
PHYSICAL REVIEW B VOLUME 42, NUMBER 1 1 JULY 1990

Mean-field theories of cuyrate superconductors: A systematic analysis

M. Grilli
Department ofPhysics, Uniuersity ofRome la Sapienza, I 001-85 Rome, Italy

B. G. Kotliar
Serin Laboratory ofPhysics, Rutgers University, P.O. Box 819, Piscataway, New Jersey 08854

A. J. Millis
AT&TBel/ Laboratories, 600Mountain Avenue, Murray Hill, ¹mJersey 07974

(Received 30 November 1989)

The lattice Anderson model believed to be relevant to high-temperature superconductors and

heavy-fermion metals exhibits a variety of different behaviors, including mixed-valence, heavy-

fermion, and Mott-insulating states. %'e determine, via an auxiliary-boson mean-field theory, the

parameter regimes in which these behaviors exist. For the two-dimensional Cu02 Anderson model

we calculate the susceptibility and quasiparticle plasma frequency. By comparing these to specific-

heat, susceptibility and optical data for high-T, superconductors, we determine that the materials

are in a regime controlled by proximity to a Mott transition and that magnetic correlations play an

essential role.

I. INTRODUCTION

Models involving a band of weakly correlated fermions
coupled to a band of strongly correlated, nearly localized
fermions have received substantial attention from
condensed-matter theorists because of their probable
relevance to the high-T, oxide superconductors and to
heavy-fermion metals. These models display a variety of
phenomena, including conventional or light-mass Ferrni-
liquid behavior, large-mass heavy-fermion behavior, and
a metal-insulator transition to an insulating magnetic
state. Particular limits of these models have been exten-
sively studied, but to our knowledge there has been no
systematic analysis of the various regimes and the cross-
overs between them. In this paper we perform a part of
this systematic analysis using an auxiliary boson mean-
field-theory description of the "Cu02" models which are
widely supposed to describe the high-T, superconductors.
The mean-field theory is believed to provide a qualitative-
ly correct description of the Fermi-liquid behavior that
occurs when intersite magnetic interactions in the strong-
ly correlated band may be neglected. Behavior of the
non-Fermi-liquid regime is not yet well understood.
After elucidating the various parameter regimes and the
crossovers between them, we attempt to determine which
regimes are relevant for the high-T, superconductors by
evaluating our expressions using model Hamiltonian pa-
rameters determined from local density calculations and
by interpreting experimental data. We conclude that for-
mulating a theory which takes proper account of intersite
magnetic correlations is crucial.

The rest of the paper is organized as follows. In Sec. II
we give a genera1 discussion of the various possible re-
gimes and we define the important parameters. We also
discuss the mean-field theory and its probable domain of

applicability and review other work. In Sec. III we solve
a simple one-dimensional model in detail, displaying the
different regimes and the parameters governing the cross-
overs. In Sec. IV we consider a more realistic two-
dimensional model. Calculations in this model require
much more extensive numerical work, so we confine our-
selves to a few representative sets of parameters, includ-
ing those proposed on the basis of local-density calcula-
tions. In Sec. V we consider the extent to which experi-
mental data points to one parameter regime or another.
Section VI is a conclusion. Readers uninterested in the
details of the mean-field calculations may wish to consid-
er only Secs. II, V, and VI and the figures. These sections
discuss the principal results and their application to
high-T, superconductors and may be read independently
of Secs. III and IV, in which the principal results are de-
rived.

II. MODEL AND GENERAL DISCUSSION

We consider the canonical Cu02 lattice shown in the
upper part of Fig. 1. We include one d orbital at energy
c.d on the Cu site and one p orbita1 at energy c~ on each 0
site. We assume a hybridization matrix element t d be-
tween adjacent Cu d and 0 p orbitals and a hybridization
matrix element t between adjacent O p orbitals. The
phases are chosen appropriately for Cu d, ~ and O~x2

orbitals.
We assume a hole notation, so that the vacuum is the

state in which all orbitals are fully occupied. It is now
widely accepted' that the energy cost to doubly occupy
the Cu site with holes, Udd, is approximately 8 eV, larger
than other energies in the prob1em. %e assume Udd = ~.

One important parameter is E, the negative of the en-

ergy of the Cu d level measured relative to the bottom of
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FIG. 1. Sketch of unit cell with orbitals and hopping matrix
elements indicated: (top) unit cell for physically relevant Cu02
lattice; (bottom) unit cell plus oxygen from neighboring cell for
one-dimensional model solved in Sec. III.

the oxygen band. In the CuOz model defined in Fig. 1 the
lowest state in the oxygen band occurs at the zone corner
and has energy c =4t, so

(2.1)

Another important parameter is the doping 5 defined in
terms of the number of holes per unit cell nz via

(2.2)

The model with t =0 has been extensively studied. '

It has been determined that if Eg /t d is sufficiently large,

Eg &Eg, the model is a Mott insulator at half-filling,
5 0 Eg is the gap in the Mott insulating phase. An im-

portant energy scale in the insulating phase is the antifer-
romagnetic exchange coupling J.

One may also consider the energy cost to doubly occu-

py an 0 site with holes, U . In the real materials U

may be as large as 4 eV. However, in the situations of in-
terest to us in this paper, the occupancy of an oxygen site
is small, ranging from -5/2 in the E )&tzd limit to —

—,

when E =0 (when E =0 the total Cu and 0 occupancies
are equal and there are two 0 sites per unit cell). Thus
the probability of an 0 site being doubly occupied by
holes is small, so that the term involving U may be
neglected. We set U =0 throughout.

If E )E' and 5(0, i.e., with electron doping of the
insulating state, one can eliminate the 0 states by pertur-
bation theory and the model clearly maps onto a one-
band Hubbard model. For this model it is believed that
the effective Fermi energy EF is proportional to 5 as
5~0 provided EF )J. If EF* &J, more exotic behavior
occurs.

If Eg & Eg and 5 )0 the situation is not so clear, for the

added holes must reside on the 0 sites. Rice and Zhang
have argued that if one extra hole were added to the Mott
insulating state, it would be bound into a singlet with a
spin on a Cu site thus eliminating one Cu spin just as if
an electron had been added. The energy of the bound
state would be below the bottom of the oxygen band be-
cause the virtual hybridization between the O hole and
the Cu must lower the energy. Rice and Zhang speculat-
ed that at finite concentration of added holes these bound
states would form a band lying below the bottom of the
oxygen band. They estimated that the energy gain per
hole and the effective hopping matrix element were of or-
der t d/E, so that as long as one confined attention to
sufficiently small 5 and to energies less than t&/E the
model would map onto a one-band Hubbard model, as in
the case 5&0. Kotliar, Lee, and Read solved the t =0
model using a "slave-boson" mean-field technique.
Among other results, they found that if at 5=0 the mod-
el is an insulator, then at 5&0 a quasiparticle band of
Fermi energy Er'-5t „/Es was split off from the oxygen
band by an energy -t d/E . The quasiparticle band is
precisely the slave-boson mean-field theory representa-
tion of the singlet band proposed by Rice and Zhang.
Kotliar, Lee, and Read discussed the physical interpreta-
tion of the quasiparticle states and calculated the spin
and charge susceptibilities, assuming that the model was
in the Fermi-liquid regime. Their criterion for Fermi-
liquid behavior is 5t~d /Es & J. In the regime
J & 5t d /E, they expect different physics.

In this paper we extend the above analysis to the case
of finite oxygen-oxygen hopping, t %0. There are several
motivations. One is that various calculations of model
Hamiltonian parameters have determined that t /t d is
not small. Another is that the physical picture proposed
by Rice and Zhang must break down for sufficiently
large t and 5. In this limit one has a large number of
itinerent carriers coupled to local moments, as in the
heavy-fermion metals. In this case the quasiparticle band
appears as a scattering resonance in the itinerant band
rather than a set of bound states beloio the itinerant band
The effective Fermi energy is exponentially small, ex-
ponentially sensitive to 5, and decreases as 5 increases.
Specifically,

EF'-t, pe(x[t,(E,+4—5t, )/t,'d]) .

In this case EF' is often referred to as the "Kondo tem-
perature" and denoted Tz. The heavy-Fermion state has
been extensively studied on the assumption Ez & J.
The heavy-Fermion state is nonmagnetic. Again the
large mass or low Ez is due to the quenching of the spin
entropy on the scale of EF*. As pointed out years ago by
Doniach, in the limit J &EF* one expects magnetic or-
der in the local moments and light electron behavior in
the conduction electrons. The crossover that occurs
when EF'-J is not understood.

Finally, we mention the intersite (p-d) Coulomb in-
teraction, V. This interaction was introduced as a possi-
ble pairing mechanism of high-temperature superconduc-
tivity by Varma, Schmitt-Rink, and Abrahams. ' Proper
treatment of V may be essential for correct calculation of
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the quasiparticle pairing interactions; however, these are
beyond the scope of the present work. In the context of
the present calculations the principal effect of V is to shift
the value of the parameter E to E'=E +2V. The
demonstration is given in the Appendix; elsewhere in the
paper we assume V is included in E, .

The Cu02 model we have described has been intensive-

ly studied by many authors. We have already mentioned
the work on the models with t =0 of Kotliar, Lee, and
Read and Rice and Zhang. Newns, Rasolt, and Pa-
tinaik' have studied a set of parameters corresponding to
Eg &Eg, allowing for a nonzero tp and a finite Udd but
setting V and J=0. Balseiro et al. ,

' have studied a
model with finite Udd and a nonzero Vbut J=0, finding
results similar to those of Kotliar, Lee, and Read. Kim,
Levin, and Auerbach' have considered a model without
V or J, but with finite tp, and have considered several
different values of E . They calculated the Hall resistivi-

ty, and argued that the doping dependence of this quanti-
ty could be understood using the Fermi-liquid-based
mean-field theories. Their calculation assumes that the
correlations which produce insulating behavior at half-
filling affect only the in-plane hopping, but not the
between-plane hopping. This assumption appears to us
not to be valid. More recently these authors have con-
sidered electron-phonon coupling in these models. '

Castellani and Kotliar' considered a model with t =0
but JAO and discussed the transitions between the
Fermi-liquid regime and some of the non-Fermi-liquid re-
gimes that might be obtained.

In the present work we systematically examine the
variation with tp and J of the properties of the CuOz
model, distinguishing several different regimes of behav-
ior and giving the parameter values at which crossovers
or transitions between them occur. Then, by calculating
such physical quantities as the mobile carrier plasma fre-
quency, the specific heat, and the susceptibility and corn-
paring with experiment, we attempt to determine which
parameter regimes are relevant for the high-T, materials.

To perform the analysis we use the slave-boson mean-
field-theory technique. ' This technique has been exten-
sively applied to the one impurity and lattice Kondo and
Anderson problems, and has also been used to study
several regimes of the Cu02 models. It is believed to
treat correctly the U&d=~ constraint. The mean-field
theory becomes exact in a large Nlimit (N is a s-pin de-
generacy) and even at finite N is known in the Kondo
problem to give correctly (i.e., to leading logarithmic ac-
curacy) the effective Fermi energy EF*, provided E~ & J.
As t and 5~0 with E & E' it gives results that agree
(up to factors of order unity) with those of Rice and
Zhang. We believe therefore that the mean-field theory
gives a reasonable estimate for the two energy scales, EI';

and Eg, for various values of tp tpd and 5 if J is
suSciently small.

In the slave-boson method one introduces an auxiliary
boson field, b;, which represents a Cu site with no holes.
It is then necessary to rewrite the p-d hybridization as

(r~dd, p, b;+H. c. )

In the mean-field theory one replaces b by its expecta-
tion value b. Because there is at most one hole per Cu,
b ~ 1. A nonzero mean-field value of b represents
coherent hybridization between p and d levels, so that the
p and d holes combine to form a Fermi liqui. The hy-
bridization is, however, reduced from the noninteracting
value by correlation effects, which are represented by a
value b & 1. If b =0 then there is no coherent coupling
between the Cu and 0 sites, so that the holes on the Cu
sites will not directly participate, e.g. , in the low-co elec-
trical conductivity. The interpretation of the boson field
b has been discussed at greater length elsewhere. ' ' '

The other important element in the slave-boson
method is the constraint g d, d, +b, b, = 1. This
expresses the fact that on each Cu site the only allowed
states are those with zero or one hole. The constraint is
enforced with a Lagrange-multiplier field k;, which in the
mean-field theory is replaced by its expectation value A,

(again assumed to be site independent). A, is convention-
ally rewritten as k=sd —sz, thus defining sd, the quasi-
particle d-level energy. cd is closely related to the Fermi
energy and is also a convenient parameter to use in the
solution of the mean-field theory.

In principle, intersite magnetic correlations are gen-
erated by the Hamiltonian given in Fig. 1. It is a defect
of the slave-boson method that these magnetic correla-
tions do not appear in the mean-field theory. An approx-
imate method of incorporating these correlations is to
add to the mean-field theory a term of the form
J g&,, &

S, S, where S, is the spin on Cu site i This. tertn
may be treated, e.g., in one of the Hartree-Fock approxi-
mations devised in the context of resonating-valence-
bond (RVB) theory. ' We believe and will show below
that this approximation gives a physically reasonable
qualitative description of the effect of including magnetic
correlations on the specific heat and uniform susceptibili-
ty. The details of the magnetic behavior and of the in-
teraction of the charge and spin degrees of freedom will
not be correctly given.

From the mean-field theory one finds that depending
on the values of the parameters E, t Eg /t d, 5, and J the
behavior may be characteristic of any of the regimes
(conventional metal, Brinkman-Rice, heavy-fermion, or
magnetic) previously discussed. To distinguish them it is
convenient to consider two physical quantities, the
Fermi-surface density of states No and the quasiparticle
plasma frequency co*. The quasiparticle plasma frequen-
cy is defined as follows: In a crystal at T =0 the optical
conductivity o (m) will have a term proportional to 5(co).
The coeScient of this term is cu' /4.

For E &E', and J sufticiently small the model is me-
ta11ic at half-fi11ing: Xo and co are essentially indepen-
dent of doping for t E /t d &1; for t E /t d 1 they
remain independent of 5 until 5 grows large enough that
the heavy-fermion regime is reached when the effective
Kondo exchange r d i(Es+45t ) becomes comparable to
the p-electron bandwidth t, upon which Xo grows and
cop shrinks rapidly with 5. With increasing 5 the condi-
tion NOJ-1 eventua11y becomes satisfied, and No and co

cease to vary strongly with 5.
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For E &E' and small 5 the physics is controlled by
the Mott transition that occurs at 5=0. In this regime if
J is negligible the physics is qualitatively similar to that
described in Refs. 2 and 3: in particular, No-5 ' and
co* -5. However, parameters are strongly renormalizedP
from the Kotliar-Lee-Read (KLR) values if t E /t d is
nonzero. A priori one expects a nonzero t to have two
competing effects. The direct oxygen-oxygen overlap
provides an additional channel for particle motion; this
effect tends to increase the velocity. However, as t is in-

creased, the rigidity of the oxygen wave function is in-
creased, as is the tendency toward heavy-fermion behav-
ior; these effects tend to decrease the velocity. We find
that uF/5 is a decreasing function of t~Es /t d, except at
very small values of this parameter. If t E /t d

~ 1, then
at a finite 5- —,'exp( 4t~E—s/t~z) the model crosses over

smoothly into the heavy-fermion regime previously de-
scribed. At sufficiently small 5 the condition NoJ-1 be-
comes satisfied; the magnetic susceptibility ceases to vary
strongly with 5 while co~ remains proportional to 5 as
5~0. We believe this latter regime is relevant for the
high- T, materials.

III. SIMPLIFIED MODEL

+N(e„—e'„)(b' —1) . (3.1)

In this section we consider a simple one-dimensional
model which is to some extent tractable analytically. In a
subsequent section we shall apply the insights gained
from the study of the simplified model to the analysis of a
more realistic two-dimensional model. The results ob-
tained on the one-dimensional model will be qualitatively
similar to those obtained on the two-dimensional model
(although numerical factors will change) because we

study these models with a mean-field approximation.
Typically, the qualitative physics of mean-field theories is
independent of dimensionality. Special features of one di-
mensional problems, such as power-law correlations, are
missed by our mean-field theory.

We consider the one-dimensional Cu-0 lattice shown
in the lower part of Fig. 1, with one d orbital (at energy

ed ) on each 0 site and one p orbital (at energy e ) on
each 0 site. We consider Cu-0 (pd) and 0-0 (pp) hop-
ping, as shown in the lower part of Fig. 1. The phases are
appropriate for Cu d 2 & and OP orbitals.

x —y
We use a hole notation, so that the vacuum is the state

in which all orbitals are fully occupied. We assume an
infinite energy cost to doubly occupy the Cu site with
holes. We introduce a slave boson b to represent a Cu
site with no holes and Lagrange multiplier, A, =(ed —ed)
to enforce the constraint nd+nb =1. We treat b and cd
as static mean-field parameters to be determined by ex-
tremizing the energy.

The mean-field Hamiltonian in k space is then

rf I eddkadka+ eppkapka
ka

+[it db sin(ka/2)dk~ka+H. c. ]

+2t cos(ka)pk~k I

Here N is the number of sites in the crystal.
We now simplify the problem further by defining a di-

mensionless momentum variable y via y =ka/n(. a is the
lattice constant) and approximating

coska =1—2y

sin ka/2=y .

(3.2a)

(3.2b)

k —,'[(e~+2t 4t y——ed) +4t~zb y]'~ (3.3)

The lowest-lying part of the lower band is at the zone
edge, y =1.

The Fermi momentum y+ is given by

yF =-,'(1—5), (3.4)

where the total nutnber of holes is (1+5).
The mean-field equations, determined by minimizing

(H ), may be written
1

1 b2= f —dy[1+(e +2' 4t y —e—d)/R], (3.5a)

E —(e 2t —e—d)= f dy 2t2dy/R (y), (3.5b)
yF

R'(y)=(e~+2tp 4tpy ed
—
) +4t'—„b~y .

Here we have defined the important parameter

(3.6)

E =c. -2t -c.' .
g P P (3.7)

Es is the negative of the energy of the bare d level mea-
sured from the bottom of the oxygen band. In the one-
dimensional (1D) model the lowest states in the oxygen
band are at s 2t . In the —two-dimensional (2D) model
they are at e 4t [cf. Eq. (3—.1)].

The integrals in Eqs. (3.5) may be performed analyti-
cally, yielding nonlinear equations that may be solved nu-
merically. For example, Eq. (3.5b) becomes

t 2

E —(e 2t —e—
d ) = [R (1)—R (yF)]

P

I t2„8t R (1)+32t2+I
64t 8t R (yF)+32t~yF+I

where I =4t db 8t (e +2t ——ed). The logarithm,
which is important when t is sufficient large, and is cut
off by b when cp+2tp E'p (0, is a signature of the Kon-
do effect.

We have solved Eqs. (3.5) numerically for various pa-
rameter regimes. We discuss the solutions below. How-
ever, analytic solutions yielding considerable insight are
possible in certain limits. We discuss these first.

At 5=0 the model exhibits a Brinkman-Rice metal-
insulator transition as E is increased to a critical value
E'. At the transition, b ~0. To determine E' we ex-

The fermionic part of Eq. (3.1) defines a quasiparticle
band structure with two energy bands,

E*(y)= —,'(e +ed+2t 4t y)—
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with 8 &0 and

1 2t dyA=1 — y
~F (e sd +—2r 4r~y )— (3.8)

The Brinkman-Rice transition occurs when A =0.
This determines s —ed. Substitution into (3.5b) evalu-
ated at b 2 =0 determines E'. Further analytic progress is
possible in the limits t /t d ~0 and t /r &

~ ao.
In the former case,

v'3
c —2t —c. = t ——'t+

p p d 2 pd 9 p 7

so that

E'=&3r 't +--
pd 9p

In the latter case,

pand Eqs. (3.5) for small b, assuming s —2t —ed & t db
We show that the assumption is self-consistent at 5=0
for E sufBciently close to E'. We have verified also that
for E &Es, solutions of Eqs. (3.5) with e~ 2—tz —ed &0
OI tpd 6 & cp 2 tp Bd & 0 do not exist.

By expanding Eq. (3.6a) with respect to b one obtains

0= ~b'+ab4

decrease in the minimum gap needed to stabilize the insu-
lating state at 5=0. One might naively expect that in-
creasing t from zero opens an additional channel for
particle motion, thereby making the system more metal-
lic. Ho~ever, increasing t increases the stiffness of the
0 band, thereby reducing the energy to be gained by hy-
bridizing with the Cu.

We next consider the behavior of the model for
Es &Es and 5&0. Now b must vanish as 5~0; in this
case one must have (e 2t ——ed ) &0, so that the quasi-
particle level is below the bottom of the oxygen band.
This may be understood by a simple argument. If one
hole is added to the insulating state, then it must reside
on the 0 site. In the absence of coupling to the Cu sites,
the hole would reside in the bottom of the oxygen band.
Within the mean-field theory, coupling to the Cu sites
can only lower the energy of the quasiparticle. This is
essentially the argument which Rice and Zhang applied
to the model with t =0. Thus, for sufficiently small 5 the
quasiparticle states are pulled down below the oxygen
band, independent of the value of t . However, the phys-
ical properties vary with t .

Consider first the limit Er »E', 5~0. For
«t d/E one has

E,
—2t —6 =t /2t +.2 c. —2t —c.d= —8'/9, (3.9a)

and

Eg = ln +0.25 +
tpd

3t d
b =5 —O(t E /r )

4E2 p g pd

5t,'d
UF E

(3.9b)

(3.9c)

The variation of E' with t at fixed t d, determined by
solving Eqs. (3.5) numerically, is plotted in Fig. 2. It is
evident that the curve interpolates smoothly between the
two limits, with the crossover occurring at tp tpd.

It is at first sight surprising that increasing t leads to a

Recall that Er =e —2t~ —
Ed is the energy of the bare d

level measured from the bottom of the oxygen band, and
is also the gap in the insulating state. As tp is increased
at fixed E, the quasiparticle level moves closer to the ox-

ygen band. For tz & tzz/Es and 5~0 we find

e 2t~ —ed=2—t exp[ (2t Es/t~z)],—

4r,25 2t E
b = exp

tpd tpd

(3.10a)

(3.10b)

CL UF=4t 5exp
2tpEg

tpd

(3.10c)

I

0.5

tp / tp(j

I

1.0

FIG. 2. Minimum gap E~ needed to stabilize insulating phase
at half-filling plotted vs oxygen-oxygen hopping for one-
dimensional model. Increasing t~ increases the energy cost of
rearrangernent of 0 orbitals needed to hybridize with Cu, hence
renders the metallic state more diScult to sustain.

so that the quasiparticle level becomes exponentially
close to the bottom of the p band. As t is increased from
zero the Fermi velocity initially increases. This might be
expected because direct oxygen-oxygen hopping opens an
additional channel for particle motion. The increase in

vF shown in Eq. (3.9), however, occurs only for very small
values of (t E /tzz)&0. 1; for larger t values the de-
crease in b begins to dominate and UF ultimately van-

ishes exponentially with t; i.e., the quasiparticles become
exponentially massive.

At suSciently small 5, for both large and small t, we

find Ep 2 tp cd & 0 and UF —5, indicating that the be-
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havior is controlled by a Brinkman-Rice transition analo-
gous to that in a one-band Hubbard model. This is the
behavior expected from the Rice-Zhang arguments. The
rapid decrease of the binding energy of the Rice-Zhang
band with increasing t may be understood in terms of
the rigidity argument used to justify the t dependence of

However, for tz ~ r d /Eg and sufficiently large 5 the be-
havior will no longer be governed by proximity to the
Mott transition. %e have already seen that c —2t —cd
decreases with increasing 5. For t E /t d ) 1, there ex-
ists a critical value of 6, 5„at which E'p 2' Ed 0.
For 5 & 5, the Zhang-Rice band becomes a resonance in
the oxygen band and as 5 increases further, heavy-
Fermion behavior results.

The critical value of 5 may be estimated by equating
the condensation energy per hole [e„Eq. (3.14}]with the
Fermi energy of the oxygen band with 5 holes and t d =0;

0.5—

N
+

CL

I

0.'l—

0.5
I

1.0
I

0, 1

tp = 0.1

I

0 ' 5
8

0.5

E

E

I

0.1

tp = O. &

I

0.5

a
C4
+

CL

I 0.'l
4r

1.0

E

E

20—

10—

FIG. 3. Solid lines: quasiparticle energy level measured rela-
tive to bottom of oxygen band plotted vs doping. Dashed line:
chemical potential of unhybridized oxygen band at doping 5.
All calculations performed for 1D model. In (a), Eg &E~ so the
state is metallic at half-filling; in (b), Eg )Eg so the state is insu-

lating at half-filling. The heavy-ferrnion regime (quasiparticle
resonance at energy slightly greater than chemical potential of
unhybridized band) occurs for sufficiently large 5. For Eg & Eg,
the heavy-fermion regime crosses over smoothly into the
"Zhang-Rice" regime (bound state pulled out of oxygen band
into insulating gap) for sufficiently small 5. Thus, there is no
essential difference between a Zhang-Rice singlet and a heavy-
fermion resonance.

(b)

I

0.5

= 0.1
I

1.0

FIG. 4. Mass enhancements vs doping 5 for Eg (Eg, metallic
at half-filling (a) and Eg )Eg, insulating at half-filling (b). In (a)
the onset of the heavy-fermion regime (exponentially large m *

exponentially dependent on 5) is evident for t =0.5 at 5 &0.5.
In (b) the Brinkman-Rice behavior m /m -5 ' (emphasized in
the inset) is seen at small 5, and the heavy-fermion regime is
seen at 5&0.5 for t~ =0.5.
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N
O

5

0 . 1 0 .5 1 .0

by solving Eqs. (3.5) under the condition s 2t —s—' =0
we find

—2t Eg
5, = —,

' exp
pd

(3.1 1}

FIG. 5. Condensation energy c, vs doping 5 for E~ & E, , in-

sulating at half-filling. E, is the energy gained by coherent hy-
bridization of 0 and Cu holes, and is the appropriate energy to
compare with the magnetic ordering energy. Note the linear in-

crease at small 5 and the decrease, characteristic of the heavy-
fermion regime, at large 5.

Kondo effect only occurs for large t and large 6. Figure
4(b) shows the mass enhancement for the case E & E'.
In the inset (m *5/m ) is plotted to emphasize the
Brinkman-Rice regime where m *-5 ' . We note that
marked deviations from the Brinkman-Rice behavior be-
gin when 5-5, if t E /t z

& 1 . The exponential rise
characteristic of the Kondo effect does not begin until
25t~ Es /tz~ —1 . For the parameters considered we note
that m ' increases with increasing t .

Figure 5 shows the condensation energy c„for various
parameters. c, is defined as

s, = 2f dyE (y)+(s. —.s)(b 1)—
2—f dy (e +2t 4t,y—) sl .— (3.14)

3'F

c, is the energy per site relative to the energy of the
unhybridized state with b =0. A nonzero b indicates
that the d electrons are coupled coherently to the p elec-
trons, forming a Fermi liquid. c., is the energy gained by
this process and is therefore the appropriate energy to
compare with the magnetic ordering energy J. Note the
increase of s, with increasing 5 in the Mott regime and
the rapid decrease of s, with increasing 5 in the Kondo
regime. When c, ~J this theory is not applicable, be-
cause magnetic effects neglected in the theory become im-
portant.

A detailed treatment of the regime c., &J where mag-
netic correlation effects are important is an important un-
solved problem in condensed-matter physics, and is
beyond the scope of this paper. However, the qualitative
effect of magnetic correlations upon the specific heat and
susceptibility can be seen from a simple extension of our
mean-field theory. We add to our Hamiltonian, Eq. (3.1),
an explicit magnetic interaction term

At 5=5„e, 2t —sz =0—and

U~ = t exp( 4' Es /tpg )— (3.12)

JgS, S;+, . (3.1 5)

m =v'/v'.
m

(3.1 3)

Here U is the unrenormalized velocity given by H [Eq.
(1)] with U =0, i.e., with b = 1 and sz = sz. m ' /m
measures the mass enhancement over this band structure
value. It is also proportional to the inverse of the quasi-
particle plasma frequency squared for this one-
dimensional model. Figure 4(a) plots m * versus 5 at
Eg (Eg The rapid increase in m * characteristic of the

Thus at the point 5=5„ the velocity is no longer pro-
portional to 5 and is indeed exponentially small. For
5 & 5„vF decreases further because the difference be-
tween the bare d level and the oxygen-band Fermi level
increases.

To display the various regimes and crossovers in more
detail we have solved the model numerically. The results
are shown in Figs. 3—5 .

Fig. 3 shows the energy of the quasiparticle level,
c. —2t —c&, as a function of 5 at various values of t for
the cases Es & Es [Fig. 3(a)] and E~ & Es [Fig. 3(b)]. Fig-
ure 4 plots the mass enhancement m ' /m defined by

Here S, is the spin of a hole on Cu site i, S; =d; o d;p
(explicitly including spins of holes on 0 sites would not
change our results qualitatively}. It is convenient to
rewrite this term as

ia
ia"i + la'i + 1P i g ' (3.16)

As shown, e.g., in Ref. 19, this interaction may be
treated in mean-field theory by introducing various
particle-hole and particle-particle expectation values. It
is however very diScult to write down states with long-
range magnetic order using this formalism. The predic-
tions of the mean-field theory for phase diagrams of pure-
ly magnetic models [where the only terms in the Hamil-
tonian are magnetic terms such as (3.1 5)] have received
substantial attention. Some work has also been done on
the phase diagram and thermodynamics of one-band (tJ)-
models at nonzero 5. Discussing these complicated issues
is beyond the scope of this paper. Here we wish simply
to demonstrate that incorporating the magnetic coupling
J provides a new energy scale, unrelated to c„on which
the spin entropy is quenched, so that in the regime c,, ~J
the specific heat and uniform susceptibility do not depend
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H =H)+JJ, (3.17)

strongly upon 5 or e —ed. For this purpose considera-
tion of any of the mean-field states suffices, and for sim-
plicity we choose the uniform RVB state
4;=Jg (d; d;+, ) =ho. This state was shown2 to be
stable for small J and 6nite 5. The mean-field Hamiltoni-
an then becomes

where Hi is given by Eq. (3.1) and

HJ= —+25, cos(ka)dkdk+2b, /J .
k

(3.18)

This extra term means that the quasiparticle energies E+-

[Eq. (3.3)] become

E+(y) =—
—,'[e~+2t~(1 —2y)+ed —25(1 —2y)]

+—,
'

I [e +2t (1—2y) —ed+26(l 2y}—] +4t2db
y
I'~ (3.19)

The mean-field equations are now determined by
minimizing H with respect to c.d, b, and b. They become

]
1 b'= f—dyIl+[e +2t (1—2y) —

Ed

3tp +O(J),
4E

3tpdb2=5 +O(J/(e —sd)),
4E p d

(3.22a)

(3.22b)

+26(1—2y)]/R '], (3.20a)

1E —(e 2t —ed—)= dy 2t zy/R',
3'F

(3.20b)

4A =+ y 1 —2y 1+ c.p+2tp 1 —2y —cd
J'F

b, = —J/8,
U~=J/2+5t~~/Es .

(3.22c)

(3.22d)

Thus we see explicitly in this limit that the Brinkman-
Rice singularity in, e.g. , the specific-heat coefficient
y-U ' is cut off by the magnetic effects so that y —J
as 5~0.

One finds similar behavior in the heavy-fermion limit,
with

+26,(1—2y)]/R '] ),
(3.20c)

v'=J/2+4t exp( 2t dlt E—
) . (3.23)

with

[R'(y)] = [s +2t (1—2y) —ed+26, (1—2y)]

+4tdb y . (3.21)

Again we emphasize that the mean-field theory is unlike-
ly to represent correctly the detailed physics of the re-
gime with c, & J, but it does demonstrate explicitly that
the Brinkman-Rice and heavy-fermion singularities are
cut off by magnetic effects at the energy scale J, although
the coefficient of the term proportional to J in Eq. (3.22d)
or (3.23) may not be correctly given.

IV. REALISTIC MODEL

Consider the limit E & E', t d & JE, t =0 and 5~0.
Then an approximate analytic solution is easily found:

In this section we present results for a more realistic
two-dimensional model of the Cu02 layers. In the nota-
tion of Fig. 1 the mean-field Hamiltonian is

H=g [ (ea+2hpk)dk~d« 2t&db sin(k„/2)(d—k pk +H. c. ) 2t db sin(k /2}(d~~ pg +—H. c. )

kyar

+&I (Pk Pk +Pf pf ) 2tt, a„(pk pf —+H. c. )]+(e„—ed)(b —1)+26, /J . (4.1)

Here
)t3„=cosk, +cosk (4.2a)

aI, =2 sin(k„/2)sin(k /2) . (4.2b)

The self-consistency equations are obtained as de-

scribed in the previous section. Again for the magnetic
order parameter only the uniform RVB solution has been
considered. The self-consistency equations have been
solved numerically. The mean-6eld parameters b, 6, and
cd determine the quasiparticle band structure. From this,
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fp/ tp4
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0 ' 5

FIG. 6. Minimum gap E~ needed to stabilize insulating phase
at half-filling plotted vs oxygen-oxygen hopping t~ for two-

dimensional model. Increasing t~ increases energy cost for rear-
rangement of 0 orbitals needed to hybridize with Cu, hence
renders metallic state more difficult to sustain.

No =2 g 5(Ek —p),
k

(4.3a)

the density of states and plasma frequency are computed.
As with the 1D model considered in the previous sec-

tion the present model is an insulator at half-611ing
(5=0) if Es ——s~ 4t ——sd is greater than a critical value

E~. Figure 6 shows the dependence of E' on tP, assuming
J =0.

We have studied in detail two sets of parameters:

(I) E, =1.45, r d=1.3, r =0 9, J.=O;

(II) Es =10.4, t d =1.3, tp =0.7, J =0 .

The parameter set (I) was chosen on the basis of local-
density calculations. ' From Fig. 6 it is clear that for
these parameters the system is metallic at half-filling.
The parameter set (II) was chosen to force the system to
be insulating at half-filling. All of the energies are mea-
sured in eV.

For each parameter set we have computed the quasi-
particle density of states No and plasma frequency co~.
For our 2D CuOz model with J =0 these are defined as

0
M
LLII-

6 1 —(a)
O

I

0.1

I

0.5

E'p E'd 4 tpd %e Gnd that the density of states and p 1as-
ma frequency may vary —

50%%uo depending on the precise
values assumed for c —cd and t . We believe that this
variation is due to the presence, in the band calculation,
of a van Hove singularity whose precise position depends
sensitively on c. —cd and t . We note, e.g. , that the
Hybertsen-Christiansen-Schluter (HCS) ' parameters

cp E'd 1 eV tpd 1 .3 eV, t —0.5 eV lead at 6 =0 to
N0-1. 3/eV and co —13 eV, which are to be compared
with the values No —1.2/eV and co —10 eV obtained
directly from local-density calculations. Because the
HCS parameters put the van-Hove singularity at 5=0.23
rather than at 5=0. 15 as the local-density-approximation
(LDA} calculations do, the discrepancy with the LDA No
will increase as 5 is increased froin zero. The discrepancy
between the tight binding fit and the actual band struc-
ture will presumably propagate into the results of our
mean-field calculation, leading to some uncertainty in our
values for physical parameters.

The results for the density of states and plasma fre-
quency as a function of doping, 5, are shown in Figs. 7
and 8. Figure 7 presents the results for parameter set (I),
which leads to metallic behavior at half-filling. The van
Hove singularity at 5-0.3 may be seen in No. Note that
although correlation effects enhance No and reduce co*

from the band-structure values, there is no strong doping
dependence. Note also that the heavy-fermion regime
discussed in the previous section is not reached, although
t has been chosen to be rather large.

Figure 8 presents results for parameter set (II}, which
leads to insulating behavior at half-filling. The solid line

co BE
5(Ek —s»

x
(4.3b)

where Ek is the dispersion relation of the lowest quasi-
particle band defined by Eq. (4.1).

We choose, however, to present our results in dimen-
sional units to facilitate comparison with experiment. No
is already given from Eq. (4.3a) in units of states/planar
CueV given the choice of parameters above. To obtain
the physical plasma frequencies we must multiply co'

2
P

from Eq. (3b) by 4m.e /d, where e is the charge of the
electron and d is the distance between Cu02 planes. For
YBa2Cu305+, d =6.6 A. The numerical results should
be treated with caution, however, for in addition to the
errors introduced by the mean-field approximation, un-
certainty due to the tight-binding parametrization of the
band structure is also present. The tight-binding fit to
the band structure may be recovered by setting b = 1 and

Al

Ol

N
+ CL

3

& —(b)
I

0.1

I

0.5

FIG. 7. Density of states Xo (a) and squared quasiparticle
plasma frequency ~~

' (b} plotted vs doping 5 for two-
dimensional model using parameters determined (Ref. 21) from
local-density calculations. For these parameters, the model is
metallic at half-filling, in contrast to experiment.
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FIG. 8. Density of states No (a) and squared plasma frequen-
cy co~

' (b) plotted vs doping 5 for two-dimensional model using
hybridization parameters determined (Ref. 21) from local-
density calculations, but a p-d splitting Eg =10.4 eV chosen
large enough to force the system to be insulating at half-filling.
The solid line in (a) shows the Brinkman-Rice divergence in No
as 5~0, for the model without magnetic correlations. The dot-
ted line shows the effect of magnetic correlations, which elimi-
nate the divergence as 5~0. The plasma frequency shown in

(b) varies with 5 in a manner consistent with experiment, but
comparison with Table I shows that the magnitude is too small.

in Fig. 8(a) shows the density of states. The strong 5
dependence is evident, as is the van Hove singularity at
5-0.3. The dotted line in Fig. 8(a) shows the density of
states for the same parameters but with J =0.2 eV. The
dramatic effect of including magnetic correlations is evi-
dent: the magnitude and 5 dependence are much re-
duced. In particular, No has a finite limit as 6~0. In
Fig. 8(b) the square of the quasiparticle plasma frequency
is shown, for the same parameters as the sohd line in Fig.
8(a). The noteworthy features are the linear 5 depen-
dence at low 5 and the very small overall magnitude.

V. EXPERIMENTAL EVIDENCE

In this section we attempt to determine which of the
various parameter regimes previously described is ap-

propriate for the high-T, superconductors by analyzing
the magnitude and doping dependence of the optical con-
ductivity, susceptibility, and specific heat. We argue that
the spectral weight in the quasiparticle contribution to
the optical conductivity scales with the doping 5, as ex-
pected if the physics is controlled by proximity to a Mott
transition. However, available information suggests that
the conduction-electron contribution to the specific heat
and susceptibility remains relatively constant, indepen-
dent of doping. Within the mean-Geld theories we have
considered this behavior can only be reconciled with the
optical data if magnetic correlations are important.

We turn now to a discussion of the optical experi-
ments. It is known that high-T, superconductors are
created by doping antiferromagnetic insulating "parent
compounds. " However, it has never been clearly estab-
lished where the parent compounds lie on the continuum
ranging from weakly coupled spin-density-wave systems
to strongly coupled Mott insulators. On a bipartite lat-
tice we believe that no sharp transition distinguishes the
two types of insulator. There is, however, a crossover be-
tween the spin-density-wave case where the presence of
magnetic order is necessary to obtain the insulating be-
havior and the Mott regime where correlation effects lead
to insulating behavior whether or not the magnetic mo-
ments are ordered.

One way to address the issue is to compare the optical
gap E in the insulating state with the critical value E at
which the metallic Fermi-liquid solution to the mean-field
theory vanishes. E' sets the scale for crossover from
band to Mott behavior. An alternative is to consider the
doping dependence of the physical properties of the sys-
tem. In particular, the mobile-carrier plasma frequency
squared should scale with the number of dopants in the
Mott case, even when the material is no longer magneti-
cally ordered, while in the spin-density-wave case the
effective plasma frequency should revert to essentially the
band-theory value immediately upon the destruction of
the magnetic order.

The experimental value for E is difficult to determine
with certainty. Optical reflectivity measurements should
show a feature at E . However, the results of the previ-
ous section indicate that the lowest direct interband tran-
sition has a vanishing optical matrix element, so that the
feature at Eg is very soft. Pure stoichiometric LazCu04 is
difficult to obtain. Presently available optically studied
samples of La2Cu04 have a large concentration of defect
states that cause subgap absorption and, presumably,
broadening of the edge at E . The apparent gap edge is
at E —1.5 eV. The related compound Nd2Cu04
(which has similar structure but with Cu fourfold instead
of sixfold coordinated with 0) can be made with fewer
defects. It exhibits an optical gap at E —1.5 eV. ' At
the gap edge a sharp feature occurs; this feature has been
attributed to an exciton. Both excitons and lifetime
broadening due to defects tend to reduce the observed
gap; thus the optical experiments on Nd2Cu04 and
LazCu04 indicate Eg 1.5 eV. In YBa2Cu306 p

significant absorption begins to appear at 1.7 eV, again
with structure at the gap edge. The structure is less
sharp and is of less spectral weight than that in
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Nd2Cu04. The origin of the structure is not understood;
in particular it is not known whether it is associated with
the Cu02 planes. However, because the absorption at
co(1.7 eV is small, the data suggest E ~ 1.7 eV in this
material. Other measurements of the dynamics of pho-
toexcited carriers in La2Cu04 (Ref. 26) also point to a

gap of -2 eV, although with larger uncertainties.
One would like to compare the experimental E to the

theoretically determined crossover scale E'. Unfor-
tunately, E~ depends upon the parameters t & and t
which are more difficult to determine from experiment.
Accepting the values proposed, e.g., by Hybertsen, Chris-
tiansen, and Schluter, ' t z =1.3 and t =0.65 eV, and us-

ing the results in Fig. 6 puts the system in the regime
E (E, i.e., in the metallic regime at 5=0. This analysis
would suggest that the observed insulating behavior at
5=0 is due to the magnetic ordering. However, the large
value of the gap and the scaling of the quasiparticle spec-
tral weight with doping argue against this possibility.

We now consider the variation of the optical conduc-
tivity with doping. In the mean-field theories discussed
previously the optical conductivity cr(co) has the form

42

o(co)= 5(t0)+interband terms .
4

The term concentrated at zero frequency is the
effective mobile carrier contribution to o. The spectral
weight in this contribution is given by —,co~. In a more
realistic model other interactions not included in the
mean-field theory will remove weight from the 5 func-
tion. It is reasonable, however, to expect that these other
interactions will have a strength that is roughly indepen-
dent of doping.

The interband terms are of two sorts. One is the inter-

band transition from the bare d level to the p band. This
transition should occur at an energy of order E possibly
corrected by excitonic effects. The other is a low-lying
interband transition predicted by the mean-field theory.
It has been discussed in the context of heavy-electron
metals and high-temperature superconductivity, but it
is not well understood theoretically. In this paper we
have calculated only co* for which, we believe, the mean-
field theory provides a reasonable estimate. A subsequent
paper will contain a more complete discussion of cr(co).

We now consider the available data. One useful mea-
surement for superconducting samples is of the T=O
value of the London penetration depth, which yields the
superAuid density. This is the coefficient of a term pro-
portional to 5(cu) in the optical conductivity of a super-
conductor. It thus defines a renormalized plasma fre-
quency ~ . In the context of the mean-field theories, co

is to be interpreted of as the mobile-carrier plasma fre-
quency co*, reduced by mass renormalizations due to oth-
er interactions not included in the mean-field theory.

Another important class of measurements is infrared
and optical reflection and transmission. From these ex-
periments the full 0(co) may in principle be determined
and the mobile-carrier contribution extracted. In prac-
tice, accurate data over a sufficiently wide frequency
range are only available for the YBazCu307 s system, al-
though some data are available for the Bi-Ca-Sr-Cu-0
and La2 „Sr„Cu04 systems. Extraction of the interest-
ing mobile-carrier contribution to cr is hampered by the
lack of a theoretically determined functional form for this
contribution, and its possible overlap with interband
transitions and the presence, in the YBa system at least,
of additional absorption apparently unrelated to the Cu-
02 planes.

Analysis of reAectivity and penetration-depth data in

TABLE I. Variation of Physical Properties of Cuprate Superconductors with Doping. Column one
identifies the material and column two gives an estimate of the doping. For La2 „Sn„Cu04 we assume
5=x. For the YBa materials we estimate 6 from;valence counting arguments similar to those used in

Ref. 27. The uncertainties in 5 are large, but the trend is clear. Column three gives the quasiparticle
plasma frequencies obtained from penetration depth (Ref. 28) or optical (Ref. 29) measurements.
Column four gives the density of states N$ per planar copper (Cu«) inferred from the specific-heat
coeScient y, which is estimated by applying the BCS relation to the measured (Refs. 30 and 31)
specific-heat jump. Column five gives the density of states per planar copper (Cu») inferred from the
measured (Refs. 32 and 33) magnetic susceptibility, corrected for van Vleck and core diamagnetism.
For Lal 85Sro»Cu04 we assumed g,b,~=yp 1

75X10 cm'/mol Cu (Ref. 34) and for YBa2Cu306+„
we assumed g b~ =gp, „l;

—46X 10 cm /mol Cu II (Ref. 35). %'e emphasize that co~ is well established,
and although the numbers for 5 and No are not as well determined, the trends with doping are clear.

Material

Lal 85Sro l5CUO4

YBa2Cu306+ „
( T, =30)
YBa2Cu306+ „
(T, =so)
YBa2Cu306+ „
(T, =8o)
YBa&Cu 306+
(T, =90)
Band theory CuQz
plane at half-611ing

0.15
0.03—0.07

0.1 -0.2

0.2-0.3

0.3-0.5

cop (eV )

1.1
0.5

1.0

1.8

2.3

9.0

X$ (eV 'jCu ii) X$ (eV '/Cu ii)

2—2.5

2.5-3.5

4—5

1.2
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the YBa system is also complicated by lack of precise in-

formation concerning the doping of the samples. The
available data are nevertheless collected in Table I.

The first column describes the material, the second
column gives an estimate of the doping. The third
column gives the spectral weight in the ~~0 5-function
contribution; this is to be compared with the quantity co*

calculated in Sec. IV. We have scaled the experimental
plasma frequencies by the ratio of the distance between
Cu02 planes in the relevant material to that in La2Cu04
so that plasma frequencies for different materials may be
compared with each other, with band structure calcula-
tions for La2Cu04, and with our results.

Despite the uncertainties it is clear that the low-
frequency spectral weight associated with mobile carriers
on the Cu02 planes increases as the doping increases, and
that the spectral weight per dopant is large.

We now consider the specific-heat coefficient y and the
conduction-electron contribution to the magnetic suscep-
tibility. The specific-heat coefficient cannot be deter-
mined unambiguously in the cuprate superconductors be-
cause of their high transition temperatures. We have ob-
tained the values for y given in column four of Table I
from the measured specific-heat jumps at the supercon-
ducting transition by assuming the BCS relation
AC =1.43yT, . We have obtained the estimates of the
Pauli susceptibility in column five of Table I by correct-
ing the measured susceptibility for core diamagnetism
and van Vleck terms as described in the table caption.
We have expressed the results in units of states/planar
Cu eV, again allowing easy comparison of different ma-
terials.

Compare the experimental results for N0 and co* with
the theoretical results given in Figs. 7 and 8. The varia-
tion with doping of the plasma frequency suggests that
the high-T, materials are in the regime E & E in which
there is Mott insulating behavior at half-filling. The rela-
tive absence of variation in the specific heat and suscepti-
bility density of states suggests that the materials are in a
regime in which magnetic correlations dominate the ther-
modynamics (as shown, e.g. , in the dotted line in Fig. 8).
However, the relatively large value of the plasma fre-

quency is difficult to account for within mean-field
theory. Indeed, if parameters are tuned to produce an

co~ -5 for 5 (0.4, say, the ratio co~ /5 will be too small

compared with the experimental value. It is possible that
a fine-tuning of parameters such as t, or that a better un-

derstanding of the effects of the nearest-neighbor repul-
sion will resolve this problem, but as of this writing it ap-
pears that the mean-field theory provides a qualitatively
but not quantitatively accurate account of the doping
dependence of co*.

VI. CONCLUSION
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APPENDIX

In this appendix we demonstrate that including the
nearest-neighbor repulsion V introduced in the high-T,
problem by Varma, Schmitt-Rink, and Abrahams' leads
in the mean-field theory only to an increase of the
effective gap energy E .

We add to our Hamiltonian, Eq. (2.1), an extra term

V
HV y g diadia i+q v i+ger

i go'

(Al)

physics is controlled by proximity to a Mott transition
and that a theory which includes intersite magnetic
correlations is essential. The oxygen-oxygen hybridiza-
tion is apparently not large enough to produce heavy-
fermion behavior at any reasonable doping.

Several important quantitative questions remain. One
is that if both the mean-field theory and the model pa-
rameters proposed on the basis of local-density calcula-
tions were accurate, LazCu04 would not be a Mott insu-
lator at half-filling. Another is that if the model parame-
ters are adjusted to produce insulating behavior, the
theoretical quasiparticle plasma frequencies are too low
relative to the observed plasma frequencies. However,
the difference is not unreasonably large, the numerical ac-
curacy to be expected from the mean-field theory is not
known, and effects of the intersite Coulomb interaction V
are not well understood.

Note added in proof Rec.ently, more accurate esti-
mates of the planar spin susceptibility for YBa2Cu306+~
have become available from analysis of Knight-shift mea-
surements. ' These estiinates are Nar(eV '/
Cu II)=2.5 —3 (for YBa2Cu307) and Nar(eV '/
Cu II)=0.5 —1 (for YBazCu&06 6 at T = 100 K). These
new estimates strengthen the conclusions of Sec. V that
the enhancement over band theory of the susceptibility is
much less than that of the quasiparticle plasma frequency
and scales oppositely with doping.

We have considered mean-field theories of the Cu02
planes believed to be responsible for high-temperature su-
perconductivity. We have discussed the various regimes
of behavior and the crossovers between them, and have
compared the results of the mean-field theories with ex-
periment. The qualitative behavior suggests that the

Here g labels the nearest-neighbor 0 sites of Cu site i, N
is the number of unit cells in the crystal, and V is the in-
teraction.

Treating this term in mean-field theory leads to extra
terms in the mean-field Hamiltonian, Eq. (4.1). Denoting
these extra terms H z

"we have
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~MF
~ +~o' i +xo + Ct +y OCt +y~

l CT

—4uo g d;.d;. + 8N

Here

U 0

u, = Vg(dtd, &,
I CT

1
V g ( ci +xcrci +xn ~ + ( ci+ynci+ycr )

le

{A2)

(A3a)

(A31)

and these mean-field parameters are determined by
minimizing H with respect to ed, b, b„uu, and uQ.

It is evident that the role of Uo and Uo is to shift the en-
ergies of the p and d levels to Zy=sp+2uo) e and
Xd Ed 4uo ) ed. However, for small doping, ( c c ) -5
while (d d )- 1, so that for 5 « 1 the d level is shifted
much less than the p level and the effect of V is to in-
crease the splitting and thus to favor insulating behavior.
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