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Photoabsorption of small metal clusters: Surface and volume modes
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The size-dependent dynamic polarizability of small clusters of simple metals is calculated analyti-
cally. It is predicted that the photoabsorption spectrum should consist of two peaks, one corre-
sponding to surface, and the other to volume collective excitations. Unlike the case of bulk matter,
the volume mode in small clusters can be excited by photons; its oscillator strength decreases with

increasing cluster size. The derived oscillator-strength distribution is shown to satisfy exact
energy-weighted sum rules. The results are used to explain experimental photoabsorption data.

I. INTRODUCTION

Many properties of small clusters of simple metals are
governed by the behavior of the delocalized valence elec-
trons. They determine cluster stabilities, shapes, and the
electromagnetic response. '

Collective oscillations of the valence-electron cloud '

dominate the optical spectra of small alkali-metal clus-
ters. In recent publications, an analytical derivation of
the surface-plasma resonance frequencies of neutral '

and ionized metal clusters was presented. The calcula-
tion was based on the random-phase approximation
(RPA), and made use of the statistical Thomas-Fermi
description of the valence electrons in metal clusters,
developed in Ref. 7. Excellent agreement with experi-
mental data was obtained. In the present paper, this ap-
proach will be extended to an evaluation of the dynamic
polarizability of metal clusters.

The analysis described below leads to the prediction
that, in addition to the surface-plasma resonance, in
small particles there should appear a higher-frequency di-
pole resonance peak, corresponding to the volume plasma

I

oscillation in bulk metals. In small clusters, as opposed
to the bulk, this excitation is capable of coupling to pho-
tons. Our calculation explains the observation that in
sodium clusters the surface-plasma resonance does not
exhaust 100% of the valence electron oscillator strength.
In addition, the dynamic polarizability will be shown to
satisfy some general and rigorous sum rules.

The plan of the paper is as follows. In Sec. II, the ex-
istence of the second resonance mode is demonstrated.
Section III describes the calculation of the dynamic po-
larizability and the photoabsorption cross section.
Oscillator-strength distribution and sum rules are the
subject of Sec. IV, which also addresses the static electric
polarizability of metal clusters.

II. RESONANCE FREQUENCIES

A. Equation of linear response

%e begin by writing down a general equation describ-
ing a cluster in an external potential uo(r)exp(ieot) The.
eff'ective field, V(r, eo)exp(ieot) is the solution of the in-

tegral equation

l
V(r, eo)=uo(r)+e' f f II(r, , rz, eo) V(r ,2t)odr, d r2 .

r —r,

The second term on the right-hand side is the potential due to the induced cluster charge. II(r, , rz, eo) is the irreduc-
ible polarization operator, ' which describes the screening of the external field by the valence electrons (see Fig. 1).
(We set 4= 1 throughout the paper; also, we use the convention that the electron charge is —e.)

It has been shown' (see also the discussion in Ref. 5) that when the RPA expression for 11 is expanded in powers of
b, /eo, where b, is the single-particle level spacing (in metal clusters b, 0. 1 —0.3 eV), the first-order result for Eq. (1) is

247m(r)e
mao

lfd'r, V(r, )V,
mto
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where n (r) is the number density of the valence electrons
and m is the electron mass (the co dependence of V is im-

plied, but no longer explicitly indicated).
We consider spherical clusters, containing closed shells

of valence electrons. ' The electron density is then a func-
tion of the radial coordinate only: n(r)=n(r). We
define the dimensionless electron-cloud shape factor

g (r)—:n (r) lp+, (3)

where p+ is the number density of the positive back-
ground, treated as a uniform sphere of radius
R =a0r, N,' . Here N, is the number of valence elec-
trons in the cluster, r, is the Wigner-Seitz electron-
density parameter, and a0 is the Bohr radius.

We are interested in electric dipole transitions; there-
fore, we take the external field to be

Uo(r) = eEoz = —eEor cos—8,
and the effective field

V(r)=f (r)cos8 .

(4)

Choosing the z, axis in Eq. (2) to lie along r, we arrive,
after some manipulations, at the following integral equa-
tion (cf. Ref. 5):

—f dr, rfg'(r&)f(r, ) 2r f dr,——g'(r&)f(r&)
r 0 r r)

where

CO CO= —3 eEor + 3 g (r) f (r)—, (6)
COp COp

FIG. 1. Diagrammatic representation of Eq. (1), The exter-
nal field Uo is screened by the delocalized electrons in a cluster;
the line "e-e" represents their Coulomb interaction. RPA con-
sists of taking the lowest-order expression for the polarization
operator H.

B. Macroscopic limit

The limit of a large spherical particle corresponds to
the unit-step-function electron-density profile: g(r)=1
for r &R and g(r)=0 for r &R. In this case, the deriva-
tive of g (r) is a 5 function: g'(r) = —5(r —R), and Eq. (6)
(with Eo =0) becomes

f (R)=

3R co
1 — f (r) for r &R,

2r co

3r co
z f(r) for r &R .

R

These equations have two roots: co =~ W 3 and
co=co . The former corresponds to the surface plasmon
and the latter to the volume plasmon. (In the first case,
the solution is of the form f(r)-r inside the sphere and
f(r)-r outside. This is the dipole field of classical
surface charge oscillations. In the second case, f (r) van-
ishes outside and grows to a finite value on the inside.
This implies that oscillations are taking place in the inte-
rior of the sphere; they do not involve the appearance of
a surface charge. ) There is also the root co=0, but it is
easily shown to correspond to the trivial solution

f (r) —=0.
In Ref. 10, only the surface plasmon was identified as

the solution to Eq. (6) in the macroscopic limit. In fact, it
is clear that a large metal sphere should support both sur-
face and volume plasma waves. The latter have vanish-
ingly small oscillator strength (i.e., they do not couple to
photons, see Sec. III A), but nevertheless represent a
well-defined excitation.

C. Resonance frequencies in clusters

As discussed in Ref. 5, Eqs. (6) and (8) (with ED=0)
can be solved analytically. One makes use of the rapid
decrease of g(r) at the edge of the positive background
sphere (r =R) and expands the integrands about this
point. Two eigenvalues (resonance frequencies) are ob-
tained:

4m@+ e
CO

rn
COp

=3g (R)+ I+ I [3g (R)—1] +24q (1 —3q) I
'

is the bulk plasma frequency.
Differentiating (6) with respect to r, we obtain

—f dr& r&g'(r~)f(r&)+2f dr, —g'(r~)f(r, )
r r r)

where the quantity

q== g rcjr
R

(10)

CO CO= —3 eEO —3 g(r) —
2

f'(r) .
COp COp

Together, Eqs. (6) and (8) suffice to determine f (r)
When there is no external field present (ED=0), these

equations will have a nontrivial solution for certain
values of co. These eigenvalues are the resonance frequen-
cies of the valence electron system. In Secs. II B and II C
we consider the limits of a large sphere and a small clus-
ter, respectively.

measures the extent of the spill out of the valence elec-
tron cloud outside the positive background. Equation
(10) is a general result, independent of the precise form of
g (r).

In Ref. 5, we focused on the root with the minus sign
on the right-hand side, co: in the macroscopic limit
(q~0) it is the surface plasma resonance frequency.
Based on the analysis in Sec. II B, we can now identify
the physical meaning of the root co+. In the large-
particle limit, we set g(r) =1 and q =0 (no spill out) in
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waves are transverse, whereas plasma waves in an infinite
medium are longitudinal. In finite-sized particles, on the
other hand, the volume mode can couple to light.

The weight factor g can be calculated from the density
distribution given by the statistical Thomas-Fermi
method. Figure 2 displays this factor as a function of
cluster size, and shows the results to be in agreement with
the observation that the surface-plasma resonance does
not exhaust 100% of the oscillator strength in small sodi-
um clusters. The oscillator-strength distribution in metal
clusters is discussed in more detail below.

B. Discussion

There have been, to our knowledge, no direct observa-
tions of the volume dipole mode in the optical spectra of
small (containing from a few to several hundred atoms)
metal clusters, particularly free ones, where interaction
with the substrate does not complicate the picture. The
photoabsorption spectra of potassium cluster ions sug-
gest that most strength is concentrated in the surface
mode, but the accuracy of these measurements is stated
to be about 25%. Consequently, it would be interesting
to carry out a spectroscopic search for the high-
frequency volume dipole absorption peak in size-selected
clusters.

A feature in a numerically calculated' time-dependent
local-density approximation curve of the dynamic polari-
zability of sodium clusters has been termed a volume
plasmon. However, this calculation predicted that the
feature would be prominent in large clusters, and disap-
pear in clusters with less than N=—92 atoms. Our con-
clusion, on the other hand, is that in small clusters the
higher-lying resonance should be quite prominent, and
should account for the oscillator strength missing from
the surface-plasma resonance peak (see earlier).

Calculations based on the hydrodynamic model and
the Drude dielectric function have predicted that in me-
tallic spheres with diffuse electronic profiles, there would
exist a number of additional higher-lying dipole surface
modes' ' as well as many dipole volume modes, ' the
latter having frequencies higher than cu (the calculation
in Ref. 13 also predicted a "blue shift" of the volume
plasmon). Our calculation does not indicate any addi-
tional surface resonances, while predicting a red-shifted
volume mode.

There is some experimental as well as theoretical' in-
dication that the surface collective resonance may in fact
be split into two or more closely spaced lines. Within the
framework of the method used here, this could come
about if one took into account higher-order terms in the
expansion of the polarization operator 11(r,r, , co). In this
case, the contribution of higher-energy single particle-
hole transitions may split the resonance peak, while
maintaining the average resonance excitation energy at
the value given by Eq. (10).

A question of great interest is the origin of the line
width I +. The measured width of the surface-plasma res-
onance ( —10% of the resonance frequency) is in
disagreement with the simple 1/R scaling law proposed

for larger particles. ' As discussed in Ref. 2, there are
probably several contributions to the damping of the col-
lective excitations of the valence electrons, among them:
excitation of electron-hole pairs [described by higher-
order terms in the expansion of II(r, r&, cu), see Ref. 10],
coupling of the electrons to ion vibrations (vibronic in-
teraction' } and to cluster shape oscillations, and escape
of cluster fragments into the continuum.

IV. OSCILLATOR STRENGTHS AND SUM RULES

We can use this result to check whether our calcula-
tion satisfies two rigorous sum rules for many-electron
systems. The first of these is the well-known Thomas-
Reiche-Kuhn sum rule '

So=gf„o=N, . (22)

Clearly, this sum rule is satisfied by (21).
The other sum rule reads '

4m eSz=ge„of„o= fp+(r)n(r)d r .
3 m

(23)

For a cluster with a spherical uniform positive back-
ground, this can be rewritten as

S~ = co 1—
e

(24)

where we have used Eq. (7},and hN is the amount of the
valence electron spill out:

EN=4rr J n(r)r dr . (25)
R

We use Eq. (3), integrate Eq. (25) by parts, and then
once again employ the fact that g'(r) is sharply peaked
near r =R. Expanding the factor r in the integrand
about this point and integrating, we find the following re-
lation between the spill out and the parameter q defined
in Eq. (11):

EN=3qN, .

Thus the sum rule (24) can be written as

(26)

(27)

One can see that Eqs. (21), together with the results
(10) for the resonance frequencies and (19) for the weight
factor rl, satisfy the equality (27) exactly.

In Refs. 22 and 23, the sum rules (22) and (23) were

A. Energy-weighted sum rules

The oscillator strength of state
~
n ) of the cluster

valence electron system is defined as
f„o=2me„o[(n~Z~O)~ . From Eqs. (12) and (18), or al-

ternatively, (13) and (20), one can write

(I rl)N, —for e„o near co

f„o= rlN, for e„o near co+,
0 otherwise .
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used to extract the centroid and variance of the strength
function for clusters. However, these quantities cannot
be used to calculate the position and the width of a clus-
ter absorption resonance. Since, as we have shown, there
are two distinct peaks in the absorption spectrum, the
centroid and the variance will give only the position of
the "center of mass" of the peaks, and a measure of the
distance between them. In fact, it is easy to see that the
sum rule (24) could not possibly be satisfied if only the
red-shifted surface plasma resonance peak, rp [see Eq.
(10)],were present in small clusters.

Thus, in this section we have shown that our two-peak
result is in precise agreement with two rigorous energy-
weighted oscillator-strength sum rules, So and Sz.

B. Static yolarizability

In Ref. 5, we calculated the static electric polarizabili-
ties, ao, of metal clusters, under the assumption that the
surface-plasma resonance exhausts 100% of the valence
electron oscillator strength. The results were in excellent
agreement with the experimental data. Here we would
like to analyze what e8'ect the oscillator-strength distribu-
tion (21) will have on ap.

The static polarizability of a metal cluster, due to the
valence electron cloud, is given by"

Cxp=2e S p —=2e ge" p f (28)

With the help of Eqs. (10), (19), and (21), this becomes

g(R)+q
g (R )

—2q (1—3q)
(29}

In the large-particle limit (q~0), this approaches the
macroscopic result ao=R . In small clusters, the frac-
tion in Eq. (29) is greater than unity, so that the static po-
larizability is enhanced with respect to the macroscopic
value.

Before discussing the numerical results, it is essential
to note that there exists yet another contribution to the
static electric polarizability, coming from the low-
frequency part of the electronic spectrum. The result for
the oscillator-strength distribution, Eq. (21), was derived
under the assumption that one was dealing with reso-
nance frequencies much higher than the single-particle
level spacing [c0))b, see the discussion following Eq.
(1)]. However, in addition to the plasma resonances, clus-
ters may display transitions in the low-frequency region
(cp-b, }, which are not contained in the strength function
(21). A calculation of the exact low-energy spectrum of
electrons in small metal clusters is difficult, since it re-
quires an analysis of the polarization operator II(r, r„cp}
for small ro. (Approximate treatments of the low-energy
behavior of photoabsorption of small metal particles is
presented, e.g. , in Refs. 10 and 25.)

Since the two collective resonance peaks exhaust the
sum rules, Eqs. (22) and (23), the oscillator strengths of
the low-lying transitions must be very small, but they will
come into Eq. (28) with small energy denominators. As a
result, their contribution to the static polarizability will
increase its value.

TABLE I. Static electric polarizabilities (in units of R') of
Na and K clusters. SV: including both surface and volume
terms [Eq. (29) in the text]; S: including only the surface term
(see Ref. 5); Expt. : experimental data from Ref. 24.

Cluster

Na8

Nacho

Na4o

Nass
Nagq

1.54
1.41
1.33
1.29
1.25

ao/R '
S

1.81
1.62
1.51
1.46
1.40

Expt.

1.77+0.03
1.68+0. 10
1.61+0.03

K8
K~o

Ks8
K9q

1.49
1.37
1.30
1.26
1.23

1.74
1.57
1.46
1.42
1.36

1.79+0.09
1.66+0. 13

Numerical values for Eq. (29) can be obtained by using
the valence electron density distribution calculated in the
statistical Thomas-Fermi approach. Table I lists the re-
sults for some clusters; the agreement with experiment is
good. Note that even better agreement is obtained if one
includes only the surface collective state in Eq. (28}, with
a strength of 1. (Static polarizabilities calculated in this
way are also in excellent agreement with recent data on
aluminum clusters with 40 and more atoms. ~s)

In view of the preceding discussion, this can be under-
stood as follows. Suppose one started out with 100% of
the oscillator strength concentrated in the surface reso-
nance state and calculated the polarizability. Next, one
takes into account the existence of the volume plasmon;
this leads to Eq. (29) and a reduced value of ap. Howev-
er, it is necessary at the same to remember the presence
of the low-lying energy levels, whose contribution will in-
crease ao and move it close to the starting value.

V. CONCLUSION

We analyze photoabsorption by small metallic clusters,
and present an analytical calculation of cluster dynamic
polarizabilty in the random-phase approximation. The
absorption spectrum consists of two resonances: a sur-
face mode and a volume mode. In small particles, as op-
posed to bulk matter, the volume-plasma oscillation can
be excited by photons. The oscillator strength distribu-
tion, deduced from the dynamic polarizability, is shown
to satisfy rigorous energy-weighted sum rules. With in-
creasing cluster size, the resonance frequencies move up
and approach their macroscopic values, while the oscilla-
tor strength is transferred from the volume to the surface
collective mode.

It is noted that including the volume mode in a calcula-
tion of the static electric polarizability tends to reduce its
value, and it is pointed out that it is essential to take into
account the low-energy part of the excitation spectrum.

Numerical values for the resonance frequencies and the
relative oscillator strengths are calculated with the use of
the Thomas-Fermi statistical description of metal clus-
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ters. The results allow to explain the available experi-
mental data on surface plasma resonances in small clus-
ters. It would be interesting to verify the predictions by
carrying out a search for the volume resonance peak in
cluster photoabsorption spectra.
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