
PHVSICAI. REVIE~ B UOI.UME 42, NUMBER 5 15 AUGUST 1990-I

Polarizabilities of shallow donors in quantum wells
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Polarizabilities of shallow donors in GaAs/A1„Ga& „As quantum wells are calculated with use of
the Hasse variational method within the effective-mass approximation. The magnetic field depen-
dence of polarizabilities is also studied.

I. INTRODUCTION

In recent years, there has been considerab1e theoretical
and experimental interest in shallow donors in GaAs/Al„
Gai „As quantum-well (QW) structures. ' 9 Far-
infrared-magnetospectroscopy experiments have provid-
ed detailed results, for QW's with the magnetic field
along the growth direction, which are in good agreement
with variationa1 calculations. Good agreement is also ob-
tained for low magnetic fields in the case of an applied
magnetic field in the plane of the quantum wells.

To the best of our knowledge, the polarizabilities of
shallow donors in QW's are not yet reported. The earlier
calculations of polarizabilities concentrated on the rather
complicated case of bulk Si, where complications arise
mainly from the many-valley structure. ' '"

In this work, we extend the Hasse variational ap-
proach' used for bulk impurities to the case of those in
QW structures.

II. DONOR POI.ARIZABII. ITIKS

In the presence of weak applied electric and magnetic
fields in the same z direction, the growth direction of the
QW, the Hamiltonian for the donor electron becomes

I=—V ——+ Vtt(z)+riz+yL, + —,'y p
2 2

where Vs(z) is the infinite barrier potential which

E(B,il) =E(B,O) ——,'art (2)

1.e.,

E(B,O) E(B,g)—a =2lim
n~0 7l

2

Following the Hasse variational method, "with the trial
wave function proper for an infinite-barrier QW,

/=icos(k, z)exp[ —P(p +z )'~ ](1+Re r), (4)

where e=F/F, ki =n/L, and N. is a normalization con-
stant, we have derived an expression for the polarizabili-

confines the carrier in the QW for ~z ~

~ L /2.
Here, we use the effective Bohr radius a "=irt tco/m "e,

the effective Rydberg R'=m'e /2A tco, and
y=fico, /2%' with co, =eB/m'c as the units of length,
energy, and magnetic field, respectively. Ko is the static
dielectric constant of GaAs. y =1 is the magnetic field at
which the diamagnetic energy is equal in magnitude to
the Coulomb energy. The electric field term is
gz=~e~tt'Fz/%', where rl is a measure of the electric
field F. Here, the electric field is assumed to be applied
along the z direction.

The polarizability a is defined by
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FIG. 1. The variation of impurity subband energy EEO as a
function of electric field F.

FIG. 2. The variation of impurity binding energy EE~ as a
function of electric field F.
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FIG. 3. The variation of impurity binding energy AEz as a
function of well width L and magnetic field y.

FIG. 4. The impurity polarizability values a as a function of
well width L and magnetic field y.

T, + rIT3A. + T2A,
E

N, +N I,
(5)

ty. In Eq. (4), A, is used as the variation parameter.
With the trial wave function given by Eq. (4), the

donor-electron-energy expectation becomes

is obtained as

N2T) —N, T2
1 — 1+

N2T3g

N, N2T3 g

(N~T, —N, T2)

1/2

(12)

where

T, =(f I( —V —2/r)lqo&,

T2 = ( e re I ( V 2Ir ) I
e rg—o &, —

T3=(e r1/ioIzI&o&,

N& =(Al~. &,

N, = (~ rgoIe rgo&,

with

(9)

PO=N cos(k, z)exp[ —P(p +z )'~ ] .

The value of A, that minimizes the energy expression (E &

Substituting this value of A, into Eq. (5) and expanding
(E & binomially in powers of e, one gets for polarizability

T
Q=

2(N2T, N, T2)— (13)

III. RESULTS AND CONCLUSIONS

Polarizability values with and without the magnetic
field are calculated using the following input parameters:
the effective mass m *=0.067m„and the static dielectric
constant ~0=12.S suitable for quantum wells made out of
GaAs. The effective Rydberg %*=5.83 meV and the
effective Bohr radius a*=98.7 A define the relevant en-

ergy and length scales.

TABLE I. Polarizability values (in units of 10' A ) with and without magnetic field as a function of
well width (in units of effective Bohr radius a *=98.7 A.

L/a*

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

y=0.0 (10' A )

0.058
0.656
1.896
3.392
4.880
6.210
7.320
8.280
9.040
9.640

y= 1.0 (10' A')

0.057
0.536
1.196
1.768
2.248
2.624
2.904
3.108
3.260
3.372

7=1.5 (10 A )

0.057
0.464
0.936
1.336
1.656
1.892
2.064
2.184
2.272
2.336
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To study first the effect of electric field on the impurity
binding energy Ez=(n/L) —(H);„, we calculate Ez
variationally without the electric- and magnetic-field
terms and with the wave function given by Eq. (4) taking
A, =O and considering P as a variational parameter. This
corresponds to the Bastard case. ' We then repeat the cal-
culation with full g as in Eq. (4) to calculate EIi including
the electric-field term in Eq. (I). For the latter calcula-
tion, we need to consider the shift EEp of the subband
energy as a result of applied electric field. EEp is calcu-
lated using second-order perturbation theory as it is done
by Bastard et al. The calculated Eo values are shown in

Fig. 1. The difference EEL =E~ —E~ is a measure of the
effect of electric field on the donor binding energy. b,E~
values are shown in Fig. 2 for a well width of L =4.Sa'.
As expected, the electric field reduces the donor binding
energy.

To study next the effect of the magnetic field, the elec-
tric field term in the Hamiltonian and A. term in the trial
wave function given by Eq. (4) are omitted. The donor
binding energy E~ is then calculated, taking into account
the shift in subband energy, as a function of well width L
and the magnetic field. The results are shown in Fig. 3,
and these are in accord with earlier calculations. '

The numerical values for polarizability a are given in
Table I for y=0.0, 1.0, and 1.5, where y=1 corresponds
to a magnetic field of 67.4 kG. The calculated polariza-
bility values have reasonable magnitudes and correctly

reAect the effect of a magnetic field which confines the
electron more and reduces the polarizability. The numer-
ical values for extremely narrow QW's cannot be accu-
rate as the effective-mass formalism may not be applic-
able for this case. (See Fig. 4.)

There is considerable room for improvement in the
present calculation. Firstly, the form of the variational
wave function, Eq. (4), should be modified to take into ac-
count the presence of the magnetic field better. This will
also improve the calculation of the subband energy shift
as a function of magnetic field. The screening effects
could be taken into account better by using a position-
dependent dielectric function ao(r) instead of the con-
stant Kp which unfortunately further complicates the cal-
culation.

One of the most important limiting assumptions of the
present work is the infinite barrier, which prevents the
impurity electron wave function from extending over to
the neighboring Al„oa, ,As regions. The calculation
should be repeated for the finite-barrier inodel to get
quantitatively dependable results. One should also keep
in mind that the magnetic fields in the z direction are
least effective in compressing the wave function in that
direction, resulting in a wave function more in contact
with the walls of the well. Nevertheless, the simpler
infinite-barrier model employed in the present work is ex-
pected to give a qualitatively correct picture of all the im-
portant features of the problem.
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