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Local-spin-density calculations for iron: EI'ect of spin interpolation on ground-state properties
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Scalar-relativistic self-consistent linear muffin-tin orbital (LMTO) calculations for bcc and fcc
Fe have been performed with several diA'erent local approximations to the exchange and correla-
tion energy density and potential. Overall, in contrast to the conclusions of previous studies, we

find that the local-spin-density approximation to exchange and correlation can provide an ade-

quate description of bulk Fe, provided that a proper parametrization of the correlation energy
density and potential of the homogeneous electron gas over both spin and density is used. Lattice
constants, found from the position of the minimum of the total energy as a function of Wigner-
Seitz radius, agree to within 1% (for s,p, d LMTO's only) and within 1-2% (for s,p, d,f
LMTO's) of the experimental lattice constants for all forms used for the local correlation. The
best agreement, however, was obtained using a local correlation potential derived from the
Vosko-Wilk-Nusair form for the spin dependence of the correlation energy density. The calcula-
tion performed with this correlation potential was also the only calculation to correctly predict a
bcc ferromagnetic ground state.

Considerable success has been achieved by electronic-
structure calculations in the prediction of the ground-state
properties of nonmagnetic bulk crystals. Lattice constants
can usually be obtained to within 1-2% or so of the exper-
imental value, ' elastic constants such as bulk moduli to
within 0-30%. '2 Consistent results have been obtained
using a variety of electronic-structure techniques, includ-
ing the linear augmented-plane-wave approach (or its
generalization to full potential, the FLAPW method3),
Korringa-Kohn-Rostoker, ' linear muffin-tin orbital
(LMTO), full-potential LMTO, and pseudopotentials
approaches, to name a few. All of these methods adopt
the local-density approximation (LDA) to the exchange-
correlation energy and potential. There have been many
forms suggested for the energy and potential functionals.
The commonly used classes are (1) the form suggested by
Slater' (Xa) and the exchange-only Kohn-Sham (KS)
form where the functional dependence on the density is of
the simple p'1 form, (2) the fits to random-phase-
approximation-based calculations by Hedin and Lund-
qvist, Gunnarsson, Lundqvist, and Wilkins (GLW), 'n

and von Barth-Hedin (vBH), " and (3) the parametriza-
tion of the Monte Carlo data of Ceperley and Alder'
(CA) by Perdew and Zunger. ' The latter is expected to
be the best test of the local-spin-density approximation
(LSDA), since it provides the most accurate description
of the homogeneous electron gas.

Historically, the LSDA has not had the same success in

magnetic systems that the LDA has had in nonmagnetic
systems. The 3d transition metal Fe is a good example of
a magnetic system which has been extensively studied, yet

one which has been, to date, rather poorly described by
LSDA-based band-structure calculations. The structural
and magnetic properties of Fe have been studied using the
FLAPW method by Wang, Klein, and Krakauer'4 and
Hathaway and co-workers. ' ' In these calculations, the
authors find that the ground-state crystal structure of Fe
is nonmagnetic fcc, that the bulk modulus is too large, and
that the lattice constant is significantly too small. More
recent LMTO calculations by Bagno, Jepsen, and Gun-
narsson' produced similar results to the FLAPW studies,
though a good bulk modulus was obtained, unlike any oth-
er LSDA calculation. The authors also considered the
effects of various gradient terms (nonlocal corrections)
where they found that they could indeed stabilize the fer-
romagnetic bcc phase and also expand the lattice con-
stant. It is the purpose of this Rapid Communication to
consider the sensitivity of the aforementioned ground-
state properties to changes in the form of spin dependence
of the correlation effects, perhaps answering the questions
of why previous LSDA calculations have given a poor
ground-state description and whether it is necessary to
resort to nonlocal corrections.

All the LSDA calculations are based upon fits of the
exchange-correlation energy density over the electron-gas
density (or equivalently, r, ) and spin polarization g. The
latter is usually approximated at intermediate g by an in-
terpolation between the extreme paramagnetic ((=0) and
ferromagnetic (( 1) limits using a fortnula suggested by
von Barth and Hedin. " This scaling, while correct for the
exchange part of the potential and energy in a homogene-
ous system, is not correct for the correlation contribution.
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The failure in previous calculations using the LSDA could
then possibly arise from either the breakdown of the
LSDA itself or from the use of the vBH spin interpolation
formula in obtaining the spin-dependent correlation po-
tential. We tested a number of parametrized LSDA func-
tionals to see whether the relatively poor agreement with
experiment obtained in previous calculations for magnetic
systems compared to nonmagnetic systems can be
remedied by using another form for the spin-dependent
correlation potential.

Vosko, Wilk, and Nusair's (VWN) suggested an im-
proved spin interpolation formula for the correlation ener-

gy based on detailed analysis. The corresponding poten-
I

c, (r„&)-cf (r, )+ac,(r„g),

where /3c, (r„g) is expressed in terms of the spin stiffness
+c.

/c, (r„g) -a, (r,), [i+p(r, )/, 4]'0 (2)

and

tial can be derived in a straightforward manner. The
equations for the correlation energy and potentials as a
function of spin polarization are as follows
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where
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where b~ (bxp —c)/cxp, b2 (xp —b)/cxp, and
b3 1/ cxp.

The derivative of p is given by

and where appropriate parameters are given in Table I.
The derivative of a, is given by
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Parameter Value

TABLE I. Parameters for VWN interpolation formu1a.
In the above, P denotes the paramagnetic limit and F the
ferromagnetic limit. In these limits, we have used the
Perdew-Zunger ' parametrization,

A
C
b
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The VWN parametrization for e, and e, , which is distinct
from the VWN spin interpolation, could have also been
used. Although our use of this hybrid correlation poten-
tial makes the comparison with other VAN results
difficult, the issue here is to examine the effect of the spin
interpolation on the results, keeping the paramagnetic and
ferromagnetic limits the same in both sets of calculations.
The values of the various parameters are given in Table
II, and all energies are in rydbergs.

The calculations presented in this paper were performed
with the scalar-relativistic LMTO method, which used a
fully relativistic frozen core. We have tested several
different local-density functionals: namely, the vBH, CA,
KS, and GLW forms with the vBH spin interpolation and
the CA with the VWN interpolation. We found that for
all the functionals tested that the bcc ferromagnetic phase
had a lower total energy than the corresponding nonmag-
netic bcc phase, though we did not test the stability of the
antiferromagnetic fcc phase relative to the nonmagnetic
phase. Care was taken both to converge the total energies
to six decimal places and to sample the region around the
minimum densely so that the lattice constant, magnetic
moment, and particularly the bulk modulus could be accu-
rately determined. The number of K points used in the
Brillouin-zone integration was systematically increased
until convergence was achieved. The tetrahedron method
was employed for this integration with convergence typi-
cally achieved by 500 k points. LMTO calculations with
s,p, and d, as well as s,p, d, and f LMTQ's, have been ex-
amined. For nonmagnetic fcc Fe and ferromagnetic bcc
Fe, we summarize the results of calculations based on
l=3 with about 500 k points for the CA and vBH func-
tionals only. The same trends were also observed in the
I 2 calculations; the addition of the f LMTO contracted
the lattice and reduced the moment slightly. The details
and approximations behind the LMTO approach used
here have been discussed in detail in other works, and we
refer the reader to Ref. 4 for an excellent discussion of

I

this.
Tables III and IV summarize our findings. Table III

lists minimum total energies computed for the different
crystal structures for each form of exchange-correlation
considered. The total energies cited exclude terms from
the frozen core. Since we are always interested in energy
differences between ground states, this core constant will
not be important. The results for the equilibrium lattice
collstant, magnetic moment, bulk modulus, and stable
ground-state crystal structure are given in Table IV. We
see that lattice constants are within 2%%uo, magnetic mo-
ments within 5%, and bulk moduli are too high by
30-40%. These errors in bulk moduli, however, are com-
parable to those obtained in paramagnetic LMTO calcu-
lations for the 3d transition metals. The bulk modulus is
extremely sensitive to the curvature of the total energy
curve, and errors associated with the LMTO approxima-
tion aside from LSDA could easily account for this
discrepancy. Work to investigate the source of error is at
present underway using the full-potential LMTO meth-
~ 20

The magnetic moment as cited in Table IV is slightly
underestimated. This is a result of the Wigner-
Seitz-sphere approximation which will tend to overesti-
mate the contribution from the antiferromagnetically po-
larized interstitial region. The significant success of the
new parametrized correlation potential functional lies in
the correct prediction of a ferromagnetic bcc ground
state —a feature not observed in those functionals which
use the vBH form of spin interpolation. The improved
VWN spin interpolation in the correlation potential is
consequently important for an accurate description of the
magnetism.

Our results show that Fe has a sufficient sensitivity to
correlation that the low-lying states can reorder with the
application of different spin-interpolation forms. The

TABLE II. Parameters for CA LSDA.
TABLE III. Summary of minimum total energy (minus the

frozen core) for the ferromagnetic bcc and paramagnetic fcc
calculations.

Parameter

1

2

8
C
D

Paramagnetic

—0.1423
1.0529
0.3334
0.0311

—0.048
0.0020

—0.0116

Ferromagnetic

—0.0843
1.3981
0.2611
0.01555

—0.0269
0.0007

—0.0048

LDA

CA
CA
CA

vBH
vBH

Spin
interpolation

VWN
vBH
vBH
vBH

Crystal
structure

fcc
bcc
bcc
fcc
bcc

Energy
(Ry)

—44.2974
—44.2993
—44.2945
—44.5952
—44.5938
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TABLE IV. Summary of LMTO local-spin-density calculations for Fe.

LDA
Spin

interpolation
Lattice constant

(a.u. )
Magnetic moment

(its)
Bulk modulus

(Mbar)
Ground

state

CA VWN
CA vBH
vBH vBH

experiment

'Reference 21.

5.3111
5.3706
5.2941
5.4169'

1.98
1.85
2.12
2.12

2.45
2.53
2.52

1.68-1.73

bcc
fcc
fcc
bcc

spin-interpolation formula resulting from the VWN form
for the correlation energy density seems to provide accu-
rate parametrized correlation potentials within the LSDA.
The VWN spin interpolated correlation potential signif-
icantly improves the LSD description of ferromagnetic
bcc Fe. While the calculations performed utilized the
atomic sphere approximation, we believe that the trends
will persist in a full-potential calculation, since the volume
of space containing intermediate spin polarizations will be
roughly the same. We conclude that a good description of
the magnetic properties of bcc Fe is obtainable within the

LSDA, provided the proper interpolation is used for both
the correlation energy density and potential.
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