PHYSICAL REVIEW B

VOLUME 42, NUMBER 5

RAPID COMMUNICATIONS

15 AUGUST 1990-1

Rapid Communications

Rapid Communications are intended for the accelerated publication of important new results and are therefore given priority
treatment both in the editorial office and in production. A Rapid Communication in Physical Review B should be no longer than 4
printed pages and must be accompanied by an abstract. Page proofs are sent to authors.

Magnetoresistance of very pure simple metals

M. Biittiker
IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(Received 7 May 1990)

High-magnetic-field anomalies in pure and simple metals such as Al, K, and In are explained in
terms of carrier transport along two-dimensional skipping orbit states. Our approach explains in
a very simple way the linear magnetoresistance due to grooves and projections at the sample sur-
face. Our approach also provides an explanation for the negative voltages measured in certain

geometries.

Understanding the magnetoresistance data of simple
metals such as Al, K, and In has eluded physicists for
many decades. Fickett,! in his 1971 paper, writes “It has
become almost axiomatic that the more simple metals, in
the free-electron sense, exhibit magnetoresistance data
which are at odds with theory.” The general theory? pre-
dicts that the high-field magnetoresistance should satu-
rate. In contrast, in many experiments the magnetoresis-
tance at high fields increases linearly with magnetic field.'
A considerable insight into the origin of the linear magne-
toresistance was obtained by Bruls ez al.,> who showed
that the effect at helium temperature, in millimeter-sized,
high-purity samples with a mean free path of 0.3-0.4 mm,
is due to sample-thickness variations. Samples with
wedges and grooves and protrusions extending across the
entire width of the sample were studied (see Fig. 1).
Bruls et al.? also presented a model based on local resis-
tivities which is able to explain some of the observations.
Subsequently, Soethout er al.* observed that if a sample
of complex geometry is rotated in a magnetic field, the
longitudinal resistance is negative over a large range of

angular orientations. These observations prompted
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FIG. 1. Conductor consisting of flat portions, grooves (G),
protrusions (P), and wedges (W). A-D are small contacts.
After Bruls ez al. (Ref. 3).
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Overhauser® to propose that the negative resistance is a
consequence of a magnetoserpentine effect due to charge-
density-wave domains,

We present a different point of view: We propose that
the high-field magnetoresistance anomalies in these simple
metals are due to carriers which for certain geometries
and field directions follow skipping orbits along surfaces
of the metallic conductor. Our approach bears a close
resemblance to a recent discussion® of the quantized Hall
effect which uses carrier motion along edge states’ to
evaluate transmission probabilities.®® This approach has
been successfully applied to a variety of geometries.'°
The close relationship between the phenomena discussed
here and electron motion in two-dimensional electron
gases is supported by recent work of Hirai et al.,'' who
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FIG. 2. (a) A rectangular piece of metal of height L. and
width L,. (b) Energy spectrum of the conductor with side walls
at y; and y» in a large magnetic field.
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find that an inhomogeneous two-dimensional conductor
also gives rise to a linear magnetoresistance in a certain
range of fields. Motion along metallic edge states explains
in a natural way the linear magnetoresistance and the
conditions under which it occurs.

First, we consider the energy spectrum along a portion
of a conductor which is perfect (without any impurities).
The conductor shown in Fig. 2(a) is rectangular, and the
applied magnetic field is aligned along the z axis. We con-
sider a free-electron Hamiltonian with a confining poten-
tial which is zero for points in the interior of the conductor
and is infinite for points outside the conductor. The ener-
gy of an electron in such a conductor consists of two con-
tributions: For L, of the order of the Fermi wavelength,
the electronic spectrum of a thin perfect film is the same
as that discussed in connection with the quantized Hall
effect.” The energies E;(y), where / is the Landau-level
index, are independent of y, if y is not too close to a sam-
ple boundary and given by E;(y) =hw.(/ + 1 ). Near the
sample boundary the energy levels rise as shown in Fig.
2(b). For L, much larger than a Fermi wavelength, the
energy for the two-dimensional strip geometry has to be
supplemented by kinetic energy associated with the
motion along the z direction. Thus the total energy is

En()=E () +h%x*n?2mL?. 1)

For a fixed Landau-level index / the motion in the z direc-
tion leads to a ladder of energy levels which as a function
of y follow the Landau level of the strip geometry. Near
the surfaces of the sample, parallel to the applied field, the
energies of Eq. (1) are associated with skipping orbits
with velocity along the x direction given by

vx=dE/dhk,=(dE/dy)(dy/dhk,),

where y =k,I/3 and Ig=(hc/|eB|)'? is the magnetic
length. The motion along the z direction is associated
with a velocity v, =hk,/m =hnr/mL,. Away from the
surfaces the carriers are on helical orbits around a station-
ary axis parallel to the magnetic field.

A current can be induced in the conductor of Fig. 2(a)
by attaching electron reservoirs with differing chemical
potentials. The Fermi energy in the presence of a magnet-
ic field is denoted by Ey. Each channel /n which inter-
cepts the Fermi energy permits a current from one elec-
tron reservoir to the other which is just (e/A) (u, —u3) in-
dependent of the indices of the energy level and its density
of states.®”® Therefore, to obtain the total current,

4
(a) T
) |
| {3
U JL
2

I=(e/R)N(u, —pu,), we need only count the number of
energy levels N with energies E;, < Ey. For the free-
electron spectrum assumed here the density of states is
dn/dE, =(mL2/2x*h?)2E,”"2. Hence the /th Landau
level contributes

N=QmL2/h?) 2 Ey—ho U+ $)]112

channels. Thus the current is determined by N
=Y /= N,. Here I' is the maximum Landau-level index
such that Aw.(I'+ §) < Ep. It is useful to express this
result not in terms of the Fermi energy E )y in the presence
of a magnetic field but in terms of the Fermi energy Er in
zero magnetic field. Since the number of electrons in a
large volume element has to be the same in the presence of
a magnetic field as in the absence of a magnetic field there
exists a relation between these two Fermi energies.
Neglecting boundary corrections due to the finite exten-
sion of the sample, this calculation gives

N=2QmL2/h?) " (Er) ?Er/thw. .

In terms of the equilibrium density of electrons
n=(1/62*)2mEr/h?)*? and the magnetic length
Iz =(hc/eB) "2, we find that the total number of channels
is

N=2nliL,n. (2)

Note that N is equal to a two-dimensional sheet density
nL. measured in units of the density of electrons 1/27l}
which can be accommodated in one Landau level. Most
importantly, Eq. (2) implies a current which is propor-
tional to 1/B. In the materials considered here N is ver
large: at B=1 T, a concentration of n=6x10%* cm ~°,
and a height of L, =1 mm, we obtain N = 4.14x10!!,
Now consider a sample with impurities. An impurity
which is within a few magnetic lengths of the sample
boundary scatters electrons skipping along the surface.
However, this does not affect the current as calculated
above. Impurities can change the momentum in the z
direction but the direction of motion along x cannot be re-
versed over large distances compared to a magnetic
length.® Impurity scattering in the bulk can cause back-
scattering from one sample side to the other if the proba-
bility of finding an impurity in the volume of a bulk heli-
cal orbit V =2xl3(I'+ + )L, = 27l3Er/hw, is of order 1.
Therefore, the relation n; ¥ =1, where n; is the impurity
concentration defines a critical field B. above which back-
scattering due to bulk impurities is suppressed. For
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FIG. 3. Schematic quantum channel picture for (a) flat Hall bar cross, (b) protrusion with additional contacts 3 and 4 causing

equilibration, and (c) a wedge-shaped sample.



42 MAGNETORESISTANCE OF VERY PURE SIMPLE METALS

Er=5.6 eV, a mean free path of 0.3 mm, and a sample
size L, =1 mm, this critical field is extremely low and ap-
proximately 860 G. In the high-field regime of interest
here (B=1 T) elastic backscattering via bulk impurities
is completely suppressed.

We now neglect backscattering processes and investi-
gate the results which we obtain by considering the
current determined by Eq. (2). Consider first a flat Hall
bar cross [see Figs. 1 and 3(a)l. Since the carriers follow
the surface, the total transmission probabilities T;; for
carriers entering in probe j and transmitted into probe i
are given by T4 =T33=T»3=T,; =N. All other
transmission probabilities are zero in the absence of back-
scattering. A schematic picture of the connection of the
channels with the contacts given in Fig. 3(a). For small
temperatures the transmission probabilities evaluated at
the equilibrium Fermi energy are the transport coefficients
which relate the carrier flux incident at probe i with the
chemical potentials u; applied at the probes,®

I,'=(€/h) [(M,‘—Rii)/,li"ZT[jﬂj]. (3)
J

Here M, is the number of channels of the probe i and R;;
is the total reflection probability. Assuming no scattering
at the contacts, Eq. (3), with the transmission probabili-
ties as specified above,® yields a Hall resistance Ry
=(h/e?/)N. lItis linear in field B without any features.

Next consider a portion of the conductor with a groove.
First consider a two-terminal situation. The height of the
conductor away from the groove is L; and under the
groove it is L,. Away from the groove the conductor sup-
ports N;=N(L;) channels and under the groove
N,=N(L;) channels. Hence the maximum transmission
probability is 7=N,. The portion of the current which is
reflected is R=N,—T=N,—N,. Note that we do not
imply that carriers which are reflected skip the entire
width of the sample along the vertical wall of the groove.
But carriers which leave this wall start a helical orbit until
after repeated scattering events the vertical wall is again
reached and the carrier proceeds along a differing skip-
ping orbit. If a four-terminal measurement is made with
leads on the same side of the conductor on either side of
the groove, the resistance is®!'%'2 R, =(h/e®)R/(N,T)
and hence R;=(h/e?)(N,—N;)/(N|N,). If this is
normalized with the Hall resistance we find

ﬁL/ﬁH=(L|-L2)/L|. (4)

This is a key result of Bruls ez al.> The resistance caused
by a groove is proportional to the depth of the groove and
proportional to the Hall resistance.

Consider next a portion of the conductor with a pro-
trusion. Here the number of states N of the conductor
under the protrusion is larger than the number of states
N, away from the protrusion. However, Ref. 3 found that
a protrusion and a groove of the same height (depth) give
rise to the same linear magnetoresistance. Clearly, this is
impossible if the conduction electrons would not sense the
additional available states in the region of the protrusion.
Inelastic scattering is needed to explain this result. To in-
corporate inelastic scattering inside the protrusion we in-
troduce additional contacts® attached in this region of the
conductor to either side of the conductor. The channel
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picture including the fictitious contacts 3 and 4 is depicted
in Fig. 3(b). Of the N, channels in the region of the pro-
trusion, N, — N, channels are reflected on either side of
the protrusion. All N channels enter the fictitious con-
tacts. In the incident carrier stream N, channels are oc-
cupied up to a common chemical potential u,. At contact
3, inelastic scattering occurs and the current is redistribut-
ed among all N, channels up to a common chemical po-
tential u3. At contact 4 we have, therefore, carriers in
N;— N, channels which are filled up to a common poten-
tial 43 and NV, incident channels filled up to a potential u5.
Using Eq. (3), we find

N+ N =Ny,

Hs 2N,—N, ’ ®
= WNo=NDui+Nop, ©)
Ha 2N,—N, ,

and a total two-terminal transmission and reflection prob-
ability given by T=N|N,/2N,—N,;), R=N,(N,
—N;)/(2N,—=N,). If a longitudinal four-terminal mea-
surement is made, the resistance is given by

ﬁ[_ =(h/e2)R/(N|T)"(h/ez)(Lz—Ll)/(Nle)

or Ry/Ry=(L,—L,)/L,. Therefore, a groove and pro-
trusion give rise to the same additional linear magne-
toresistance (for small heights, small depths) if the pro-
trusion is wide enough for inelastic scattering to be
effective.

There is an important additional test of the picture
developed here. Suppose that small contacts can be made
on either side of the protrusion. In Figs. 1 and 3(b) these
contacts are labeled 4 and B. Contact A measures car-
riers which are reflected emanating from reservoir 4 and,
therefore, indicates a chemical potential u4 given by Eq.
(6). Contact B measures carriers emitted by reservoir 3
and indicates a chemical potential x; given by Eq. (5).
Hence the voltage measured between contacts 4 and B is
given by

pa—pp=pa—p3=—[L/QLy— L)1 (u;—p). ¢))

We emphasize that the voltage across contacts 4 and B
has a sign which is opposite to the voltage difference
across the protrusion. An effect similar to that predicted
by Eq. (7) was indeed observed by Bruls e al.® If the
magnetic field is taken to be parallel to a voltage lead of
the conductor in Fig. 1, the voltage lead acts like a very
high protrusion. If the voltage is measured on small con-
tacts on either side of such voltage lead (C and D in Fig.
1), a negative voltage is measured.

Finally, we investigate the portion of the conductor with
a wedge. An equivalent four-terminal channel picture is
shown in Fig. 3(c). On the left-hand side of the wedge the
conductor has Ny =N(L) channels. On the right-hand
side the conductor supports N, =N(L;) channels. Take
contact 4 to be the carrier source and contact 3 to be the
carrier sink and measure the voltage between contact 1
and 2. This longitudinal resistance R43, is ideally zero.
Carriers entering contact 4 see an increasing number of
available channels and, therefore, can penetrate the wedge
without being reflected. Now take contact 2 to be the car-
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rier source and contact 1 to be the sink, and measure the
voltage between contact 3 and 4. A portion of the carriers
entering from contact 2 is reflected into contact 3 since
the number of available channels decreases as the carriers
enter the wedge. Determining all transmission probabili-
ties and using Eq. (3) yields Ry 34=(h/e?)(N,—N,)/
(N|N,), i.e., the same result as for a groove or a pro-
trusion. The asymmetric behavior of the longitudinal
resistance measured on either side of a wedge is indeed ex-
perimentally observed.® The uncorrected data® show a
linear increase with magnetic field for R, 43=R2i34.
However, 743,12 is not zero but decreases with increasing
field. That R43,12 is not zero is to be expected: We have
after all completely neglected backscattering. The extent
to which this resistance decreases with increasing field
gives, therefore, a good indication of the suppression of
backscattering.

M. BUTTIKER 2

It is remarkable that by completely neglecting back-
scattering we have been able to explain the main features
of the magnetoresistance size effects in these pure and
simple metals. Since skipping along surfaces is required,
it is evident from our discussion that protrusions or
grooves which do not extend all the way across the width
of the sample, ideally, do not give rise to resistance at all.
It is also clear that the surface states discussed here pro-
vide a very natural explanation for the negative voltages
observed in such metallic conductors of complicated
geometry.

If it is possible to produce high-purity metallic samples
with geometrical dimensions smaller than the mean free
path, we expect size effects at much lower magnetic fields.
Indeed it should be possible to observe size effects similar
to those that have recently found intense interest in ballis-
tic submicronmeter conductors. '>'4
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