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Measurements of the electrical resistivity of thin potassium wires at temperatures near 1 K have
revealed a minimum in the resistivity as a function of temperature. By proposing that the electrons
in these wires have undergone localization, albeit with large localization length, and that inelastic-
scattering events destroy the coherence of that state, we can explain both the magnitude and shape
of the temperature-dependent resistivity data. Localization of electrons in these wires is to be ex-
pected because, due to the high purity of the potassium, the elastic mean free path is comparable to
the diameters of the thinnest samples, making the Thouless length /; (or inelastic diffusion length)
much larger than the diameter, so that the wire is effectively one dimensional. The inelastic events
effectively break the wire into a series of localized segments, whose resistances can be added to ob-
tain the total resistance of the wire. The ensemble-averaged resistance for all possible segmented
wires, weighted with a Poisson distribution of inelastic-scattering lengths along the wire, yields a
length dependence for the resistance that is proportional to [L3/1,,(T)], provided that /,,(T)>L,
where L is the sample length and /,,(7) is some effective temperature-dependent one-dimensional
inelastic-scattering length. A more sophisticated approach using a Poisson distribution in inelastic-
scattering times, which takes into account the diffusive motion of the electrons along the wire
through the Thouless length, yields a length- and temperature-dependent resistivity proportional to
(L/17)* under appropriate conditions. Inelastic-scattering lifetimes are inferred from the
temperature-dependent bulk resistivities (i.e., those of thicker, effectively three-dimensional sam-
ples), assuming that a minimum amount of energy must be exchanged for a collision to be effective
in destroying the phase coherence of the localized state. If the dominant inelastic mechanism is
electron-electron scattering, then our result, given the appropriate choice of the channel number pa-
rameter, is consistent with the data. If electron-phason scattering were of comparable importance,
then our results would remain consistent. However, the inelastic-scattering lifetime inferred from
bulk resistivity data is too short. This is because the electron-phason mechanism dominates in the
inelastic-scattering rate, although the two mechanisms may be of comparable importance for the
bulk resistivity. Possible reasons why the electron-phason mechanism might be less effective in thin
wires than in bulk are discussed.

I. INTRODUCTION

15 AUGUST 1990-11

A surprising minimum in the electrical resistivity as a
function of temperature characterizes the behavior of
pure thin potassium wires having diameters close to 0.1
mm, as observed by Yu et al.! Up to about 1.3 K in the
thinnest samples observed, the resistivity decreases with
increasing temperature. This “resistivity dip” is dramat-
ic since the classical theory of the resistivity of a metal
predicts that inelastic-scattering contributions cause an
increase of the resistivity with increasing temperature. In
this paper we present a theory to describe the observed
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minimum by employing a model of localized electrons in
a long thin wire, albeit with large localization length.
The inelastic-scattering events that these electrons experi-
ence effectively break the wire into a series of segments,
each of which has an elastic resistance that increases ex-
ponentially with the length of segment.? To obtain the
total resistance, we perform an ensemble average of the
elastic-scattering resistances over all possible segmenta-
tions of the wire, assuming that segments add Ohmically.

The experiments of Yu et al.! included studies of the
temperature-dependent part of the resistivity p(7) from
1.8 down to 0.08 K for free-hanging high-purity K wires
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of length 5 cm with diameters d in the range
0.095d<1.5 mm. The data were plotted as
P42 xAlIn(p)]/AT. Since the temperature-dependent
resistivity in these samples is about one part in 10* of the
total resistivity, p, , ¢ is nearly equal to p, so that the
quantity that is plotted is essentially dp/dT. This quanti-
ty is observed to change sign from positive to negative
with decreasing temperature, indicating a resistivity
minimum. In order to see this minimum explicitly, we
integrate the data from Yu et al. and plot the resistivity
p(T)=p—p, in Fig. 1, where p, is the residual resistivity.
Although all samples were prepared under the same con-
ditions, it is clear that as the sample diameter decreases, a
minimum develops and eventually becomes quite pro-
nounced. Since these localization effects should be
greatest in the thinnest samples (diameters 0.09 and 0.10
mm), for the simple reason that the localization length is
directly proportional to the cross-sectional area for thin
wires,”> we concentrate on those data sets.

Yu et al.! originally proposed that these data could be
explained by the interference between normal electron-
electron scattering (NEES) and surface scattering, the
Gurzhi effect.* If one assumes potassium to have a nearly
spherical closed Fermi surface, NEES would not contrib-
ute to the resistivity because the total electron momen-
tum is conserved at each collision. However, if the mean
free path due to NEES is much less than the diameter of
the sample, i.e., /Y <<d, but the mean free path due to
electron-impurity scattering is larger than the diameter,
then NEES can reduce the number of electron-surface
collisions, and thus reduce the resistance. While Yu
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FIG. 1. Resistivity vs temperature for samples with decreas-
ing diameters for data of Ref. 1. Original data were integrated
to yield (p—py), total resistivity minus zero-temperature resis-
tivity. Symbols used for data sets are those of Ref. 1 and diame-
ters are indicated in the figure. Corresponding to the order of
the symbols listed in the figure from top to bottom, p, values are
(in units of pQm) 20, 19.82, 20.07, 20.07, 134.4, 127.2, and
113.1; p4.; x values are (in units of pQm): 17.9, 22.5, 23.6, 31.3,
138, 130, and 116.
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et al. admitted that, in fact, [} >>d, they suggested that
the reduction in resistance might apply in this opposite
regime as well. Previous Monte Carlo calculations by
Black® were not of sufficiently high resolution to deter-
mine the sign of the NEES contribution to the resistivity
at low temperatures. However, recent high-resolution
calculations by Movshovitz and Wiser® have shown that
in this regime the resistivity increases with increasing
temperature, so that this mechanism cannot account for
the observed effect.

Although thermal expansion of the wire can result in a
slightly increasing diameter as a function of temperature
and thus a decreasing resistance, this mechanism is about
4 orders of magnitude too small to explain the observed
effects. The resistance R(T)=pL /A, where p is the
resistivity, L is the length, and A is the cross-sectional
area, will increase with temperature due to an increase in
both resistivity and length, but will decrease due to an in-
crease in diameter, as

R(T+AT)=R(T)X1+Ap/p+AL/L—2Ad/d),
(1.1)

where d is the diameter of the wire. Since all linear di-
mensions increase with temperature according to
(1/1)Al /AT =a(T), where a(T) is the thermal expan-
sion coefficient, it is clear that thermal expansion has the
tendency to decrease the resistance of the wire. The
value measured by Schouten and Swenson’ for the
thermal coefficient for potassium at 7=1 K is
a(T)=7.6X10"° KL, or about 4 orders of magnitude
smaller than observed changes with temperature
(1/p)Ap/AT=1.3X10"* KL

There are several experimental observations of locali-
zation effects in effectively one-dimensional systems.? !
Those data conform in both magnetic field and tempera-
ture dependences to previous theoretical predictions.'!?
Although the samples studied in those experiments are
much narrower and much more disordered than those be-
ing considered here, the present samples are still
effectively one dimensional for localization because the
inelastic-scattering (phase-breaking) length /- is greater
than the diameter of the sample. The present data differ
significantly from those of Refs. 8—10 in that the temper-
ature dependence here varies as an inverse power of /r,
rather than as / itself. We will show that this behavior
is to be expected if I is sufficiently long compared with
the length of the sample, whereas the other data conform
to the opposite regime.

In Sec. II we review the fundamental properties of lo-
calized electron states; in particular, we explain the dis-
tinction between our approach in the weakly localized re-
gime and approaches to the strongly localized regime and
present the framework for the derivation of the total
resistance of a thin wire for which the electrons are ac-
commodated in localized states, in which the role of in-
elastic collisions is to disrupt the coherence of the local-
ized state, breaking the wire into a series of localized seg-
ments. In Sec. III A we obtain an expression for the total
resistance of the wire by averaging with a Poisson distri-
bution over all possible scattering lengths along the wire.
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In Sec. III B we improve on the calculations in Sec. III A
by averaging with a Poisson distribution in inverse-
scattering times, which allows for the diffusive nature of
the electrons. In Sec. IV we discuss the choice of ap-
propriate inelastic-scattering mechanisms for the destruc-
tion of phase coherence in the temperature range of in-
terest. In Sec. IV A we derive the quasiparticle rate for
electron-phason scattering, in which we assume that a
minimum energy would be required for the destruction of
phase coherence, and in IV B we derive the correspond-
ing rate for electron-electron scattering. Our theoretical
results are compared with the experimental data in Sec.
V, and in Sec. VI we state our conclusions.

II. LOCALIZATION OF ELECTRONIC STATES

In a three-dimensional disordered metal, the random-
ness must first exceed a certain finite amount before the
electron states at the Fermi level can become localized.
However, the situation in one dimension is well known to
be quite different. As first shown by Mott and Twose,'?
and later by Landauer,'* any amount of disorder, regard-
less how small, will cause all the electrons in a one-
dimensional system to exist in localized states, leading to
residual resistances increasing exponentially with the
wire length.

A negative temperature coefficient of resistance for
such a disordered wire is expected on general grounds.
For the relatively simple case of a strongly disordered
wire, with a small localization length, the transport at
low temperature is by the phonon-assisted hopping of
electrons between well localized states. This is the ac-
tivated “‘exponential hopping” or ‘“‘strongly localized” re-
gime. On the other hand, for the case of a weakly disor-
dered wire with a large localization length, as in the case
in question, the inelastic-scattering processes randomly
interrupt the phase-coherent propagation of the electron
wave packet long before the finiteness of the localization
length is sensed by the wave packet. This is the “weakly
localized” regime. We will presently make precise the
fundamental distinction between these two regimes. It is,
however, clear that, in both these cases, increasing tem-
perature should offset the effect of localization and hence
lead to (dp/dT) <O0.

The first approach to electrical conduction in one di-
mension, due to Mott and Twose,! involves solving the
Schrodinger equation as a boundary-value problem to ob-
tain expressions for the localized electron wave functions.
An alternative method, introduced by Landauer,'* con-
sists in solving the quantum-mechanical scattering prob-
lem of reflection and transmission of an incident electron
through an obstacle. He finds that the relationship be-
tween the reflection and transmission coefficients /7 and
‘T and the resistance r of the obstacle is

r=2mti/e )R/T . 2.1
Henceforth in this paper all resistances will be given in
units of 7#/e?=1.29X10* Q. In order to obtain the
resistance of a one-dimensional system consisting of a
series of obstacles, one can then average the quantity
R /T over the distance between successive ones, with the
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interspaces treated as independent random variables.
This treatment incorporates the element of disorder into
the model by allowing the scatterers to be of the same
type, but located at random positions, so that their phas-
ing is automatically random at this stage. (This type of
spatial disorder should be distinguished from shape disor-
der, in which the obstacles are evenly spaced, but their
potentials differ in shape.) The resulting average ratio
(R/T), for a spatially disordered array of scatters, is
proportional to (R /‘T)", where n is the number of obsta-
cles. Then, if the distribution of obstacles (or scatterers)
is uniform along the length of the wire, the resistance will
increase exponentially with length.

Abrikosov and Ryzhkin'’ also examined the zero-
temperature resistance of one-dimensional systems con-
taining random impurities. They introduced randomness
through a continuous random potential with a Gaussian
distribution. Their result for the elastic resistance can be
shown to be equivalent to Landauer’s result, if one real-
izes that they include only terms of inverse transmission
coefficient, while Landauer expresses resistance in terms
of the ratio 52 /T. Thus, the apparent discrepancy be-
tween the two results arises simply from a difference in
notation; it is not due to any failure of the scaling
method, as proposed by Abrikosov.!®

It was suggested by Yuval'’ that any wire will behave
in a one-dimensional manner for a sufficiently low tem-
perature and sufficiently large ratio of length to cross-
sectional area. Anderson employed scaling methods to
develop a multichannel formalism,'® appropriate for a
wire of length L with small nonzero diameter. He

showed that the elastic-scattering resistance is (in units of
mh/e?):

r(L)=(R(L))=(r,/v){exp[vr.(L)/r,]—1} , (2.2)

where v denotes the number of ““distinct” channels (to be
discussed shortly); r.(L)=alL /1 is the classically calcu-
lated additive resistance, which is the actual measured
resistance when it is sufficiently small, /, is an elastic
mean free path for backscattering of the electrons, and ;
is the scale resistance. For the thinnest samples studied,
r(L)=7X10"%, where the value of @ is chosen to give
the correct classical resistance. The scale resistance is in
the range 1.764=<r =2, and is equal to 2 in the small-
resistance limit,'® which applies in the present case. For
the resistivity data of potassium below 1.3 K, the resis-
tances of the wires are so small that the classical resis-
tance is dominant, as can be seen by expanding the ex-
ponential, with the effects of localization a small fraction
of the total resistance. However, Thouless® suggested
that localization effects in quasi-one-dimensional wires
should be expected to be significant only if the impurity
resistances were greater than about 10 kQ). The wires un-
der consideration here have resistances that are less than
1073 Q, and the localization effects are less than 10™% of
the total resistance. In our case, it is the extremely high
purity of the samples that allows one to observe localiza-
tion effects in wires of macroscopic diameter, since [, is
comparable to the sample diameter d, and the inelastic
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diffusion length ~(l /;,)!/? is larger than d. Our previ-

ous paper, Ref. 19, marks the first time that one-
dimensional localization effects have been proposed to ex-
plain transport phenomena in such pure samples. The
analogous case of two-dimensional localization effects
was first observed by Van den dries er al.? in high-
purity, low-resistivity thin Cu films (50-500 A) between
1 and 20 K, where the elastic mean free path was of the
order of the film thickness.

Setting v=1 in Eq. (2.2) gives the expression due to
Anderson'® for the elastic-scattering resistance of a one-
dimensional system with a large number n of intimate
channels, that is, channels that effectively communicate
with another through interchannel scattering (crosstalk).
Each channel may be associated with a transverse quan-
tum number, and channels with no Fermi-level density in
them will simply have no transmission 7. For a physical
wire of finite diameter, one would expect the total num-
ber N of channels to be partitioned into v sets, each of
which contains » intimate channels, so that N =vn, with
only weak coupling between the sets, assumed to be wide-
ly separated in transverse quantum numbers. Thus, we
may consider the wire as consisting of v distinct sets of
Anderson-type multichannel conductors connected in
parallel, where vr.(L) in Eq. (2.2) is the classical resis-
tance of each of the v conductors. In this way the
higher-than-one-dimensionality of the system is expressed
by allowing electrons to be scattered between transverse
channels, thereby providing alternate parallel paths for
the current in the wire. These paths serve to reduce the
effect of highly resistive channels, while the series connec-
tion serves to diminish the influence of highly conductive
sets.

The essential effect of inelastic-scattering processes is
that, because they involve an exchange of energy between
initial and final states, they interrupt the phase coherence
of electron wave evolution under elastic scattering. Thus,
if an electron encounters n inelastic-scattering events as it
traverses the sample, its wave-function coherence will be
destroyed at each of those n locations, and the sample
will effectively be broken into n +1 segments, such that
0=<x,=<x,=-:- =x,=L, where the distances between
adjacent inelastic-scattering events are varied indepen-
dently of one another. Within each segment the electron-
ic wave functions will remain coherent, and the corre-
sponding elastic-scattering resistance will increase ex-
ponentially with the segment length, according to Eq.
(2.2). If the segments are considered to be connected like
series resistors, then their resistances will simply add.
This means that the total resistance of the wire will be
less if inelastic collisions occur within the length of the
wire than if they did not, as depicted schematically in
Fig. 2.

Apart from the total length L of the wire, two other
length scales determine the efficacy of localization. The
first is the localization length A, which for a wire
of finite cross-sectional area A4 is given by’
A=(4 4k} /3w, >1,, where kj is the Fermi wave vec-
tor. For the potassium wires of interest, A~10'!/,
—10"1,,, while for a strictly one-dimensional wire, A=1,,.
(In the present treatment the effect of finite cross section
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FIG. 2. Schematic illustration of the elastic resistance as a
function of length in a one-dimensional wire for the specific case
of two inelastic events. The resistance r(x) rises exponentially
with length between successive inelastic collisions. Segment
lengths are varied independently of one another, since we as-
sume that phase coherence is totally destroyed at the position of
each inelastic event. Note that the total resistance of the wire is
reduced if inelastic collisions occur within the length of the
wire.

is being taken into account through the multichannel pa-
rameter v.)

The second important dimension is the effective dis-
tance over which an electron wave packet loses phase
coherence due to inelastic scattering. This distance is the
Thouless length,® which is given by

IA(T)=[D7,(T)]'"?, (2.3)

where 7,,(T) is the inelastic-scattering time and D is the
diffusion constant given by the Einstein relation

D=l vp)/3=(10})/3 . (2.4)

We are now in a position to discern more precisely the
two regimes mentioned earlier. The strongly localized re-
gime corresponds to /;(7T)>>A, when the localization of
wave functions is fully sensed by the electron. In the
weakly localized regime, /(T) <<A, the electron loses its
phase coherence due to inelastic scattering long before it
can sense the finiteness of A, so that the effects of localiza-
tion will only be a small perturbation on the “classical”
transport behavior. The data considered here (Ref. 1)
and also the data of Refs. 810 are in the latter regime;
different temperature dependences are possible within
this regime, depending upon the phase-breaking mecha-
nisms and upon the magnitude of /;(T) compared with
the sample length. In the limit /(T)/A—0, deviations
from classical behavior become undetectable, and the
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main effect of inelastic collisions is to cause the resistance
to increase with increasing temperature. Presumably,
this occurs in our case for temperatures above about 1.3
K. In Sec. III, we evaluate the resistance of a wire by
performing an average over all segmentations by employ-
ing the two different distributions in segment length dis-
cussed earlier.

III. CALCULATION OF THE TEMPERATURE
DEPENDENCE OF THE RESISTANCE

We begin by calculating the temperature-dependent
resistance using a Poisson distribution over inelastic-
scattering lengths /) (T'). This is done in Sec. IIT A, and
in Sec. III B an improved result is obtained using a Pois-
son distribution over inelastic-scattering times. The form-
er case is discussed because the resistance calculation can
be done analytically. This case was also discussed in Ref.
19, where only the final result was quoted.

pxy,..
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A. Poisson distribution over lengths

The distribution of length segmentations of the wire is
obtained as follows: The probability for obtaining n
scattering events in a length interval Ax is given by

P(n,Ax)={(n)re " /n1, (3.1)

where {n)=Ax /I, (T) is the average number of scatter-
ing events occurring within Ax. Now suppose, for exam-
ple, that only one inelastic event occurs over the total
length of the wire, so that the wire is effectively divided
into two segments, (0,x;) and (x,L), with the inelastic
event taking place within the interval dx,. The probabili-
ty of this event is the product
P(0,x,)P(1,dx,)P(0, (L —x))=exp(—x,/l};)(dx,/];;)
exp[(x,—L)/l;,,], obtained by setting n=0 or 1 and
exp(—dx,/l;,)=1. This probability is written as
p(x,;)dx, with p(x,) the probability density for a single
scattering event. The corresponding probability density
for n events is

Lx,)=(1/1,)"P(0, x, —0)P(0, x,—x,) - - - P(0, x, —x, _)P(0, (L —x,)),

=(1/1},)"exp(—x /I, )exp[ —(xy,—x ) /1y 1 - exp[ —(x, —x, )/l Jexp[ —(L —x,)/1;,]1 . (3.2)

Since we assume that the coherence is totally destroyed at the position of each inelastic-scattering event, we break the
wire into separate coherent segments, whose resistances simply add. The total resistance of the wire is then the sum of
the resistances in each segment multiplied by the probability that the wire has that resistance, summed over all possible
configurations of inelastic events. The ensemble-averaged resistance, in units of 7#/e2, then becomes

_ hd L *3 *2
(R(L)}-—r(L)exp(—L/Iin)—i-ng} fo dx,,---fo dx2f0 dx [r(x)+r(xy—x,)+ - +r(L—x,)]p(x15. . ,x,)

(3.3)
where r(x) is the elastic-scattering resistance given by Eq. (2.2). Physically, we see that the total resistance arises from
a direct interplay between elastic and inelastic scattering.

In order to evaluate the summation in Eq. (3.3), it is useful to take the Laplace transform .L, of both sides of this
equation, with the definition

r(s)=LirL]= [ TdLe (L) . (3.4)
To avoid complicating the discussion, we illustrate the steps involved in determining the Laplace transform of the vari-

ous integrals by considering the particular case in which only two inelastic events take place along the length of the
wire (n =2), so that the quantity of interest becomes

L= 2 | [Fax, [ d +rxy— -
2 =) fo dx2f0 x [r(xy)+r(x,—x,)+r(L—x,)]
Xexp(—x,/li,)exp[ —(x, —x )/l Jexp[ — (L —x,)/1;,1 | - (3.5
By successively applying the convolution theorem, we find that
Ly=3r (s+1/1,)/[(L) s +1/1,)%] . (3.6)

By following the procedure outlined above, one can then show that the general expression for L[{ R (L)) ] will be given
by

LR ]=r (s+1/1) |1+ 3 I (n+1)(s+1/1,)7" | .

n=1

(3.7

The series can be summed exactly with the result,

LICRILN]=r (s+1/1)[1+2/(sl,)+1/(s1;,)%] .
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Then, by taking the inverse Laplace transform of each term in Eq. (3.8), we obtain an integral expression for the total
resistance of the wire,

(R(L))=(I, )_Zfode(L —x)r(x)exp(—x /1) +2(1;,) 7" fode r(x)exp( —x /1) +r(L)exp(—L /1) . (3.9)

Upon substituting Eq. (2.2) for r(x) and performing all the required integrations, we arrive at an exact expression for
the resistance of a thin wire:

(R(L)Y=(r, /v)(—B¥1;;)){1—exp[B(L)—L /1, 1} /[1—BU)P+BL) /[1 =BT (3.10)

where B(x)=vr.(x)/r,=vax /r,,. Equation (3.10) correctly reduces to the Landauer result when [/, — .

In order to obtain the temperature-dependent part, R(L,[;), of the total resistance (R(L)), we subtract from Eq.
(3.10) the zero-temperature resistance (L) of Eq. (2.2). Since for the data of interest, B(L),B(l;,) <<1, we can expand
Eq. (3.10) in these small quantities to write forms that show clearly the dependence on /;:

R(L,I)=—[r,BAL)/2v]{1—2(1,, /L) +2(I;, /L}[1—exp(— L /1;,)]} (3.11a)

=—[vr2L)/6r, (L /L) [1+3tS [(=D" ML /1) 3 /n1] |, (3.11b)
n =4

where in Eq. (3.11b) we have additionally assumed that L <</;, and have expanded the exponential in powers of
(L/I,). For (L/I,<<1, since the classical resistance r.(L) is proportional to L, R(L,l;,) is proportional to
(—L?3/1,,), as can be seen from Eq. (3.11b). Since (1/1;,) increases with temperature, this represents a decrease in resis-
tance with increasing temperature. We will assume here that /;; >>L, so that we can use the leading term in the expan-
sion of Eq. (3.11b), which is proportional to 1//,,. As (1/l;,), and thus temperature, increases, Eq. (3.11a) reaches a
minimum and turns upward, and in the limit /,, << L, the leading terms in the localization contribution are equal to
R(L,l;,,)~—[vrXL)/2r,J[1—2(1,,/L)], which approaches a constant value that is less than the zero-temperature
resistance.

In Ref. 19 we assumed for simplicity that /,, was the product of 7;, and the Fermi velocity, which fails to account for
the diffusive motion between inelastic events. This problem is addressed in Sec. III B.

B. Poisson distribution over times

Because the motion of an electron as it traverses a total path length /;, between inelastic collisions is diffusive, the net
distance it travels along the length of the wire is actually the Thouless length /., given by

IA(T) =l vp7in/3) , (3.12)

where 7, is the inelastic-scattering time. Thus we consider a Poisson distribution over inelastic times, with mean value
T, and segment the wire according to the relation

(xn _xn—l)zz(vFle1/3)Tn—l,n ’ (3.13)

where 7,_, , is the time elapsed between the (n —1) and » collisions, and x, _; and x, are the positions of those col-
lisions along the wire. (The positions at the beginning and end of the wire will be denoted by 0 and L, respectively.) The
elastic-scattering resistance will retain the form of Eq. (2.2), with the x dependence written in terms of the 7 variables.
For convenience in the following derivation, we define the variable

g(‘rn—l,n )=r(xn —xn—l)z(r: /V){exp[vrc(xn -xnvl)/rs]} —1] . (3.14)

In the small resistance limit, the classical resistance must, of course, depend linearly on the length of the wire.
The probability distribution pr in scattering time sequences is analogous to that of length segmentations along the
wire constructed in Sec. IIT A, with

Pr(To- - 7o )=(1/73)"P(0,70)P(0, 7)) - = - P(0,7,_, ,)P(0,7, ) (3.15)

where 7, is the mean inelastic-scattering time. Substituting the explicit expressions for the Poisson distribution from
Eq. (3.2), the probability density becomes

Pr(Tots- - o Tor )=(1/7,)"exp( — 7oy /TinJexp( — 713 /Tin) = - - exp(— 7,1 /Tin) - (3.16)

The resistances of individual segments are now written in the form of Eq. (3.14), so that the ensemble-averaged sum of
resistances becomes

(R(L))= 3, fo Mdr, g fo 23‘17’12_[0 CdrolE(ro)) FE(r)+ o +ET) r(Ton. - 0 Tor) - (3.17)
n=0
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This integral is more complicated than Eq. (3.3). Howev-
er, since we are interested in the case 7y /7, <<1, we
may expand the exponential factors and evaluate the re-
sulting integrals analytically. Let us consider then n =0
term in the sum

Ry=E&(7q. Jexp( —Top /Tin) - (3.18)
The elastic resistance &(7,; ) is given by

E(ro )=(r, /V)explyrdit/rri{H—11, (3.19a)
where

y=va/V3. (3.19b)

Expanding the exponentials in Egs. (3.18) and (3.19a) for
small argument, we have for the n =0 term

Ro=vy(7g /Tel)l/2+72(TOL /Te)/2r,

=y (oL /7)) H7oL /Tiy)

—y27op /TN Tor /Ti) /21, (3.20)
For the n =1 case we obtain
Ry= [ " dro &)+ &m0 /7,)
Xexp(— 7o /Tip)exp( — 7y, /Ti) - (3.21)

Since the length segments of Eq. (3.13) must add to pro-
duce the total length (L) of the wire, we have the con-
straint

L=yl /3N Hri{*+1124+ - +7lH) . (3.22)

For the n =1 case, this relation may be used to determine
Ty in terms of 7y;:

TiL =Tor — 2701702+ 701 -
Carrying out the various integrations yields the result
R =y(rop /1) 1op /Tin) H ¥ (Top /TN (Top /700) /30,
(3.23)

We note that the first term in this expression cancels with
the third term in the expression for R, in Eq. (3.20).
Since the n > 1 cases contribute only higher-order terms
in (7g; /7;,), the dominant contribution to the resistance
comes from the =0 and n=1 terms. Subtracting the
residual resistance from the total resistance gives

R(L,1,)=—[vr2(L)/6rJ[L /(vpT))]* . (3.24)

Since the classical resistance varies linearly in L,
R(L,7,,)~(L*/7%). As in the model of Sec. III A, to
leading order in (1o /7;,), the temperature-dependent
resistance is negative.

IV. INELASTIC-SCATTERING MECHANISMS

Our next objective is to determine the inelastic-
scattering lifetime 7;,, which produces the temperature
dependence of R(L,;,). Rather than attempt first-
principles calculations, we instead estimate this quantity,
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to the extent possible, from experimental data for bulk
samples. We consider two mechanisms: electron-
electron collisions and electron-phason scattering, since a
combination of these have been proposed?"?? to explain
the temperature dependence of the electrical resistivity of
large diameter samples (in the classical regime)*>~2° in
the temperature range below 1.3 K. The large variations
in magnitude and temperature dependence of resistivity
in these samples suggests that both mechanisms are
present, and that both are sample dependent.?? Phasons
are excitations associated with phase fluctuations of an
incommensurate charge-density wave (CDW),?’ assuming
that the ground state has the CDW structure. The sam-
ple dependence in both electron-electron scattering and
electron-phason scattering contributions to the resistivity
have been attributed to?? a sample dependence of CDW
domain structure, which is believed to be sensitive to sur-
faces.?’

Of course the temperature-dependent classical resistivi-
ty by itself does not provide the appropriate inelastic-
scattering lifetime, because the effectiveness of a scatter-
ing event is different for classical resistivity (where
momentum is degraded) than for localization (where the
phase coherence of a localized wave function is degrad-
ed). The inelastic quasiparticle lifetime (which involves
essentially energy transfer) is more appropriate to locali-
zation effects, although it is not always correct. Altshuler
et al?® have emphasized that when AEr, <2, where
AE is the energy change during an individual scattering
event, then many such events are necessary in order to
disrupt the phase coherence, so that the effective
inelastic-scattering lifetime is longer than 7. Both
mechanisms of interest here, when considered to be
three-dimensional in character and estimated from bulk
data (in a manner to be discussed shortly) have
AE T, >>2m, so that 7;, is indeed the appropriate lifetime.
We have accounted, in part, for the ineffectiveness of
low-energy-transfer events by introducing a low-energy
cutoff, but the best fit to the data occurs when the cutoff
vanishes, which is consistent with our estimated values
for 7;,. The interactions are three dimensional in charac-
ter, in the case of phasons because the important wave-
lengths are less than the sample diameter, and in the case
of electron collisions because the interaction length
(#D /kyT)'/%, where D is the diffusion constant given by
Eq. (2.4), is less than the diameter of the sample, as ap-
plies in Refs. 8 and 9.

A. Electron-phason scattering

In a charge-density-wave (CDW) ground state,?’ the
electronic charge density varies sinusoidally in space,
which causes the lattice to deform to ensure charge neu-
trality. This deformation produces diffraction satellites
around each of the Bragg reflections, which have recently
been discovered in potassium by neutron-diffraction ex-
periments.*® In screening out the electronic charge in a
CDW structure, each positive ion is displaced from its
ideal lattice site L according to

u(L)= Asin[Q-L+4¢(L,t)], 4.1)
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where Q is the CDW wave vector, L is a lattice vector,
and ¢(L,¢) is the phase. The resulting normal modes of
the lattice corresponding to spatial and temporal fluctua-
tions of this phase are called phasons.

The scattering of electrons from phasons has been
shown to be an important mechanism in the resistivity
below about 1.3 K.?'?? The presence of a CDW pro-
duces gaps in the energy spectrum at wave vectors
k=+Q/2, with an accompanying distortion of the spher-
ical Fermi surface into conical-point regions close to the
gaps. Since the energy spectrum and wave functions are
distorted most severely in the neighborhood of the gaps,
electron-phason scattering is most intense in these
conical-point regions of the Fermi surface.

Because phasons are actually a type of lattice vibra-
tion, many of their properties are similar to those of pho-
nons. In fact, the scattering of electrons from phasons is
treated similarly to the scattering of electrons from pho-
nons and, within Boltzmann transport theory, the tem-
perature dependence of the electron-phason resistivity
has been shown?! to be given very closely by the Bloch-
Grineisen formula, but with a phason temperature,
analogous to the Debye temperature, of only a few de-
grees, i.e., ®,=3.25 K. However, the magnitude of the
resistivity, or of the “transport™ rate thus calculated, is
quite different from what one would calculate with a
Bloch-Griineisen formula, because (1) the electron-
phason interaction is confined to the conical point re-
gions; (2) the Fermi-surface distortion changes the elec-
tronic velocity; and (3) the phason spectrum is highly an-
isotropic.

These same considerations are of importance in the
calculation of the inelastic quasiparticle scattering rate
due to electron-phason scattering, which is of interest
here. The main difference between this quasiparticle rate
and the transport rate is that here we require energy re-
laxation, whereas in the case of electrical resistivity we
required momentum relaxation. If we assume a lower en-
ergy cutoff E, below which scattering events are
ineffective in destroying phase coherence, then the rate of
decay of a quasiparticle population f} in state k is given
by

d3k’
3 ( Wk'ﬂk - Wk—»k’e(Ec -—ﬁa)q) ’

(afk/az)w:f(—z—)
o

(4.2a)

where o, is the frequency of a phason with wave vector
q, and

Wi awo=Qm/8)2%/p,) 3 v,k ) g /w,)
q

X(1=fi ) fiM(k,k',q) .
(4.2b)
Here y*(k,k’) is a function that governs the strength of

the electron-phason interaction; p,, is the mass density;
and
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M(k,k',q):[nqﬁ(Ek'—Ek—ﬁwq)ﬁk,,k+q
+(ng+ DS(Ey — Ey +Hiog)8 g1 »
(4.2¢)

with ng the phonon distribution function, E, the elec-
tronic energy in state k, and 8(E) the & function
representing energy conservation in either absorption or,
emission.

In computing the quasiparticle rate one assumes that
fy differs from £ only at a single point k. The resulting
rate T 1 is then averaged over the Fermi surface, as
seems appropriate because of the diffusion process, and
over energies with weighting factor (3f§ /3E,). The
averaged inelastic quasiparticle scattering rate can then
be written approximately in the form

—7  _ 4r

Ted,’qp:7re¢(kBT)3J3(®C/T,®3p/T) , (4.3)
where T, is approximately constant and where we have

defined the Bloch-Griineisen function with a low-energy
cutoff as

Ju(a,b)=["dzz"/[(e*—1)(1—e D] . (4.4)
a

In Eq. (4.3), the parameter ®,=E_ /kp may be regarded
as adjustable for the purpose of comparing with the data
on thin samples. The phason temperature O’ that enters
this expression is not necessarily the same as the phason
temperature @ that explains the low-temperature resis-
tivity data. We have therefore chosen to assume @ to
be an adjustable parameter for our purposes here. How-
ever, since the difference between these two ®, arises
only because different weighting factors enter into the
calculation of the transition rate in the two cases, one
would not expect them to differ greatly, which imposes a
constraint on the fitting procedure. The parameter T,
which fixes the magnitude of the quasiparticle-scattering
time in Eq. (4.3), must be obtained from a full numerical
calculation as in the theory of the electron-phason resis-
tivity of Ref. 21, and we have used the same parameters
in calculating I',, as allowed fits to the temperature-
dependent resistivity of large diameter samples near 1 K.
The resulting numerical values for I',; will be discussed
in Sec. V.

B. Electron-electron scattering

Studies done by Apel and Rice,*' which focus on one-
dimensional systems having only static impurities and in-
teracting electrons, result quantum-mechanically in the
expression

L (T)/1y~(T/Eg) ™%, (4.5)

where ¥ = 1. If one tries to use this form of /,,(T) to
reproduce the measured resistivity values, one obtains a
temperature dependence that varies even more slowly
than T2 and the resulting curve possesses the wrong con-
cavity for explaining the distribution of the experimental
data points. The dependence given in Eq. (4.5) contrasts
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with one-dimensional Landau-Baber scattering, which
varies linearly in T.

Our approach is simply to infer the electron-electron
quasiparticle rate following a procedure similar to that
for electron-phason scattering, again assuming three-
dimensional character and introducing a low-energy

2

af(k)/at],,=
[af(k)/dt],, (216
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cutoff E, in the energy transferred between electrons dur-
ing collisions. Again we expect this cutoff to be small or
zero since, in our case, essentially all collisions are
effective in destroying phase coherence (AET; >>2m).
The cutoff is incorporated in the expression for the decay
rate of the distribution function®?

[ @k, [ d ks [ dky{ Wky,ke—k; k) f (k3)f (k)= f(k)I[1—f(Ky)]

— Wik, ky— ks, k) f (k) f(ky)[1—=f(k)][1—f(ky]}

X8 E,+E,—E,—E,)®(E,~|E;—E,\|),

where

Wk, ky—k,, k) =Q2m /%) |k, ky|H,, k3, k) [*, (4.7

where H,, is the effective electron-electron interaction
Hamiltonian. For computing the quasiparticle rate, f(k)
differs from equilibrium only at a single point k, and the
resulting rate is averaged over Fermi surface positions
and energies (weighted as before) to give*®

Toekap =TT oo (kg TV /(4%E))J,(©, /T, ) ,

where J, (a,b) is defined by Eq. (4.4), ®. =E_/kp as be-
fore, and

.. =2N,|(k; k,|H,, ks, k)|

(4.8)

4.9)

is a dimensionless number of order unity characterizing
the collision strength, with 2N, the density of states at
E. The transport rate appearing in the classical electri-
cal resistivity p,, =(m /ne2)7';}tr is computed using the
appropriate (current-carrying) form for f(k), and of
course no low-energy cutoff, with the result®?

Toohe =TT (kg T)?/(124E)]A (4.10)
where A <1 is a measure of the relative amount of um-
klapp character in the scattering. In fact, A is precisely
the ratio of the above two rates when there is no low-
energy cutoff, since J,(0, o )=72/3. Umklapp scattering
is greatly enhanced in the direction of the CDW wave
vector,?? with A=0.6.

Finally, we may express the inelastic quasiparticle
scattering rate parameter in terms of the measured
temperature-dependent electrical resistivity at T=1 K
(assuming the dominant mechanism is electron-electron
scattering)

Toelgp=(ne2/m)p(T=1K)T?[3J,(® /T, =) /m*A],
4.11)

which will be used in Sec. V to calculate the inelastic-
scattering length /.

V. NUMERICAL RESULTS

Our results are summarized by Eq. (3.24) for the
temperature-dependent resistivity, with 7, given by Egs.
(4.3) and (4.11) for electron-phason and electron-electron
scattering, respectively. In this section we compare these
results with the experimental data for two of the thinnest
samples shown in Fig. 1. The thinnest sample (the open
diamonds in Fig. 1), which has a diameter of 0.09 mm
and a length of 5 cm, has an estimated residual resistivity
po=127.2 pQm and p,;, =130 pQm. The classical
resistance corresponding to the residual resistance is
r(L)=7.75X10 87#/e*=1.00X10"* Q. The value
a=3X10 ! is determined from the classical resistance
formula r.(L)=aL /I, with [,=0.02 mm. Because of
the high precision of the resistivity measurements, we
consider only the uncertainty in the temperature scale.
The values of AT were designated uncertain to within 1%
for 0.09 =T <0.8 K and about 3% for both T'<0.09 K
and 6.8 <7 <1.3 K.”

We make the comparison to the data as measured by
fitting the temperature derivative of resistivity using the
theoretical functions as follows: First, noting that
the temperature-dependent resistivity is proportional
to 7,2, according to Eq. (3.24), our predicted tempera-
ture dependences for the resistivity take the
form pl(T)=B,,[T*J;(©,/T,0¥/T)/J{(0,0)]
for  electron-phason  scattering, and  pll(T)
=B, [T,(0, /T, ©)/J,(®,, )] for electron-electron
scattering. Regarding ©_, 92", and the coefficients B as
free parameters, we fit the derivatives of these functions
to the data. Fits for the open diamond data of Fig. 1 for
electron-electron and electron-phason scattering are
shown in Fig. 3 as the solid and dashed curves. For
both fits, the value found for (ON is
indistinguishable from zero. This means that the
electron-electron function is p!°(T)=B, T* with B,,
=—0.55 fQm/K*  The phason temperature is
found to be ©3'=5.9 K and the coefficient B,4
=—0.46 fQm/K® For comparison, another sample
(the solid diamonds in Fig. 1) was fit to the electron-
electron mechanism with B,,=—0.46 fQ m/K* and the
result is shown in Fig. 3 by the dotted-dashed curve.
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FIG. 3. Plot of p,, xkAlnp/AT vs temperature for the sam-
ples of Ref. 1 corresponding to the open and solid diamonds in
Fig. 1. The solid and dashed curves, respectively, correspond-
ing to electron-electron and electron-phason scattering,
are fits to the open diamonds using temperature derivatives
of Eq. (3.24), ie, of plNT)=B,[TY,(® /T, )/
J2(®,,0)]> for electron-electron scattering and of
PN TY=B, [T J;(®. /T, 0F /T)/ J;(®,0P))? for electron-
phason scattering. The best fit parameters were ®,=0 for
both mechanisms, B, =—0.55 fQm/K*®y=59 K, and
B,,=—0.46 fQm/KS. The dotted-dashed curve is a fit of
electron-electron scattering to the solid diamonds with ®, =0
and B,, = —0.46 fQm/K*.

While the “temperature” parameters ®, and O deter-
mine the functional forms of 7, the strength parameters
[,s and T',, in Egs. (4.3) and (4.11), respectively, are
determined by fitting the measured electrical resistivities
with expressions involving the analogous transport times.
The coefficients B,; and B,, may thus be used to deter-
mine the number of sets of intimate channels (or the
“channel number” parameter) v. This channel parameter
and the inelastic-scattering lifetime 7;, are determined for
each mechanism as follows.

For electron-electron scattering, in Eq. (4.11), we use
the maximum estimated value for the CDW umklapp
fraction A=0.6, and the largest value of the
temperature-dependent resistivity observed in large sam-
ples®® p (1 K)=7.5X10"'* QO m, assuming that for that
measurement, the sample essentially consisted of a single
CDW Q-domain oriented along the length of the sam-
ple.”2 Quoting the inelastic-scattering lifetime in length
units, we find as a result that vp7y, ., =~0.29 m at 1 K, and
v=2.3X10%

For electron-phason scattering, with ®3°=5.9 K,
©®,=0, we have calculated I',, numerically using the pro-
cedure of Ref. 21, with the modifications discussed in Sec.
IV A, using parameters that provide agreement with the
low-temperature resistivity data for samples of large di-
ameter. For a transverse phason velocity of v, =1.4X 10°
cm/sec and the phason anisotropy parameter n=1{, we
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compute that vp7,, ,4=0.50 cm at 1 K and v=35.6.

Unfortunately, v, .4 i8 too short to satisfy vpr, >L,
under which Eq. (3.24) is valid. Furthermore, although
VpTin,ee Satisfies this condition, since we must add the two
contributions to the rates, ;' =7, t 7.0 the net
value of vp7,, is also too short. Since electron-electron
scattering by itself is consistent with the data, perhaps for
some reason electron-phason scattering becomes
ineffective in the thinner samples. CDW domains are be-
lieved to orient near surfaces so that the CDW wave vec-
tor is perpendicular to the surface. This means that elec-
trons are most strongly scattered by phasons when direct-
ed perpendicular to the wire axis. In classical transport
theory this would reduce the effectiveness significantly,
but in the localization regime, an analogous argument
would probably not apply. For example, scattering by
phasons would seem to retain its effectiveness in coupling
transverse quantum numbers (causing transitions between
channels), which would degrade localization effects.
Phason ineffectiveness would more likely result from dis-
tortion of the CDW itself in the presence of a surface,
which would be accompanied by a change in the phason
spectrum. More significantly, the conical points of the
Fermi surface could be significantly altered by a small
CDW distortion, changing the electron-phason coupling.

Deviation of the theoretical curves from the data below
0.35 K is consistent with anomalous behavior seen in
thicker samples by Lee et al.?® These anomalies could in-
dicate that a new phenomenon is appearing below 0.35
K. The rise in the data near 1.3 K is due to the exponen-
tial rise of electron-phonon umklapp scattering. When
this (or presumably any other inelastic mechanism) be-
comes sufficiently strong, localization effects are des-
troyed, and the usual temperature-dependent increase in
resistivity becomes visible. This effect is excluded in the
present theory.

VI. CONCLUSIONS

We have found that the destruction of the coherence of
one-dimensional localized electronic states by inelastic
collisions can explain the decreasing resistivity with in-
creasing temperature seen experimentally in thin potassi-
um wires below 1.3 K. The decrease comes about be-
cause each inelastic event destroys the phase memory of
the electrons, effectively breaking the wire up into a series
of segments, such that each segment has a resistance that
increases exponentially along its length, while the resis-
tance of the whole wire is just the simple sum of resis-
tances of the segments.

In order to compare our results with experiment, we
considered the two inelastic mechanisms that dominate
the temperature-dependent resistivity of large diameter
samples below 1.3 K, namely electron-electron scattering
and electron-phason scattering. The results are summa-
rized in Egs. (3.24), (4.3), and (4.11). A nonlinear least-
squares fit to the data for each mechanism results in
®.=0 for both mechanisms. For electron-electron
scattering we determine an acceptable value of v and
show that vp7,, > L, consistent with our assumption lead-
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ing to Eq. (3.24). Similar considerations for electron-
phason scattering lead to vy7;, < L, which is inconsistent.

If our estimate for the electron-phason 7;, is correct,
this invalidates our simple expression R (L,7;,)~7,.? [Eq.
(3.24)] but not the more general result [Eq. (3.17)], since
Ty, still satisfies the condition for one dimensionality
lp>d, where d is the diameter of the sample. Thus we
would still predict a decrease in resistivity with increas-
ing temperature, but the significant effect would be comp-
leted at temperatures below the range of interest in the
experiment, leaving these data unexplained.

If, on the other hand, electron-phason scattering
somehow becomes ineffective in degrading phase coher-
ence, the remaining electron-electron mechanism pro-
vides agreement with the data. The most plausible route
to such ineffectiveness may lie in a possible distortion of
the CDW state as the wire becomes thinner. Such a dis-
tortion would probably be related to the tendency of the
CDW wave vector to orient perpendicular to the nearest
surface.

While efforts to confirm localization effects in one-
dimensional systems have in the past been concentrated
on very impure samples, with residual resistances
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~10 kQ, we have presented evidence for localization in
the very pure samples of potassium. It is in fact the high
purity that makes this possible, since this allows the elas-
tic mean free path to be comparable, and the Thouless
length to be long compared to the diameter of the wire.

The steep temperature dependence of the data, which
conforms to our result R(L,;,)~7;,2, is appropriate to
the regime 7,,> L /vp. This regime applies if the simple
estimate of electron-electron scattering, based on bulk
resistivity data, is the correct one. However, this also re-
quires that somehow electron-phason scattering does not
contribute in a similar way to localization effects. In fact,
the central prediction of this paper is that the
temperature-dependent part of the resistivity should vary
as 7,2, oras (1/13).
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