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Conventional treatments of the dynamics of mesoscopic normal tunnel junctions mainly reduce
the problem to a stochastic master equation and finally resort to computer simulation. This paper
presents a new methodology based on probability-density functions to solve the problem in a fully
analytic manner. Analytic expressions of the charge distribution across the junction, current-
voltage characteristics, and the degree of randomness of the single-electron-tunneling oscillations
are obtained under an arbitrary bias condition, where the degree of randomness is defined as the ra-
tio of the standard deviation of dwell times to their mean value. In particular, the minimum degree
of randomness achievable under the constant-current-bias condition is found to be (R;CI 4 /e)'/?,
where e is the electronic charge, R is the tunnel resistance, C is the junction capacitance, and I 4 is

the bias current.

I. INTRODUCTION

In a mesoscopic system, which is large on the atomic
scale, but small compared to the electron coherence
length, both wave and corpuscular properties of a single
electron are simultaneously important. Such a system
opens up the possibility of regulating random phenomena
in electron transport and tunneling by properly manipu-
lating the wave-particle duality of a single electron. In
microjunction physics, the effect of regularization mani-
fests itself as suppression and enhancement of the dc tun-
neling rate when the electrostatic energy of a single elec-
tron is comparable to, or larger than, the masking
thermal energy.! 3

Another characteristic feature of the mesoscopic sys-
tem is its nonlinear response to the externally connected
macroscopic system. The dynamics of a mesoscopic nor-
mal tunnel junction depends strongly on the manner in
which it is connected to the external macroscopic system.
When the source resistance is much larger than the tun-
nel resistance, an electron that has tunneled cannot be re-
moved immediately; hence, a voltage drop e/C is gen-
erated across the junction, where e is the electronic
charge and C is the junction capacitance. This voltage
drop suppresses the probability of subsequent tunneling
events until the accumulated charge exceeds e /2, and
thereafter the voltage drop enhances the probability.
Therefore, tunneling events are expected to occur regu-
larly. In contrast, when the source resistance is much
smaller than the tunnel resistance, an electron that has
tunneled will be removed immediately; hence, the voltage
across the junction is almost always pinned at a fixed
value. Therefore tunneling events are expected to occur
at random.

Single-electron-tunneling (SET) oscillations in ul-
trasmall normal-metal junctions are an excellent com-
bination of these two effects: That is, discrete transfer of
a single electron through the tunnel barrier and continu-
ous injection of electric charge from outside the tunnel
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junction. There are a number of papers which discuss the
dynamics of SET oscillations.®”® Most of them reduce
the problem to a stochastic master equation and finally
resort to computer simulation. This method correctly in-
corporates the effects of dissipation (shunt resistance) and
fluctuations (thermal noise, etc.) on tunneling characteris-
tics and gives results in excellent agreement with experi-
ments.'” '3 However, some important problems con-
cerning mesoscopic normal tunnel junctions still remain
unsolved, namely, analytic expressions of the charge dis-
tribution across the junction, current-voltage (I-¥)
characteristics when there is a finite shunt resistance, and
the degree of randomness of SET oscillations. In particu-
lar, what determines the minimum degree of randomness
of SET events that can be achieved under the ideal
constant-current-bias condition?

In a previous paper'* we proposed a new analytic
method for investigating the dynamics of mesoscopic
normal tunnel junctions, and showed in the time domain
the crossover from random to Coulomb-regulated single-
electron tunneling as the external source changes from a
voltage source into a current source. The present paper
further develops this method to answer the above-
mentioned problems. Extensive use is made of two kinds
of probability-density functions which we call charge-
and time-interval distributions. Using them, we derive
analytic expressions of the charge distribution across the
junction, I-V characteristics, and the mean and variance
of dwell times for tunneling under an arbitrary bias con-
dition. (By dwell time for tunneling, we mean the time
interval that elapses between consecutive tunneling
events.) In order to quantitatively evaluate how regularly
SET events occur, a new quantity is introduced which we
call the degree of randomness of SET events.'> It is
defined as the ratio of the standard deviation of dwell
times to their mean value. In particular, the minimum
degree of randomness of SET events achievable under the
constant-current-bias condition is found to be
(R;CI 4. /e)'"?, where Ry is the tunnel resistance and 14
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the bias current. This limit may be referred to as the
standard quantum limit in tunneling current because this
limitation is imposed not by either the thermal noise or
the external current noise but by the uncertainty inherent
in quantum-mechanical tunneling.

This paper is organized as follows. Section II describes
the semiclassical model adopted in the present paper, and
discusses several assumptions that are implicit in this
model. Two different sources of thermal noise are
identified, and ways of suppressing them are discussed.
Section III defines the charge- and time-interval distribu-
tions of consecutive tunneling events and discusses their
fundamental properties and significance in the descrip-
tion of mesoscopic normal tunnel junctions. Section IV
evaluates the mean and variance of dwell times and
discusses, in the general case, the dependence of the de-
gree of randomness of SET events on junction and source
parameters. In particular, the minimum degree of ran-
domness achievable under the constant-current-bias con-
dition is found. Section V obtains analytic expressions of
the charge distribution across the junction and I-V
characteristics of tunneling current under an arbitrary
bias condition. Section VI discusses the relationship be-
tween the present probability-density-function approach
and the conventional master-equation approach, and
summarizes the main results of this paper.

II. MODEL AND ASSUMPTIONS

This section describes the semiclassical model and as-
sumptions used in the present paper. Most of the previ-
ous works®™® adopted a semiclassical model in which a
constant current is injected into a normal-metal tunnel
junction with capacitance C. A shunt resistance is con-
nected in parallel with the junction. However, for our
purposes, an equivalent, but slightly different,
configuration is more appropriate. We adopt a semiclas-
sical model in which a normal-metal tunnel junction with
capacitance C is driven by a voltage source (voltage V).
A source resistance Rg is connected in series to the junc-
tion. Here we observe that the source can be modeled ex-
actly by a voltage plus a resistor.

Let us identify the assumptions made in the present pa-
per. Both the tunnel resistance R and source resistance
R are assumed to be much larger than the quantum unit
of resistance Ry=(h/4e?)~6.45kQ in order that the
quantum-mechanical energy uncertainties,!® which arise
complementarily from the dwell time (tunneling lifetime)
and circuit time constant, can be neglected compared to
the electrostatic energy of a single electron. In particu-
lar, the condition R >>R 0 implies that an electron is al-
most always localized on one side or the other side of the
barrier. Closely related to this condition is the assump-
tion that the traversal time for tunneling!’ is negligible
compared to the dwell time for tunneling. The thermal
equilibration time inside the electrodes is also assumed to
be negligible compared to the dwell time and the circuit
time constant. This is necessary in order to assume the
equilibrium Fermi distribution. We do not include any
other elements such as stray capacitance or inductance.
Although the consideration of these effects is essentially
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important for experimental observation of SET oscilla-
tions, we omit them, nevertheless, to present the theory
in its simplest possible form.

Now we start with a discussion of the single-electron
tunneling rate in an ultrasmall normal-metal tunnel junc-
tion. Suppose that the Fermi energy of the right elec-
trode before tunneling is E; and that of the left electrode
after tunneling is E;. Then the tunneling rate from the
right to the left is, in general, given by18

R(E ,Eg)= [ 77 (E)D,(E)Dg(E)f¢(E —Eg)

X[1—fp(E —E;)ldE , 2.1)

where 7~ 1(E) is the elastic tunneling rate in a state of en-
ergy E, D, (E) [or Dg(E)] is the density of states in the
left (or right) electrode, and f(E) is the equilibrium Fer-
mi distribution which is defined by

felE)= 1

1+ exp

(2.2)

E
kgT
The factor fp(E—Eg)[l1—fp(E—E;)] contributes
significantly to the integral only within the energy range
|E; —Eg|, which is typically of the order of a few mil-
lielectronvolts, while the Fermi energies E; and Ej
themselves are of the order of a few electronvolts. There-
fore, the elastic tunneling rate and the densities of states

may be well approximated by their values at the Fermi
energy. Thus we have

R (EL’ER )=T_1<EO)DL(EL )DR(ER)

Ep—E
X R_L , 2.3)
1 ER—EL
Cexp |- SRTCL

where E, is some typical energy around E,. If we as-
sume that the Fermi energies are equal for both elec-
trodes when no voltage is applied across the junction,
then Ex —E; equals the difference in the electrostatic en-
ergy of the junction before and after tunneling:

o-<

> | 2.4)

where e >0. We observe that the discrete nature of the
electron tunneling appears as a dc offset in the electro-
static energy difference by an amount of e?/2C. This
term is precisely equal to the electrostatic energy of a sin-
gle electron, and it suppresses or enhances the dc tunnel-
ing rate according to whether Q <e/2 or Q >e/2, re-
spectively, provided that it is comparable to or larger
than the masking-thermal energy. Substituting Eq. (2.4)
into the right-hand side (rhs) of Eq. (2.3), we have a gen-
eral formula for a forward transition rate:® %
e
1 Q 2
1—exp

r(Q)= .

e e
ck,T 1272
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where Q denotes the accumulated charge on the electrode
before tunneling and
1

R =
T % N Ep)D,(Ep)Dg(Ep)

(2.6)

is called the tunnel resistance because it gives the resis-
tance of the tunnel junction when a constant voltage is
applied across the junction. When kyzT <<(e?/2C), Eq.
(2.5) reduces to

0 ifo<<,
he 2 2.7)
Qe—_}—%eé—n otherwise . .
T

r(Q)=

That is, the forward tunneling events are inhibited until
the accumulated charge exceeds (e/2). Similarly, the
backward tunneling events are inhibited for Q > —(e /2).
This is the principle of Coulomb blockade.® The crucial
observation here is that the tunneling rate depends only
on the charge just before the tunneling event occurs and
that it does not depend on any information concerning
the earlier tunneling events. This reflects the fact that
tunneling events obey a Markovian random-point process
due to the wave property of an electron. The effect of
quantization of charge (corpuscular property of an elec-
tron) is to suppress the dc tunneling rate until the charge
reaches (e /2) and to enhance it thereafter, as seen from
Eq. (2.5). Considerable correlation in electron tunneling
events can be achieved when these suppression and
enhancement effects are properly manipulated by the
external macroscopic system.

For the present model, the accumulated charge Q(?)
on the electrode obeys the following differential equation:

d _CV—0()
dtQ(t) CR

s

+i(t)—e X 8(t —1,), (2.8)
J

where the second term on the rhs represents the current
noise generated in the source resistance and the third
term represents the change in charge due to tunneling
where 7; denotes the times of tunneling. In the absence of
current noise and tunneling events, Eq. (2.8) can be im-
mediately solved to give

t—t,

L

CRg

+CV

Q()=Q(t;) exp 1— exp

(2.9)

It is opportune at this stage to discuss the effects of
thermal noise on electron tunneling. The degree of regu-
larity of electron tunneling is deteriorated by thermal
noise generated in two different sources. The source
resistance generates thermal noise, which randomly dis-
turbs the prescribed current injection. The charge must
be delivered to the junction continuously to make the
fluctuations in the accumulated charge much smaller
than the electronic charge e. This can be achieved by
high-impedance suppression of the current noise. The
other source of thermal noise is the tunnel junction and

this noise blurs the effect of the Coulomb blockade via
phonon-assisted tunneling, as seen from Eq. (2.5). This
effect can be suppressed by either fabricating the junction
capacitance very small or by lowering the temperature.
Here we observe that the effect of the latter noise is al-

ready incorporated in the formula for the tunneling rate
[Eq. (2.5)].

III. TIME AND CHARGE-INTERVAL
DISTRIBUTIONS BETWEEN CONSECUTIVE
TUNNELING EVENTS

In the previous section, we indicated that the tunneling
process is Markovian; it does not depend on any informa-
tion concerning earlier tunneling events. In general, such
a process is completely specified by the two-time correla-
tion function. Suppose that single-electron tunneling
events occur at times ¢; (j=1,2,...) [see Fig. 1(a)].
Then the tunneling characteristics can be best described
with the probability distribution of time intervals be-
tween consecutive tunneling events: T;=¢;,,—¢;
(j=1,2,...). We denote this probability distribution as
P, ,(7)."° That is, this quantity gives the probability den-
sity that the first subsequent tunneling event occurs T
seconds after the earlier one [Fig. 1(b)]. For example, for
a completely random-tunneling process which obeys the
Poisson random-point process, time intervals are ex-
ponentially distributed:

(a)
fn%‘hﬁ‘““rx—)l ‘ ’
t
t, oty ts ts
(b) k—— T —3idTk
Py (T)dT ‘
t
t=0
() ;
P (7)
regular tunneling
random tunneling
-
FIG. 1. (a) Time intervals between consecutive tunneling

events. (b) Definition of time-interval distribution. (c) Time-
interval distributions for regular and random-tunneling events.
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Rs Qr—e/2
_1 T P0.0)=Lts 2r—e/”
PS“(T)—;CXp '—‘; , (3.1) (Ql’Qf) e Ry CV—Qf
cv—o (1/eXRg/Rp)[CV—(e/2)]
where 7 is the average time interval between consecutive - =/
tunneling events. We have already encountered this type Cv—4

of tunneling phenomenon in the macroscopic, constant-
voltage-biased junction. Equation (3.1) is a microscopic
version of the so-called “shot noise”” whose current spec-
trum is characterized by S;(w)=(1/ 21 )el, where T is the
average current. In fact, this white spectrum can be de-
rived from Eq. (3.1), provided that the process is Marko-
vian, where T equals e /7. For a completely regular tun-
neling process in which tunneling events occur at equal
time intervals 7, we obtain

P (7)=8(r—7) . (3.2)
In general, the more regularly tunneling events occur, the
more sharply the time-interval distribution tends to peak
around the average time interval, as is schematically il-
lustrated in Fig. 1(c). With this probability distribution
we have demonstrated the crossover from random to
Coulomb-regulated single-electron tunneling as the exter-
nal source changes from a voltage source into a current
source.'*

Another important distribution is the charge-interval
distribution. Let P;,(Q;,0Q/) be the probability density
per (unit charge)’ that the first subsequent tunneling
event occurs at charge Q, when the initial charge was Q,,
which is the charge immediately after a tunneling event
has occurred. Since the tunneling probability does not
depend on the past events, P;(Q;,Q/) is equal to the
product of (i) the initial-charge distribution P™™tsl(Q.),
which gives the probability distribution of charges im-
mediately after tunneling events occurred, and (ii) the
probability density P(Q,;,Q/) that the first tunneling
event occurs at charge Q, given that the initial charge
was Q;. Since the probability density P(Q;,Q,) is equal
to the probability density of a tunneling event occurring
at charge O, multiplied by the probability of no tunnel-
ing events occurring until then, it is given by!*2°

_r(Qy) _ o, r(Q)
PlO0=500,7 &P Jowo,emii0r?@)

(3.3)

where the lower bound of integration max(Q;,e/2) ap-
pears since under condition kT <<e?/2C the Coulomb
blockade completely inhibits tunneling until the accumu-
lated charge on the electrode exceeds e /2. Here, i (Q) is
the external current when the accumulated charge is Q.
Equation (2.8) without current noise and tunneling
currents gives

o CV—0Q

i(Q) *———CRS . (3.4

Substituting Eqgs. (2.7) and (3.4) into the rhs of Eq. (3.3)
yields'*

X exp ) (3.5)

1 Rg
eRT(Qf A)

where 4 =max(Q;,e/2). Equation (3.5) gives the desired
probability distribution as a function of the ratio of
source to tunnel resistances Rg /R 1, junction capacitance
C, and source voltage V.

Before proceeding further, let us examine some funda-
mental properties of this function. The normalization
condition is given by

CcV
f,, P(Q;,0,)dQ,=1 .

This condition is readily verified by substituting Eq. (3.5)
into the left-hand side (lhs) of Eq. (3.6). The lower bound
of integration, A, simply means that a tunneling event is
prohibited until the accumulated charge Q exceeds e /2.
A constant-current-bias limit can be achieved if we take
the limits ¥ — « and Rg— o with the ratio I;, =V /Ry
held constant. Then Eq. (3.5) reduces to

Q;—e/2 | (Q—ANQ;+4—e)
eR,CI,. O 2eR,CI,,

(3.6)

P(Q,,0,)=

(3.7)

This gives a general expression for P(Q;,Q/) under a
constant-current-bias condition. For a special case of
Q;=e/2, Eq. (3.7) reduces to the result obtained in Ref.
7. A constant-voltage-bias limit can be achieved if we
take the limit e=Rg /R —0 with the bias voltage V held
constant. Using €, Eq. (3.5) can be rewritten as

_le—e/2 € _ e
P(Q;,Qy) e——_CV—Qf exp lne+e cv 5
cv—o,
X _—_
ey —a
€
+<0,- :
e(Qf A) (3.8)

For € <<1, it is sufficient to keep the first term in the ex-
ponent. Thus we have

€ Qf—e/26—>0
g, 0 e<en),

P(Q,,Q/)=
(3.9)

Since P(Q;,Q/) must satisfy the normalization condition
Eq. (3.6), we obtain

P(Q;,0,)=25(CV —Q,) .

This result shows that the voltage across the junction is
pinned at the applied voltage above e/2C, where the
Coulomb blockade fails to work.

(3.10)
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Now, to obtain the charge-interval distribution we
have only to obtain the initial-charge distribution.
Within the approximation in which the traversal time for
tunneling is negligible compared to the dwell time and
the circuit-time constant, the initial-charge distribution
coincides with the final-charge distribution displaced by
—e:

Pinitial(Q)ZPﬁnal(Q +€’) , (31 1)

where the final-charge distribution P"?/(Q) gives the
probability density that the tunneling event occurs at
charge Q. On the other hand the final-charge distribu-
tion is related to the initial-charge distribution via

P(Q,,Q)):

Q S
PilQ)= [ f/ZP”“‘"“(Q,»)P(Qi,Qf)dQ,-. (3.12)
—e
Dividing the range of interaction at
D =min(e/2,CV —e), we have
final — i D imtial
P Q=P | 2,0, f_mpl tal(Q,)dQ;
o
+fD PMUI(Q)P(Q;,0,)d0; (3.13)

where P(Q,,Q/) in the first integrand is factored out be-
cause from Eq. (3.5) we have P(Q;,Q,)=P(e/2,0Q,) for
Q; <e/2. Equation (3.13), together with Eq. (3.11), deter-
mines the desired initial-charge distribution. In the fol-
lowing discussion, however, we will concentrate on the
case in which the source voltage V is smaller than 3e /2C
because under this condition we are able to solve these
equations exactly and hence we can obtain exact expres-
sions of charge- and time-interval distributions. For
CV < 3e, the first integral in the rhs of Eq. (3.13) gives
unity because of the normalization condition, while the
second integral vanishes because PM4(Q )=0 for
Q, > CV —e. Thus we obtain

P™(Qp)=P|2.Q; | for CV <3, (3.14)
and from Eq. (3.11), we obtain
pimia(Q)=p %,Q,——Fe for CV <le . (3.15)

The initial-charge distribution satisfies the following nor-
malization condition:

fCV—ePinilial(Qi )dQ,ZI )

—e/2

(3.16)

Figure 2 illustrates the initial- and final-charge distribu-
tions for several values of the ratio Ry /R with CV =e.
All the final-charge distributions (e)—(h) start from e /2
because tunneling is inhibited until the accumulated
charge exceeds e/2. In curve (e) the distribution is
sharply localized just above e /2. The physical reason for
this can be explained as follows. For a large value of the
ratio Rg/Ry, the average dwell time for tunneling is
much shorter than the circuit time constant CRg; conse-
quently, a tunneling event occurs immediately after the

3091
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2 12+
2
b
el
Z (b) ()
= 8
Q
o]
2

4t (c) (g)

0

-0.5¢ 0 0.5¢ e

Charge
FIG. 2. Initial-charge distributions (a)-(d) and final-charge
distributions (e)—(h) for (a) and (¢) Rg/R;=300, (b) and (f)
Rg/R;=100, (c) and (g) Rg/R=10, and (d) and (h) Rg/R;=1
with CV=e.

Coulomb blockade is lifted which happens when the
charge exceeds e /2. However, once an electron has tun-
neled, the next tunneling event will be inhibited for a
long-time interval (~CRg) until the accumulated charge
again exceeds e /2. Thus the tunneling events are expect-
ed to occur very regularly. As the ratio Rg/Ry de-
creases, the average dwell time for tunneling becomes rel-
atively larger and, therefore, the distribution becomes
broader and the regularity becomes worse. However,
from this figure only we cannot say how regularly tunnel-
ing events occur for each case. For this purpose we will
later obtain the time-interval distribution. Since the
charge-interval distribution is the product of Pinitial(Q.)
and P(Q,;Q;), we finally obtain

e e
P(Q;,Qp)=P E’Qi+e P E’Qf for CV <ie ,

(3.17)
where P(Q;,Q,)=P(e/2,Q,) since Q; <e/2 for CV < je.
Now, let us obtain the time-interval distribution P ,(7)
using this result. The time interval T between two con-
secutive tunneling events is determined if we specify the
corresponding initial charge Q; and final charge Q.
From Eq. (2.9) we have
7=—CRgln (3.18)
Each combination of Q; and Q that gives the same time

interval 7 through Eq. (3.18) contributes to P ;(7) with
weight function P;,(Q;,Q,). Thus we have

CV—e cv

Poy(n=["" "do, [ d0,P.(Q;Q)

cr-o |’
(3.19)

where the 8 function ensures that the time interval be-
tween the initial state with charge Q; and the final state
with charge Q is equal to 7. By noting that

XS T+CRsln
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cv -0,
cV—o;

_r-y

6 |7+ CRgln CR,

8(Q,—CV(l1—e

Eq. (3.19) can be integrated with respect to Q to give
0 f B>CV—e

Py(r)= —7/CRg

St dp e cvii—e )+ Qe

where B Emax[—e/2,CV—eT/CRS(CV—e/2)]. The

lower bound of integration B is obtained from the follow-
ing consideration. If we specify 7 and Q;, then @, no
longer takes arbitrary values but is uniquely determined
from Eq. (3.18). On the other hand, Q, cannot take
values lower than e /2 because of the Coulomb blockade.
To meet this condition, therefore, the integration range
for Q; must have a lower bound which yields B. In other
words, the tunnel junction cannot be charged up to e /2
within a fixed time 7, when the initial charge is below B.
Equation (3.21) gives a general expression of the time-
interval distribution in terms of the charge-interval distri-
bution. For CV <Ze, we can obtain the analytic expres-
sion of P,,(7) with the help of Egs. (3.5) and (3.17). Fig-
ure 3 shows time-interval distributions for various values
of the ratio Rg/R; with fixed bias voltage V=e/C,
where the time axis is normalized by CRg. Curve (a) cor-
responds to the ratio Ry /R ;=300 and is sharply local-
ized around 1.2CRg. This curve clearly demonstrates
SET oscillations in the time domain. We observe that
this curve has a finite width. It will be discussed in Sec.
IV that this width is due to the quantum-mechanical un-
certainty with respect to the time when an electron starts
to tunnel, and it never reaches zero even in the limit of
the ideal constant-current-bias limit. As the ratio
Rg /R decreases, the distribution becomes less and less
localized and the regularity of SET events becomes
worse. Thus we have demonstrated the crossover from

8 T T T T T T —T T T
. (a)
Z o J
=1
v
o
z
24
e
o
e
a9

(b)
2r
(c)
(d)
0 1 —_— T L I 1
0 2 4 6 8

(Time interval)/CRs

FIG. 3. Time-interval distributions for (a) Rg/R =300, (b)
Rs/R+=100, (c) Rs/R;=10, and (d) Rs/Rr=1 with CV =e,
where the time axis is normalized by CRg.

—7/CRg

—7/CR
~r/CRs, e S(CV—90;)
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—71/CR

)—Q.e %), (3.20)

(3.21)

otherwise
CRg ’

random to Coulomb-regulated single-electron-tunneling
oscillations in the time domain as the external source
changes from a voltage source into a current source. A
similar crossover can be seen as the bias voltage decreases
towards an optimum value above e /2C. 1

Finally, let us examine the normalization conditions
for P,(Q;,Q/) and P,,(7). The normalization condition
for P,(Q;,Q/) is given by

CV—e cv
J©, 40 [ QP 0)=1 .

This equation is readily verified if we substitute
P1(Q;,Q,)=P™(Q,)P(Q,,Q;) into the lhs of Eq.
(3.21):

CV —e initi
ths= [ " “ag,pPmg,) [ ,,C TdQ PQ,0)),
_ rCV—e itial
__f inle la(Qi)zl ,
—e/2

where Egs. (3.6) and (3.16) are used. The normalization
condition for Py ,(7) is given by

“p =1.
fO SH(T)dT 1

(3.22)

(3.23)

(3.24)

This equation can be verified if we substitute Eq. (3.19)
into the lhs of Eq. (3.24) and use Eq. (3.22).

IV. DEGREE OF RANDOMNESS OF SET EVENTS
AND STANDARD QUANTUM LIMIT
OF TUNNELING CURRENT

A. Average dwell time

In general, the dynamics of mesoscopic normal tunnel
junctions is characterized by the power spectrum of volt-
age across the junction. However, since in our case at
most one electron tunnels at one time and the tunneling
process is Markovian, tunneling characteristics can be
more directly described by the probability distribution of
time intervals between consecutive tunneling events, i.e.,
the probability distribution of dwell times. Suppose that
a tunneling event occurred at time ¢; and that the first
subsequent tunneling event occurred at time ¢,. Then the
dwell time can be defined as

T(Q,‘,Qf)Etf_tl- ,

where Q; and Q, represent the charge just after the first
tunneling event and the charge just before the second
tunneling event, respectively. From Eq. (2.9) we have

(4.1)

c
Q,,Q,)=CRgln (4.2)
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The average dwell time T is given by
cv—e cv
7=J_ 40 [ d0;r(0,,0,)P1(Q,0,) . 43)

For CV < e, substituting Eq. (3.17) into the rhs of Eq.
(4.3) yields

CV+e—0Q
“r—o P o P(e/2,Q) . (4.4)

This is an exact expression of the average dwell time as a
function of the junction capacitance C, source voltage V,
tunnel resistance R, and source resistance Rg, where an
explicit representation of the distribution P(e/2,Q) is
given from Eq. (3.5). To proceed further with the calcu-
lation, we expand the logarithmic term in the integrand
to the second order in quantities (Q —e)/CV and Q /CV
(whose absolute magnitudes are less than unity), obtain-
ing

_ cv
7= fe/z dQ CRgln

F=CRy dQ

e
cV——
2

HJr

e e
(CV)? 29
4.5)

Substituting Eq. (B4) in Appendix B into this equation
finally yields

eRg T exp(d
T= +1, .
T % CV R, dd v(d d) (4.6)

where y(a,x) is the incomplete y function defined by
=J e

and d=1/e(Rg/R7)[CV—(e/2)]. In the limit of the
constant-current-bias condition where Rg/R;>>1 and

exp (—t)dt, Rea>0, 4.7)
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] o

The first term in the rhs of this equation gives the cele-
brated relation
1

f b
where f =1, /e is characteristic frequency of SET oscil-
lations. The second term represents the first-order
correction to it due to a finite dissipation, represented by
R 7, in the junction.

‘ITRTe

2 Ry CV

S
Idc

e

1+ -
2cv

(4.9)

B. Degree of randomness of SET events

It is natural to define the degree of randomness of SET
events as the standard deviation of dwell times divided by
their mean value:

_ [(AT)2]1/2

N 7
where (A7)?=7—72. A Poisson random-point process
whose time-interval distribution is given by Eq. (3.1)
yields 0 =1. A completely regular-point process whose
time-interval distribution is given by Eq. (3.2) yields
o=0. In general, the smaller the value of ¢ is, the more

regularly the tunneling events occur. The mean square of
dwell times is given by

) (4.10)

2= f” "dQ,f dQ, (01,0 )P11(Q1, Q) . (411)

We form —72 and expand the logarithmic terms in

V/Rg=1,., Eq. (4.6) reduces, using Eq. (A9) in Appen-  quantities (Q —e)/CV and Q /CV. Then the lowest-order
dix A, to remaining terms give
|
— R ? 1
7_ s 1 cv cv , Y e e
(A7) > |1+ fmdemdQ(Q Q7P| 7,0 |P |50,
) (4.12)
Rg 1| e —_—
= N +_ _
2 % 1 7 lcy (AQ,)",
where
—  rcv_, |e cv e
= < - £ 4.
(aQ,7=[""Q%|>.0|do— | [" 0P |>.0 dQ (4.13)

Here the subscript f refers to the final charge at which the tunneling event occurs. Substituting (B9) in Appendix B

into Eq. (4.12), we obtain
2

—__|eR 1 (d) ’ (d)

2= L LA A — | £xpla) _ £Xpla)
(A7) =2 v 1+ V% 2d 44 y(d +1,d) 2 or y(d +1,d) (4.14)

Thus the degree of randomness of SET events is therefore given, from Egs. (4.6) and (4.14), by
2 2 172
1| e | exp(d) . expld)

R, H-4 v 2d 44 y(d +1,d) 2———v(d +1,d) l

g —-R—S . (4.15)

CV Ry q¢

R
1+-¢ Srexpld) gy g
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This equation gives a general expression of the degree of
randomness of SET events under an arbitrary bias condi-
tion. In the limit of the constant-current-bias condition,
Eq. (4.15) reduces to

2 172
1 e R;Cl,
=l(4—m) |1+ |5 | |28
o [( It o e
172
R,CI,,
~ % (4.16)

Thus we find the minimum degree of randomness that
can be achieved under the constant-current-bias condi-
tion; it is proportional to the square root of the tunnel
resistance, junction capacitance, and bias current.

C. Standard quantum limit
of mesoscopic normal tunneling current

We note that the limit given by Eq. (4.16) is not caused
by either current or thermal fluctuations. The limit is im-
posed by the quantum-mechanical uncertainty with
respect to the time when an electron starts to tunnel.
Thanks to a finite (rather than infinite) tunnel resistivity,
single-electron tunneling is made possible. This finite-
ness, however, permits delocalization of the electron
wave function over both electrodes, and thus blurs the
time of tunneling through the time-energy uncertainty re-
lation'® to the extent of

(4.17)

Thus we find that the limit given by Eq. (4.16) has a pure-
ly quantum-mechanical origin and therefore by analogy
with quantum optics it may be referred to as the standard
quantum limit of mesoscopic normal tunneling current.
Finally, let us consider how much the tunneling events
are regularized by the Coulomb blockade compared to
the Poisson random-point process which gives o =1.
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which is a factor of /R /R, smaller than unity under
the constant-current-bias condition (Rg >>R 7).

V. CURRENT-VOLTAGE CHARACTERISTICS
OF MESOSCOPIC NORMAL TUNNEL JUNCTIONS

In the previous section we obtained the average dwell
time whose general expression is given in Eq. (4.3). In a
similar manner, the average time 7(Q)dQ, during which
the charge on the electrode is between Q and Q +dQ, is
given by

701de= [ ‘dg, [ “do,m0,0+dQ)
—e/2 e/2
XPSII(QI’Qf)e(Q —Q;)
X6(Q,—0) , (5.1)

where 7(Q,0 +dQ) is given from Eq. (4.2) and ©(Q) is
the Heaviside unit-step function defined by

L (Q>0),

Since 7(Q,Q +dQ) does not include any of the variables
of integration, it can be factored out to give

_ CRg cv—e cv
T(Q)=EV:EI , infe/Z dQP1(Q;, Q)

ey
XO6(Q—0,)6(0,—0Q) .
(5.3)

As long as the traversal time for tunneling may be
neglected, the probability distribution of charge across
the junction, P(Q), is given by the ratio of 7(Q) to the
average dwell time 7:

Q)
Substituting I,, =V /Ry into Eq. (4.16), we find P(Q)= ‘rf 5
12
cv Rr . | |
“1¢ R. (4.18) Substituting Egs. (4.3) and (5.3) into Eq. (5.4) yields
s
J
CRS CV—e cv
o) 40 [ d0.P.(0,,0,)0(Q —0,)6(Q;—Q)
p GV =07 -cp e/2
(Q)= L - . o
f*e/z a0, fe/z deT( Qi’Qf )Psll(Qi,Qf)
It can be readily verified that P(Q) in Eq. (5.5) satisfies the normalization condition
fCV/ZP(Q)dQ o (5.6)

For CV < e, the expression in Eq. (5.5) can be greatly simplified. Substituting Eq. (3.17) into the numerator of Eq. (5.5)
and integrating it by parts yields
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CcV—e cv e e
J7 40 [ doP|3.0.+e|P |0, (000 —0)0(Q,~Q)
CcV—e Q, Fep(
= _ —0. L_q_
/. fdeeQ-0) |- dQ. 2o |—J H
cv d Qf g
X dQ,6(Q,— -
fe/2 0,000, ~0Q) do, € e/2 i(q) ’ l
€ |_ Q+er(q) o —
6[Q+2 exp fe/Z z(q)d B(CV—e—Q)
e o riq)
X - - 5.7
0|5 —Q|+exp fmq)d e |0 (5.7)
Substituting Eq. (5.7) into Eq. (5.5), we obtain
1 CRs _ Q+er(q)
- CV—o0 1—exp /2 z(q) for —e/2<Q<CV—e,
Pio= 1185 frcw 2
Q)= — V-0 or e<Q<e/2, (5.8)
1 CRS Q r(g)
- V=0 exp o z(q)dq fore/2<Q<CV .

Here 7 is given by Eq. (4.4). Equation (5.8) gives an exact
expression of the charge distribution across the junction
under an arbitrary bias condition. The voltage distribu-
tion across the junction P (V) is uniquely related to the
charge distribution P(Q) by P(V)=P(QNdQ/dV)
=CP(Q). Figure 4 illustrates the charge distributions
for several values of the ratio Rg /R with fixed bias volt-
age V=e/C. Curve (a) corresponds to the ratio
Rs/R;=300. We have already seen that for this case
both initial- and final-charge distributions are sharply lo-

» 2.0f
el
2
.E
3}
e}
2 L
£ 10
(d) (a) (b) (c)
0 1 1
-0.5e 0 0.5e e
Charge
FIG. 4. Charge distribution for (a) Rg/R;=300, (b)

Rs/R7=100, (c) Rg/R;=10, and (d) Rg/R;=1 with CV =e.

calized [see Figs. 2(a) and 2(e)] and that SET events occur
very regularly [see Fig. 3(a)]. Correspondingly, the
charge distribution rapidly increases at values above
Q = —e /2 and rapidly decreases above Q =e /2. As the
ratio decreases, both rises and falls become slower, and
finally the distribution diverges at the charge correspond-
ing to the applied voltage [Fig. 4(d)]. At this point the
bias condition changes into a constant-voltage-bias opera-
tion. For a constant-current-bias condition where
T=e/l4 and

¢ rig), _(Q—e/2)?
cxp es2 i(q) dq | = exp 2eR;Cl,. |’ 5.9)
Eq. (5.8) reduces to
1, _(Q+es2)?
S R e ]
for —e/2<Q<CV—e,
© % for CV—e<Q<e/2,
1 (Q—e/2)
— —_—— <Q<CV.
, €XP 2R, CI, fore/2<Q<C

For the special case of CV=
result obtained in Ref. 9.

The expected value of the charge on the electrode is
given by

Ze, Eq. (5.10) reduces to the
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o=/ orug . (5.11) V_Rs|, e ||,_4d 5.19)
—e/2 T |14 2C 2|’ ’

Substituting Eq. (5.8) into the rhs of Eq. (5.11), we obtain

0=CV—CRs< , (5.12)
T
and hence
V=V—-Rs< . (5.13)
T

This equation has a simple physical interpretation. The
quantity

I

il

STREY

(5.14)

is the electronic charge multiplied by the average number
of tunneling events per unit time, that is the average
current through the barrier. On average, the same
amount of current should flow in the external circuit,
causing a voltage drop of RgI in the source resistance.
Therefore Eq. (5.13) simply means that the average volt-
age across the junction is equal to the source voltage V
minus the voltage drop in the source resistance RgI
(Kirchhoff’s second law).

Finally, let us discuss the current-voltage characteristic
of mesoscopic normal tunnel junctions under an arbitrary
bias condition. The average voltage across the junction is
obtained by substituting Eq. (4.6) into Eq. (5.13).

e Rr exp(d)
CRs, q¢ y(d +1,d)

=i
I

(5.15)
e Rr exp(d)
R, SR+

The average current through the junction is obtained by
substituting Eq. (4.6) into Eq. (5.14):

v
I= Rs (5.16)
1+—Ce7%¥°15%y(d +1,d)
Forming the ratio, we obtain
¥=f—;g%ﬂy(d +1,d) . (5.17)

This relation gives the current-voltage characteristics un-
der an arbitrary bias condition. In the constant-current-
bias limit, Eq. (5.17) reduces to

172 1/2

2

wd

meR 1 4
2C

V=

3 (5.18)

The first term on the rhs is identical to the result ob-
tained for the constant-current-bias condition,®’ while
the second term gives the first-order correction due to a
finite dissipation in the junction represented by R,. In
the constant-voltage-bias limit, Eq. (5.17) reduces to

where in the first parentheses we see a dc offset in the
voltage caused by the Coulomb blockade, while the term
d/2 in the second parentheses gives the first-order
correction due to a finite dissipation in the source resis-
tance Rg.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have presented a new methodology
based on the probability-density functions and have
solved some problems concerning mesoscopic normal
tunnel junctions in a fully analytic manner. The crucial
observation which leads us to this method is that a tun-
neling process is Markovian regardless of how it is regu-
lated by the external macroscopic system. Such a process
can be completely described with a second-order correla-
tion function. This is why we introduced charge- and
time-interval distributions. In a previous paper,'* the
time-interval distribution was used to describe the cross-
over from random to Coulomb-regulated SET oscillations
in the time domain as the external source changes from a
voltage source into a current source, and as the bias volt-
age decreases towards an optimum value above e /2C. In
the present paper, several techniques have been
developed to obtain observable quantities such as the
charge distribution across the junction and I-V charac-
teristics from the charge-interval distribution. To quanti-
tatively evaluate how regularly tunneling events occur,
the degree of randomness of SET events is defined as the
ratio of the standard deviation of dwell times to their
mean value. A general expression of this quantity is ob-
tained under an arbitrary bias condition. In particular,
the minimum degree of randomness that can be achieved
under the constant-current-bias condition is found to be
(RyCI4. /e)'"%. The physical origin of this residual un-
certainty is identified as the time-energy uncertainty rela-
tion due to delocalization of the electron wave function
over both electrodes. For this reason and by analogy
with quantum optics, we refer to this limit as the stan-
dard quantum limit of mesoscopic normal tunneling
current.

Let us consider the relationship of the present theory
to the conventional master-equation approach.®~%2! The
master-equation approach deals with the probability dis-
tribution P(Q,?) of accumulated charge Q at time ¢ which
is assumed to obey the following stochastic master equa-
tion:

AP(Q,1) __, AP(Q,1)
ot 1, 30 +r(Q +e)P(Q +e,t)
+1(Q —e)P(Q —e,t)—[r(Q)+I(Q)]IP(Q,1)
1 9 kpT 3?
+ cx; 3g 2P(@ 01+ % anP(Q,t),
(6.1)

where the last two terms represent the CRg relaxation
and the thermal noise generated in the shunt resistance.
The present theory neglects the backward transition rate
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1(Q) by assuming that eV >>ky T and also neglects the
noise term. Otherwise, the present theory includes all
effects in Eq. (6.1) and should, therefore, give equivalent
results. In particular, Eq. (5.8) gives a stationary solu-
tion of Eq. (6.1) under the same assumptions; the distri-
bution rapidly grows up at first, and then exhibits a rath-
er flat plateau, and finally rapidly falls, in good agreement
with results obtained by computer simulation.%® Al-
though the present theory neglects the noise term, it can
be incorporated into the theory by simply assuming an
appropriate filter function because the noise term contrib-
utes additively to Eq. (6.1).

Finally, it should be emphasized that the formalism
developed in the present paper is not limited to normal-
metal junctions but applies equally to Josephson junc-
tions because within the semiclassical approximation the
(forward) transition rate of the Josephson junction
reduces to a formula similar to the one in Eq. (2.5), al-
though the physics of Bloch-wave oscillations** and SET
oscillations differ substantially. This subject will be dis-
cussed elsewhere.

(1/eXRg/RpI[CV —(e/2)]

f CV 1T l= f v V=9
RS 2| oy e
2

If we change the integration variable to

t=(1/e)(Rg/Ry)CV —Q) and set d=(1/e)(Rg/Ry)
[CV —(e/2)], we obtain

CV——

R, (AS)

eR
f =-—T—ﬂ5—§5’lyu+1,d),

Rg

where y(a,x) is the incomplete y function defined by

yla,x)= foxt“_lexp(—t)dt, Rea >0 . (A6)
This function has an asymptotic expansion?’
® -1
y(a,x)=xexp( (a—1) (A7)

—x)néomx (a<<1).

Substituting Eq. (A7) into Eq. (AS) yields

d
1__
2

Ry

f CV,R—S

e
CcV——
2

+O(d2)] (d<<1).

(A8)

For d >>1, y(d +1,d) has an asymptotic expansion?

172

dd+(l/2)

v(d+1,d)= exp(—d)

172 1
bt |,
Azt

2

d >>1,|argd| < J . (A9

exp
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APPENDIX A

Let us evaluate the quantity
:fCVexp _fQ r(q)
T den es2 i(q)

when kT <<e?/2C and no noise current is generated in
the source resistance. Then substituting the expressions

f dQ (A1)

R
cv,—-L
RS

qg—e/2 _e
rig)= eR,C (S] > (A2)
and
. _CV—gq
i(q) CR, (A3)
into Eq. (A1) yields
1 Rs e
——= | (dQ . A4
e RT Q 2 0 (Ad)
I
Substituting Eq. (A9) into Eq. (AS) yields
172
Rr 7 eRp e
CV,— |= |+ -
4 Ry 2 Ry 2
ZRT (@) (A10)
- >>
3R
APPENDIX B
Let us evaluate two integrations used in text:
cV e
= P -
o=/ or|5.0ldQ, (B1)
vi Vv ap | €
= P|—,01d0Q , B2
o7 fe/2 Q 2 Q|dQ ®2)

where the subscript f refers to the final charge at which
the tunneling event occurs. With the observation that

£ —__a Qo r (q
P|5.Q g o fm vk (B3)
we integrate the rhs of Eq. (B1) by parts, obtaining
=~ € cv (o] r(q
==+
o 2 fe/Z fe/Z i(q) ] ’
(B4)

eR
e ot epld) yhy ),

2 R d

where the last line follows from Eq. (A5). Similarly we
integrate the rhs of Eq. (B2) by parts, obtaining
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2
— |e cv 0 riq)
=|=| +2 - dq |dQ ,
7 2 fe/zQexpl J-e/zi(q) 919¢
2
—|e cv o rl(q)
=|=| +2CV — dq |d
lZ fe/zexp fe/2 i(q) g |dQ
_ (1/e)(Rg /RpICV —(e/2)]+1 R
o lev—& | [V |2 exp | —— |0—2 | ldo , (B5)
2 |Yer2 e eRp 2
cv—=

where the first integration in the rhs again given by Eq. (AS) and the second integration, when substituted with
t=(1/e)Rg/RCV —Q)and d=(1/e)Rg/R4)[CV—(e/2)], can be rewritten as

R R
e rﬂ(_d_)fodtd+1e—zd,=9_.1_e_’_‘2(_‘fly(d+2,d)

RS da'+1 RS dd+1
eRp exp(d) eRp
=— d+1)y(d+1,d)——— B6
Ry a¢+ ( )y ( ,d) Ry ’ (B6)
where the last line follows from the identity??
yla+1,x)=ay(a,x)—x% "~ (B7)
Substituting Eq. (B6) into (B5), we obtain
cv 2 eR (d) eR (d) eR
2p|L,0ldo= | | +2cv—L3L (g +1,d) -2 |cv—< | | LR (g4 1)yp(d +1,d)— ——
[, QP |50 ldo= |3 Ry g VL2 > | [ R L —
2
2eR 2eR eR
e T e T |e T | exp(d)
==+ v—< |+ < - +1,d) .
5 R, C 2 R, R, 44 y(d +1,d) (B8)

The variance of the final charge is obtained from Eqgs. (B4) and (B8) as

(80,)*=07~07 ,
2

2
eRyp e eRy exp(d) eR7 exp(d)
=2—|CV—=|=2|— +1,d)— | —- 24 +1
R, > R, 44 y(d +1,d) Ry  a¢ yd+1,d) | ,
2 2
eR
= |21 g —22Rld) () ﬂpf,ﬂy(dﬂ,d)l ] (B9)
Rg d d
In the limit d >>1, we can use the asymptotic expansion from Eq. (A9) as
172
md d
+1,d)~ |—
y(d +1,d) exp(d) ’ (B10)
and therefore Eq. (B9) reduces to
— eR; |
AQ )= [2—-T Lla,
(AQ() 5 R, (B11)

where we have neglected the second term in the rhs of Eq. (B9) since d >>Vd.
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