In the Laves phases, this contribution can be as
large as 0.3 eV/atom, comparable to the stabilizing four-
body terms. However, in the o. , A 15, and g phases, even
in the most favorable cases the magnitude of the stabili-
zation energy due to the pair terms is less than 0.1 eV per
atom, smaller than that of the electronic terms. The dis-
tinction between Laves and non-Laves phases is strongly
supported by the empirical analysis of the a, 315, g,
and Laves phases which found a much stronger correla-
tion between atomic size and stability for the Laves
phases.

0 0 QCFR3 QO

Ti2Ni
IV. CONCLUSIONS

a a G3~
} 0

2.5 3.0
r(A)

3.5

FIG. 4. Two-body potentials derived from p2 and repulsive
term, together with pair histograms. Histograms show number
of near neighbors vs separation distance for various structures.

In summary, we have shown that the dominant in-
teraction favoring transition-metal PTP structures, as a
class, over the fcc structure, is a four-body angular in-
teraction whose contribution is roughly independent of
the type of PTP structure. The sign and magnitude of
the interaction depend strongly on the d-electron count
of the alloy. Thus we expect that PTP packing is not
universally preferred, even locally, in nonperiodic sys-
tems, such as liquids, glasses, and icosahedral phases. To
obtain even the correct chemical trends in the structural
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energetics of such systems, it will be necessary to include
angular forces of the type described here, in addition to
the atomic-size eff'ects which have generally been em-

phasized in atomistic simulations.
The type of analysis carried out in this paper has

demonstrated the existence of favorable energetic contri-
butions which are found in all of the PTP structures. We
believe that the universal factors favoring local
tetrahedral packing in the PTP phases also play a role in
determining the types of local coordination polyhedra
found in transition-metal quasicrystals. In particular, the
Mn constituents of the Ti-Mn quasicrystal should be ex-
pected to be components of polyhedra with a paucity of
90' bond angles. According to the previous discussion,
this would correspond to a reduced value of the DOS at

the Fermi level. Although this quantity has not been
measured for transition-metal quasicrystals, the absence
of magnetic moments on the Mn sites suggests a re-
duced DOS at the Fermi level. This is also found in
specific-heat measurements for a number of other quasi-
crystals.
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