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We discuss normal-state properties and the phase diagram of high-T, copper oxide superconduc-
tors on the basis of a five-states model (one d state and two bonding and two nonbonding p states per
unit cell) for interacting electrons in a single CuO, layer. In particular, quasiparticle bands and den-
sities of states have been derived by applying a generalized Hubbard-I scheme to the five-states
model and to the reduced three-states model. We find that in both cases and for realistic values of
model parameters the insulating gap opens between an antibonding band of almost pure p character
and the antibonding band of mainly d character. The insulating state is thus of the charge-transfer
type and introducing holes into the p-like antibonding band metallizes the system. This would mean
that in the presence of an attractive interaction at least a part of the Cooper pairs are formed out of
only weakly correlated p-type quasiparticles. Insight of the normal-state behavior can be gained
from a discussion of the spectral distribution of strongly correlated and more localized d electrons
among mobile p electrons or holes. The work is supplemented by a brief discussion of the residual
interactions among quasiparticles and by a comparison of our model with more strong-coupling
models like the ¢-J model. Finally, we present formal solutions for the Green’s functions by using a
more refined decoupling scheme. The influence of the resulting lifetime effects and Kondo-type
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features on the quasiparticle spectra is briefly discussed.

I. INTRODUCTION

Despite intensive research activities there is no real
agreement about how the basic physical properties of the
copper oxide systems are to be explained. Several
theoretical models of quite distinct natures have been for-
mulated. In spite of the variety of models there are some
generally accepted ideas. It seems clear that correlated
electrons in CuQ, layers contribute to most of the unusu-
al features of the normal, the magnetic, and the supercon-
ducting state. For specific discussions of some of the
electronic properties of high-7, materials we refer to
Refs. 1-4. Furthermore, it is obvious that the coupling
between layers is important for the formation of a
coherent magnetic or superconducting state.”~’ A par-
ticular interesting feature might be connected with the
observation that the Coulomb interaction between charge
carriers in layered materials can be attractive over an ex-
tensive fraction of reciprocal space.® On the other hand
the involvement of lattice degrees of freedom in normal-
state and superconducting properties is far from being
clear.’

In this paper we would like to add to the known
features another important feature of high-7, systems by
showing that in the vicinity of the Fermi energy mobile
carriers consist of nearly free quasiparticles and that the
main spectral weight of strongly correlated particles lies
well below the Fermi level. Our investigations are based
on a generalized five-states model composed of interact-
ing electrons in 3dxz_y2 and 2p, , orbitals (two bonding
and two nonbonding p orbitals per unit cell) of a planar
CuO, square lattice. This model originates from the ac-
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complishment of the three-states model'® by the two non-

bonding p orbitals and by allowing for direct O-O hop-
ping. There are many versions of similar electronic Ham-
iltonians and we refer to Refs. 1-4 for details of the
present knowledge of one-electron band structures and
correlated electron models.

The three-states model (without direct O-O hopping) is
of particular interest since it has been shown that it
reduces to an effective one-band Hubbard model in the
strong-coupling limit. However, the question whether
the effective one band #-J model and the three-states Em-
ery model contain the same and most important features
of high-T, systems is still in debate.!" Our investigations
show that the quasiparticle spectrum of the metallic state
obtained for the five- and three-states model (O-O hop-
ping included) is different from the corresponding spec-
trum of the #-J model and that the inclusion of O-O hop-
ping and nonbonding p orbitals might be of crucial im-
portance. However, we have to admit that our approxi-
mations are rather crude and could forbid a direct com-
parison of results obtained so far for the five-states model
and the r-J model. The drawbacks of our treatment will
be critically discussed at each level.

The t-J and related models are of interest since analyti-
cal investigations and numerical simulations of small sys-
tems show that superexchange-driven formation of Coop-
er pairs is possible. For discussions of different aspects of
real-space pairing of fermion spins to total spin zero we
refer to Ref. 12—25. Since Cooper pairs consist of holes
introduced by doping, the nature of the Cooper pairs de-
pends on whether holes go onto oxygen or copper sites.
Our results for quasiparticle band structure clearly show
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that holes predominantly go onto oxygen sites. In our
treatment the dispersion of the quasiparticle bands near
the Fermi energy is mainly due to O-O hopping and to a
much less extent to covalent Cu-O mixing. If this were
true, then the superexchange mechanism for pair forma-
tion would be not so effective since holes on oxygen sites
are less correlated than holes on copper sites.

To what extent does this contradict the Zhang-Rice ar-
gument? If one sticks to the three-states model and
neglects direct O-O hopping then as shown by Zhang and
Rice,!! one hole on the central Cu and a hole distributed
over neighboring O sites form a spin singlet that is
strongly bound to the central Cu site. Since the excited
triplet state has a much larger energy than the singlet
state and since two such composite particles feel a repul-
sive interaction, the reduced three-states model reduces
at low enough hole concentration to an effective one-band
Hubbard model. If O-O hopping is included, for exam-
ple, within the five-states model, then it is more likely the
oxygen ion that plays the central role and one would have
to generalize the procedure used by Zhang and Rice. To
this one could consider two holes on the central oxygen
ion (one in the bonding and one in the nonbonding orbit-
al) which form a spin singlet. This singlet is allowed to
travel to the nearest-neighbor oxygen sites, or a single
hole could travel to the nearest-neighbor Cu sites. More-
over, one could consider two holes in one and the same
oxygen orbital, etc. In addition one would have to con-
sider all possible transitions of a single hole. In this way
one would create a much larger object than in the origi-
nal work of Zhang and Rice, which is perhaps still of
singlet nature, but its excited states are not simple triplet
states and may lie close in energy. Whether this would
still strongly couple the oxygen hole spin to a central Cu
spin is not obvious. We briefly come back to this ques-
tion when discussing effective interactions in Sec. V.

Besides the superexchange mechanism and more
refined concepts based on this mechanism such as the res-
onant valence bond'>!® and the spin-bag mechanism,'*
different types of charge-transfer mechanism have been
proposed.?® 2% Recently, the exchange of charge fluctua-
tions as an underlying mechanism for hole-hole attraction
was discussed within the spinless version of the three-
states model.”? Our results for the five-states model show
that for a completely filled antibonding quasiparticle
band of nearly pure p character the ground state is a
charge-transfer insulator with an insulating gap larger
J
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than 5 eV. In our opinion this gap is too large to be of
any importance for a d-p excitonic mechanism. Charge
fluctuations of the type Cu?’*03~«—Cu®0?", in which
only carriers in band states beneath the insulating gap are
involved, are not so effective because only a few percent
of d states are admixed to the band that contains the Fer-
mi level.

Normal-state properties are of particular interest since
they determine to a large extent also the low-temperature
properties. There are only a few attempts to calculate
normal-state properties of high-T, systems with the help
of the three-states model. To our knowledge, in most
cases direct O-O transfer terms were neglected. All one-
electron band structure calculations based on the local-
density approximation yield a metallic ground state for
undoped high-T, systems and one really has to use
many-body techniques to obtain an insulating ground
state. Quite recently, Balseiro et al.’® calculated the
metal-insulator phase diagram of the three-states model
(without O-O hopping) by using the slave-boson tech-
nique. Their results show that for one hole per elementa-
ry unit, La,CuQ, is a charge-transfer insulator and that a
slight increase in the number of holes causes rapid metall-
ization.

In Sec. IT we discuss the five-states model and relevant
energy parameters. In Sec. III we present results for the
quasiparticle spectra obtained with the help of a general-
ized Hubbard-I scheme®! for the five-states model. These
results essentially confirm the observations of Balseiro
et al. Furthermore, our results clearly indicate that in
the presence of an attractive interaction, Cooper pairs are
formed out of only weakly correlated p-like quasiparti-
cles. In Sec. IV results for the three-states model are dis-
cussed. Section V deals with effective interactions within
the reduced three-states model (without O-O hopping).
Finally in Sec. VI a more refined decoupling procedure is
presented and the influence of lifetime effects and
Kondo-type features is briefly discussed.

II. FIVE-STATES MODEL HAMILTONIAN

In this section we derive an effective Hamiltonian for
high-T, systems. In the absence of correlations, electrons
in CuQ, planes are well described by Bloch functions of
the form,
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with g, , .- as energy of the atomic d, bonding p, and non-
bonding p' levels, and

k,a
> C=cos 5 a=1,2, (3)
where 1 (2) refers to the x (y) direction.

The arrangement of orbitals and definitions of the
different hybridization constants y, B, and B’ are
displayed in Fig. 1. In the usual formulation of the
three-states model only dashed bonding p orbitals are tak-
en into account and direct O-O hopping due to S70 is
neglected. If the case B70 is considered then one should
also take direct transfer between bonding and nonbond-
ing p orbitals (as represented by blank circles in Fig. 1)
into account. For B'=0 the nonbonding states are decou-
pled from the bonding states.

For the reduced three-states model (8=0) the non-
bonding band is dispersionless and bonding and antibond-
ing bands are given by

e =1{este, tl(e,—¢g, 2 +16yX ST +S3)]V3, @)

k_a

a

S =sin

while d and p character are determined by the Bloch
coefficients,

ai t €, — &
bi L | =2ipSy |, (5)
+ £p—€k i
Cy 2iySy
+
€, — €|
af = lep e (6)

[(e, —ei)?+4y(S} +S53)1'%
For example, this gives the following expression for the
ratio of spectral weights of carriers with d- and p-like
symmetry at the logarithmic singularity,
1

16y2
Introducing field operators in terms of creation operators
of Bloch electrons,

{eq—€, t[(eg—€, )+ 16y2]/2}2 . )

FIG. 1. A schematic representation of the orbitals and
transfer terms included in the five-states model Hamiltonian
Egs. (15) and (16). The five-states model consists of one d state
and the two bonding and two nonbonding p states per unit cell.
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v =3 (rlg)a)y, » (8)
nk

leads to creation operators of Wannier electrons of the
form

1
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where 7 is the band index and m, ,=n+a, ,/2.
In what follows, we will use a much simpler represen-
tation defined by
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Then the resulting Hamiltonian in k representation is
given by
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F, reproduces the eigenvalues of (2) and the resulting
band structure is shown in Fig. 2(a) and respective densi-
ty of states in Fig. 2(b).

We now add to (15) the most important Coulomb in-
teractions defined by

ﬂleddzndnTndnl+Upp Z namaTnamal
n

a,m,

+Vdp 2 )ndnnama .

a(nm,

(16)

The first two terms describe on-site correlations while the
last term describes Coulomb interactions among d and p
carriers. Intrasite O-O interactions between carriers in
orbitals of different symmetry as well as intersite O-O in-
teractions will not be considered in this paper. Without
the direct O-O hopping terms and without nonbonding p’
orbitals, the extended Hubbard Hamiltonian
FH=F,+F, is sometimes referred to as Emery model'°
if used in the hole representation. The hole representa-
tion used by Emery is based on the vacuum that consists
of Cu™ (all d states singly occupied) and of O*~ (all p
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FIG. 2. (a) One-electron band structure of the five-states model Eq. (15) (uncorrelated case). 8'= —0.3; the other energy parame-

ters are listed in (19). B'70 lifts the fourfold degeneracy of the first four bands at I'. The inset shows the Fermi surface for 8.36 elec-
trons per CuO, unit cell (n,=0.852, n,=3.512, n,,=3.996, where p and p’ stand for bonding and nonbonding p orbitals, respective-
ly). (b) Respective one-electron densities of states, p; (dashed lines), p, (solid lines), p, (dashed-dotted lines), and total densities of
states p, (solid lines). n,, , are the occupation numbers of each band.

states occupied). If we transform to hole creation and de-
struction operators by

L = o
Dka _dko’ Pako “Poko> Paka “Poako >
T t ’ T (17)
Dka=dka7 Paka =P ake> Paka =Poako >

then the Hamiltonian formally remains invariant if we
make the replacements e;—ei=—¢,—U, —8U,),
si,”—e,l,h=—-sp—Upp—4Vdp, and y——v, B‘"a—ﬁ‘f’,
together with an appropriate rescaling of the chemical
potential. In the following we stay in the electron nota-
tion.

A comment should be added with respect to the two
different representations in (9)-(11) and (12)-(14). If one
is interested in the momentum dependence of the
different interaction terms in (16) for a discussion of the
formation of spin- or charge-density-wave states it might
be worthwhile to consider the more complicated Bloch
representation (9)—(11). In the present paper we will
stick to the more simple plane-wave representation
(12)-(14).

It seems as if the nonbonding bands that owe their
dispersion to the ppo and pp transfer integrals, B, are
less affected by correlations than the other bands. They
are approximately given by

z=¢, +4B'C, Cy, T4BS xS > (18)

where €, =¢, has been used. The actual energetic posi-

tion of the nonbonding orbital with respect to the bond-
ing orbital is a subtle question and is not known.!

If for a moment the assumption is made that the insu-
lating gap forms between the upper antibonding band of
d character and such a band of less correlated oxygen p""’
quasiparticles, then in the doped case one would have
conductivity as well as superconductivity of nearly free O
p"" electrons (holes).

Since there are experimental hints that mainly oxygen
charge carriers are involved in normal conduction and
presumably also in superconductivity,* the inclusion of
O-0O hopping is really of crucial importance. Without
this term, hole or electron motion can only occur
through the Cu sites and may be impeded by localization
effects due to large Uy, and ¥V, values.

The actual values of parameters in (15) and (16) are not
known. Using a constrained local-density approach, Hy-
bertsen et al.’’ recently have derived the following values
(electron representation):

V73
r= x,x2~y2= 2 Vpduz—l~30; Udd:IO.S,
V3
_B=Ex’y=_2 (Vppo = Vippr) =0.65 ,

U,,=4.00, (19

Vaq

,=1.20 .
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All energies are in eV. Further values can be found in
Refs. 34-36. In addition to (19), we have included O-O
hopping of the form,

V2

BI :Eaa = —2—( Vpp Vppﬂ)+ VppTT’ (20)

With respect to the energy separation —¢, —¢, in elec-
tron notation we will use 3.6 eV, which places the bare
atomic d level on top of the p level. Strong enough corre-
lations at the oxygen sites still lead to a charge-transfer
insulator. By going from €, —¢,>0 to g¢;—¢, <0 we
gradually reduce the charge-transfer gap whereas spectral
weights are not drastically influenced.

As mentioned previously, many authors have con-
sidered different simplified versions of H=%,+%#, A
widely used simplification consists of retaining correla-
tions only between carriers of d type and neglecting B'"’,
U,,, and V,, altogether. The remaining Hamiltonian has
interested features. In the strong correlation limit it
leads to frustration effects among copper d spins on a pla-
nar square lattice and simultaneously favors Cooper pair
formation in the case of doping.!” Still further
simplification leads to the so-called t-J model.” It
remains to be proven that these simplified model Hamil-
tonians contain the essential physics of high-T, systems.

In this work we show that with respect to normal-state
properties it might be important to retain all interactions
and transfer terms and that the insulating state of the
charge transfer type can only be obtained for the full five-
or three-states model. In the actual calculation we shall
employ a generalized version of the Hubbard-I approxi-
mation which needs to be justified, since it violates
Luttinger’s theorem. So far, the metal-insulator transi-
tion was studied by applying the slave-boson technique to
the reduced three-states model (i.e., without O-O hop-
ping).3® However, the disadvantage of this method lies in
the fact that all bandwidths shrink to zero at the metal-
insulator transition for the case that the model Hamil-
tonian contains only one type of transfer term ( as in the

J
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the ith component of a’ equals 1, all other components
are zero. The atomic-limit-like propagators are given by

<n§—o)
Z'—Eg— U§§

_ 1_<n§_0) +

¥4 _Eé-

to , &=d,p,p’. (25)
The propagators (24) originate from a decoupling on
the second stage of the equations of motion, which is

equivalent to the replacement of (z —¢,) by atomic-limit-
4
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one-band Hubbard or in the reduced three-states mod-
el’®). Since O-O hopping is crucial this kind of work
should be repeated by making use of the full five-states
model. This is under present investigation. The
Gutzwiller method is difficult to apply to a multiband
system; also it has the same advantages and disadvan-
tages as the slave-boson method. Therefore, in order to
get a first insight into the spectral weight of quasiparti-
cles over an extended energy range we will use the
Hubbard-I scheme. The energies in (19) and (20) are the
input. Hence the result will very much depend on (19)
and (20) and the Hubbard-I scheme which will put p'"’

spectral weight on top of d spectral weight
(U,, =~€4—¢,). Since d spectral weight of the Hubbard

split band at €, + U, lies on top of this, one obtains in a
very simple manner a charge-transfer insulator. Howev-
er, we will show that by using a constraint that fixes the
total d-electron number, one can somewhat improve the
Hubbard-I scheme. One can also add a constraint that
would lead to the fulfillment of the Luttinger theorem.
However, this does not work together with the Hubbard
approximation.

III. GENERALIZED HUBBARD-I SCHEME
AND NORMAL-STATE QUASIPARTICLES
FOR THE FIVE-STATES MODEL

In the actual calculation we have retained in (15) and
(16) all but the V,, term. One of the implications of this
term is further localization of charges on neighboring
copper-oxygen sites. We assume that this localization
can be mimicked by an enhanced energy separation be-
tween bare atomic energies of p'’) and d levels. The final
result for the one-particle propagators can be written
down in a more compact and transparent form without
this term as

(i)

M, (0)G(w)=a", (1)
where
0 0
—4B'C 1, Cox 0 R (22)
9y alw) —4BS 1 S
«P,2k¢7|Ai»: «p’u‘glA,‘») , (23)
(24)

I
like propagators in the exact Green’s functions derived
with 7, alone.’” Superconductivity as well as Hall-effect
measurements were recently discussed on the basis of the
t-J model by using a similar decoupling procedure.’®
To the set of Egs. (22)-(25) we have to add the corre-
sponding equation for the chemical potential

Snge)+2(n,, ) +2{n,., ))=n, (26)
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FIG. 3. (a) Quasiparticle band structure for the five-states model as obtained within the generalized Hubbard-I scheme for 8.36
electrons per unit cell. /= —0.3; all other parameter values are defined in (19). The Fermi surface consists of two hole pockets cen-
tered at M, whereby the smaller pocket consists of nonbonding p states. (b) Respective total quasiparticle density of states and partial
d, p, and p’ contributions. The free-electron density of states (which is always the largest one) is shown for comparison. n,, - are
within numerical accuracy the occupation numbers of each band. The shaded area marks the occupied region. (c) Respective quasi-

particle densities of states of the band package beneath the insulating gap on an extended scale showing more clearly that states near
the Fermi surface mainly are of p and p’ character.



42 MANY-BODY DERIVATION OF QUASIPARTICLE BANDS AND . .. 313

where n is the number of electrons per CuO, unit formu-
la. Resulting quasiparticle bands and density of states for
the five-states model are shown in Figs. 3(a)-3(c) for
n =8.36 electrons (i.e., 0.64 holes with respect to the in-
sulating state of CuO, which corresponds to n =9 elec-
trons per unit cell). All numerical calculations are done
for T=100 K. With respect to the parameter values we
stick to those derived recently by Hybertsen et al.** and
which are given above.

One general feature of our results is that we obtain ten
quasiparticle bands for the five-states model (six for the
case of three-states). This holds also for arbitrarily small
values of Uy, and U, and is in this limit a typical artifact
of the original Hubbard-I approximation. However, for
strong enough correlations as in our case (Uy; =10.5 eV,
U,, Z 4 eV) the appearance of Hubbard subbands and the
associated spectral weights might be not too unrealistic.
For infinitely strong correlations, Udd,Upp—wo, we are
left with five (three) bands at finite energies.

Figure 3(a) shows the quasiparticle band structure and
the position of the chemical potential that cuts two
bands, of which the upper one is of predominant p char-
acter with a small admixture of d and p’ states, whereas
the lower one is of predominant p’ type with p states ad-
mixed. This can be seen from Fig. 3(b) in which the oc-
cupation numbers of each band are listed, and from Fig.
3(c), which shows the band package beneath the insulat-
ing gap on an extended scale. The occupation numbers
are always given for the whole band (regardless of the
filling) and were taken from the density of states.

For approximately nine electrons per unit formula the
system is an insulator where the metal insulator transi-
tion is more of the charge transfer than of the Mott-
Hubbard type. This result is remarkable in view of the
simplicity of the underlying theory. But as discussed be-
fore, it seems to be sufficient to fulfill the condition that
the charge-transfer energy A=(g;—g,+2V,,)/2, is
small enough as compared to Uy, in order to be in the
regime where charge transfer is important. Upon doping
the system rapidly metallizes. The inset in Fig. 3(a)
shows that for a doping of 0.64 holes per unit cell (with
respect to the insulating ground state) the Fermi surface
consists of two-hole pockets of p and p’ character at each
corner of the Brillouin zone. Of interest could be the fact
that for €, >¢, a quasidegenerate situation can be real-
ized, in which the two-hole pockets nearly coincide.
Coupling of the small energy separation between the p
and p’ bands to local deformation could then result in
large hole-phonon interactions (which reminds one of the
possible superconducting coupling mechanism in heavy-
fermion systems*°).

The quasiparticle density-of-states curves were evalu-
ated with the help of

pelw)= 2 ImGﬂ“7 , &€=d,p,p’, (27)

(2 )2

where the resulting 6 functions have been replaced by

‘/;_

5((0—-2,»)=——1=-

77 i o

1 e —(w—z 2 /7 ]

Here, z; (i=1,...,10) are the poles of the propagators
and T is appropriately chosen to yield smooth density-of-
states curves (we used 7=1073, 5000 points in the irre-
ducible part of the Brillouin zone and 2500 intervals on
the energy scale of each band; this led to 10 h of CPU
time for the evaluation of the density-of-states curves).
Note that we cannot make use of one-particle schemes
like the tetrahedron method for the density-of-states cal-
culation, since spectral weight in each band changes with
filling and change of parameter values.

The present speculation that quasiparticles in the vicin-
ity of the Fermi energy are only weakly correlated p and
p’ holes is of particular interest and would rule out pair-
ing mechanisms based on superexchange or charge exci-
tations of the type Cu’tO?”"«Cu*O~. If the present
speculation were true then charge excitations of holes in
the two-anion oxygen networks of bonding and nonbond-
ing type would be more important. However, we would
like to add that the present findings could be partially
connected with the Hubbard-I scheme employed in this
work, which does not allow us to calculate residual in-
teractions among the quasiparticles.

The original Hubbard-I approximation for the single-
band Hubbard model is the result of a kind of strong-
coupling expansion. In spite of its simplicity it allows a
first insight into the Mott-Hubbard transition. The ex-
tended Hubbard-I scheme that has been used in this work
is more refined and the results show that for appropriate
parameter values a charge-transfer insulator instead of a
Mott insulator can be obtained. However, two negative
aspects are connected with the Hubbard-I scheme. First,
lifetime effects (which will be discussed later) are not tak-
en into account. Second, the Luttinger theorem is not
fulfilled. Results for the quasiparticle density of states for
electrons on a square lattice described by the single-band
Hubbard model have shown that with increase in U the
singularity in the generalized density of states rapidly
vanishes.?’” This fact is connected with the fulfillment of
Luttinger’s theorem.

In principle there is a systematic way to improve the
Hubbard-I scheme by using the method of projecting
operators.*! 7* This method conserves the fourth mo-
ments of the propagators (only third moments are con-
served within the Hubbard-I approximation) and can be
extended to conserve higher moments. So, for example,
magnetic and nonmagnetic solutions and critical values
for correlation energies have been discussed with the help
of the four-momentum method.** However, at no stage is
the Luttinger theorem fulfilled. Therefore, we used the
lowest nontrivial order, which has the advantage to be
numerically tractable.

In order to see the impact of Luttinger’s theorem on
the present work we have added a constraint which keeps
the volume enclosed by the Fermi surface for a given
filling fixed while U,; and U, can be varied. This can be
done by adding to the Hamiltonian a term of the form

1
n ‘IV 2 f(egka)

nk,o

1
LS fa, | 29)
N £k, o fko

where €0, are the electronic energies in the absence of
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correlations (n is the band index) and ng, =(fig, ) has
to be calculated with the help of (22)-(25),
M = — ﬁ [do f(oImGy,, E=dpp' .  (30)

Unfortunately, this constraint of including equal volume
inside the Fermi surface for noncorrelated and correlated
cases cannot be fulfilled within the Hubbard-I scheme
(this one immediately realizes by considering the behav-
ior of the two weight functions for a single-band Hubbard
model). But such a constraint can be useful if more
refined approximations are used. Thus we investigate at
present the application of the slave-boson method to our
five-states model together with such a constraint.

A definite improvement of the Hubbard-I scheme can
be obtained by partially fulfilling constraints such as
(29). Remembering that in the 1:2:3 compound the va-
lence of the Cu ion depends on the amount of oxy-
gen (Y3+Ba22+cu3l.666+062—’ Y3+Ba22+cu32+06'52—,
Y3*Ba,?*Cu,2*31 0,2 etc.), one might think of fixing
the total number of electrons per unit cell as well as the
J

?{ ——U“ EplmITplm LpZm lplmT

12 12
—Upp 2 p2mlTplm21p1mzlP2m 1 Upp

d-electron number. This can be done by adding to the
Hamiltonian the global constraint

1
_—A_,k,zgdltadko €2))

This procedure resembles the slave-boson technique. A
plays the role of a chemical potential for d electrons. The
influence of this constraint on the behavior of quasiparti-
cles has been investigated in detail for the three-states
and will be discussed in the next section. It will be shown
that due to the amount of d-electron charge at the Cu site
one can either have a charge-transfer insulator or a Mott
insulator.

A final comment concerns high-temperature supercon-
ductivity. If as discussed above, there are mainly less
strongly correlated p and p’ holes at the Fermi surface,
then superconductivity should be discussed in the frame
of an extended Hamiltonian by adding to (15) and (16) at-
tractive interactions of the type

21’ 1mer2m2LP2m21P 1m,1

t t
E p lmlTPZmzlPZmzlplmlT

{m;m,) (mm,
12 Al ' 12
- Upp' 2 p lmlTplmszlmzlplm[T - Up'p 2 p2m Tp2m lp2mzlp2m T (32)
(m;m,) (mm,)

The first two terms describe negative U, terms for two
holes at each of the two oxygen basis atoms at m,_, and
m,_, (i.e., one hole in the bonding p and one hole in the
antibonding p’ orbital). Such terms could exist, since in-
troducing two holes at an oxygen site into two different
orbitals saves correlation energy. In how far the response
of the surrounding lattice would compensate this energy
gain is unclear and remains to be calculated. It is well
known that such terms lead to an effective Hamiltonian
that describes hopping of local Cooper pairs if states with
a single hole per oxygen site are projected out. Originally
negative-U centers were obtained by taking into account
the interaction of an electron with local displacements of
a given atom within the one-band Hubbard model.*’

The remaining terms describe attractive hole-hole in-
teractions with holes on neighboring oxygen atoms.
These terms can arise from usual electron-phonon in-
teractions and from excitations of the p and p’ plasma.
Probably the last two terms will be rather small due to
the smaller nearest-neighbor overlap of bonding and non-
bonding orbitals. There is some resemblance of the above
interactions with corresponding interactions in the bipo-
laron model. For a recent review of the bipolaron theory
see Ref. 46.

IV. GENERALIZED HUBBARD-I SCHEME
AND NORMAL-STATE QUASIPARTICLES
FOR THE THREE-STATES MODEL

The three-states model is obtained from the five-states
model by neglecting the B’ transfer terms in (22). This

f

formally decouples bonding p and nonbonding p’ orbitals
and the resulting propagators can be written in compact
form as

1—16B%(S,, S5 )? G2 ,(2)
(dyldi, W= P, 33)
o ldio .Mz —D,
1—-4y2S%.,9,,(2)84,(2)
«Pako P tks W= eipe 2T (34
Pako P Slz2)—P,(2)
gl
€pio 1P o e , (35)
ko [P o gp.g—(4ﬁslk32k)2
where
Z)U(Z)=4{y2(s%k+S%k)gpa(2)
+4B(S 1 Sy 1B (2)—2¢2192 (D)}, (36)
P,(2)=4{y* (ST +5%)%4,(2)

+4B(Slks2k )2[3_2'}/29‘10(2)]9[,0(2)} . (37)

Numerical results obtained for the three-states model
are displayed in Figs. 4-9. In all figures the correspond-
ing contributions of the decoupled nonbonding orbitals
are omitted.

Fig. 4(a) shows the quasiparticle bands and Figs. 4(b)
and 4(c) the respective densities of states. The insulating
gap opens between the lower-lying bonding-nonbonding
bands of mainly p character and the higher-lying anti-
bonding band of essentially d character as before for the
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FIG. 4. (a) Quasiparticle band structure of the three-states model (which consists of one d state and the two bonding p states per
unit cell) as obtained within the generalized Hubbard-I scheme for 4.5 electrons per unit cell. Parameter values are defined in (19).
The Fermi surface now consists of only one hole pocket at each M point (in contrast to the five-states model). (b) Respective total
quasiparticle density of states and partial d and p contributions. Again for comparison the free-electron density of states is shown.
ng, are within numerical accuracy the occupation numbers of each band. (c) Respective quasiparticle densities of states on an ex-
tended scale showing more clearly the charge distribution in the three bands beneath the insulating gap.
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FIG. 5. (a) Three-states model: variation of quasiparticle
bandwidths with filling. The discontinuity at n ~5 electrons per
unit cell corresponds to the filling for which the metal-insulator
transition occurs. (b) Three-states model: variation of the
chemical potential (T=100 K) with filling. (c) Three-states
model: variation of the occupation numbers n,, with filling.
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FIG. 6. Three-states model: variation of the occupation
numbers in the band below the insulating gap as function of U,
for n =4.9 electrons per unit cell.

five-states model. From the specific distribution of d
spectral weights below the gap in Figs. 4(b) and 4(c) it is
clear that the insulating state is of the charge-transfer
type. The Fermi surface consists of one p-like hole pock-
et centered at each corner of the Brillouin zone.

It is quite interesting to see how the total band struc-
ture changes if we fill in electrons. Since correlations
only play an active role in the presence of carriers, the ac-
tual form and width of each band strongly depends on
the electron filling. Thus, for zero filling we obtain the
corresponding uncorrelated bands of #, The remark-
able variation of the bandwidths as function of filling is
shown in Fig. 5(a). It is also obvious from this figure how
the crossover occurs from nearly free fermions to strong-
ly correlated fermions with increasing electron density.
For example, for the chosen energy separation of atomic
levels, €;—€,=3.6 eV (electron notation), the lowest-
lying band 1 corresponds at low filling to the antibonding
band of mixed symmetry where the degree of admixture
of p- and d-like symmetry is determined by the energy
separation and by the hybridization energy y. With in-
creasing filling the different strong correlations among p
and d electrons determine the final spectral weight. At

10

'3

FIG. 7. Metal-insulator phase diagram of the three-states
model in the (Uy,,A) plane, where A is the charge-transfer ener-
gy, A=(g;—€,+2V,,)/2 with V,,=0 in this work. (CTI) and
(MI) indicate the parameter space of charge-transfer and Mott
insulators, respectively. The solid line is the transition line as
obtained by Balseiro et al. (Ref. 30) in their slave-boson mean-
field calculation. U,, has little influence on the phase diagram
in the sense that already for moderate values of U,, the insulat-
ing state is of the charge-transfer type (i.e., n, > n; in the band
beneath the gap, see also Fig. 6.
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FIG. 8. (a) Quasiparticle bands for the three-states model for a total number of 4.5 electrons per unit cell, whereby the number of d
electrons per unit cell (=1) is kept fixed by using the constraint Eq. (30). Same energy parameters values as without constraint. (b)
Respective quasiparticle densities of state. Note, that due to the constraint (A=5.447) bands with d-like character have come down
in energy, which causes the insulating gap to shrink from 6.5 to 4 eV. Note also the different spectral weights in (b) as compared to

the results in Fig. 4 that were obtained without constraint.

complete filling (six electrons) this band is nearly disper-
sionless, it is depleted of d electrons and can accommo-
date only =0.5 p electrons. It is furthermore visible that
the role of band 3 and 6 (dispersionless at low filling) is
taken over by band 1 and 2 at high filling.

Besides band narrowing effects charge-transfer effects
play an important role. Figure 5(a) shows that the widths
of band 3 and 4 increase with filling. With increasing
electron densities these bands can accommodate more

15¢
Ny

1k Ny

05| n,

0

L__ . s
0.7 0.85 095 Ny

FIG. 9. Three-states model: variation of the occupation
numbers in the band below the insulating gap for a total number
of 4.5 electrons per unit cell as function of the d-electron num-
ber N, per unit cell (and otherwise the same energy parameters
as before). Note the rapid change of the spectral weights if N,
decreases from 1.

and more p electrons and less d electrons. Furthermore,
this figure clearly reveals a discontinuity at approximate-
ly n =5 electrons. Apart from band 4 (which corre-
sponds to the antibonding band with dominant p-type
spectral weight) all other bands show a discontinuity at
this critical electron density. Actually the metal-
insulator transition occurs for this critical value of n_~35.
Within numerical accuracy the actual transition occurs
for an electron number which lies slightly below five (or
slightly below nine for the five-states model). Thus the
experimental fact that for 1486 (8 <<1) holes per CuO,
complex the system rapidly metallizes is approximately
reproduced by our calculations.

Figures 5(b) and 5(c) show the variation of the chemi-
cal potential and the total number of d and p electrons as
function of filling. Altogether, Figs. 5(a)-5(c) show
several discontinuities that point towards the possibility
of metal-insulator transitions at different fillings. Howev-
er, it is obvious from the figures that the discontinuity is
most pronounced for n =5 electrons.

Of further interest is the sign of the O-O transfer in-
tegrals. Note first that for 8 <0 the sequence of bands
below the insulating gap is bonding above nonbonding
band. For B> 0 this order is reversed, which causes the
Fermi level to lie in the nonbonding band. Unfortunately
we cannot evaluate the correct sign of 8 within our ap-
proach. It seems that one-electron band structure calcu-
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lations favor 8 <0.

A further remark concerns the gap width. We have
obtained a rather large insulating gap of the order of
Uy —U,,~6.5€V. This is probably too large and is con-
nected with our choice ¢,—¢,=3.6 eV. Electron
energy-loss studies on high-T, systems probe in plane
unoccupied O 2p states above the Fermi surface*’ and
thus confirm our results that mainly p and p’ states are at
the Fermi surface, but these studies also show that the in-
sulating gap is of the order of 1.7 eV. In our calculation
the large gap can only be reduced by either making
Uys—U,, much smaller or by reversing the order of
atomic levels, Ep and g,4, respectively. Note, however,
that the slave-boson calculation®® also yields a rather
large mass gap (>4 eV for the same set of parameter
values). We think that the final width of the insulating
gap could be of crucial importance for normal-state as
well as for superconducting properties. If this gap could
be made arbitrarily small then volume fluctuations would
lead to fluctuating bandwidths and a superconducting
pairing mechanism similar to the mechanism based on
the Kondo volume collapse in heavy-fermion systems®’ is
conceivable.

As discussed in the Introduction, the role of Upp is to
put p spectral weight on top of d spectral weight within
the Hubbard-I scheme. Figure 6 shows how the occupa-
tion numbers in the band beneath the insulating gap
change with U,,.

Figure 7 shows the metal-insulator phase diagram in
the (U,,,A) plane obtained in this work. It resembles the
phase diagram that was calculated by Balseiro et al.*°
with the help of the slave-boson technique. The variation
of the border line between metallic and insulating states
is in our work less pronounced than in Balseiro’s work.
Small variations of U,, have not much impact on the
phase diagram as long as U, < Uy, holds. The quasipar-
ticle band structure that was obtained in Ref. 30, con-
sists of bonding and antibonding and dispersionless non-
bonding bands (because O-O hopping was neglected). In
the slave-boson mean-field theory the renormalized hole
mass is a simple function of doping and becomes infinite
for vanishing doping. The semiconducting state is then
characterized by dispersionless antibonding and bonding
bands (whereas bandwidths remain finite in our work).
Balseiro et al. emphasize that the inclusion of the intera-
tomic V,, term might be crucial for the occurrence of su-
perconductivity, since two holes added to the charge-
transfer insulator are bounded for ¥, > ley —g, l.

We conclude this section by briefly discussing con-
straints like (31). Constraints, by which we can fix indivi-
dual particle numbers, have a big impact on the general-
ized Hubbard-I scheme. Figures 8(a) and 8(b) show band
structure and density-of-states results for the case that we
fix the number of d electrons per unit cell to N;,=1 and
the total number of electrons to N, +N,=4.5. This con-
straint has the effects that (i) the lowest-lying band is now
of pure d character [compare the spectral weights of Figs.
8(b) and 4(b)]; and (ii) the insulating gap has become
smaller (=4 eV) and resembles in magnitude the value
obtained in Ref. 30. In Fig. 9 we show the occupation
numbers in the band below the gap for different values of

N, and N;+N,=4.5. Note the rapid change of the
spectral weights if N, decreases from 1. Note also that
with decreasing d-electron number the metal-insulator
transition changes from the charge-transfer to the Mott-
Hubbard type.

V. EFFECTIVE INTERACTIONS
NEAR THE U,; = « FIXED POINT

In this section residual interactions among particles
will be discussed for the reduced three-states model,
which corresponds to the Emery model and which is the
basis of the t-J model. The reduced three-states model is
obtained by neglecting direct O-O hopping (i.e., we take
B=0). Moreover, since we are interested in the strong-
coupling limit, we will set Uy; — o and U,,=0. In what
follows Hubbard operators will be used for d electrons,

Uy—o: di,—>X%, d X% ; (38)

n >’

this automatically excludes double occupancy of d
states.*® The decoupling of d- and p-electron degrees of
freedom is carried through by eliminating the d-p transfer
term to order O(y*). Before presenting results, we would
like to make a comment.

(i) The projective perturbation theory in 1/U,,; for el-
iminating double occupied states leads to an effective
one-band strong-coupling model with an exchange con-
stant J ~y?/U,y ~0.16. For Uy — « and U, finite the
exchange is of the order Jzyz/UpszAZ. If we take
the limit Uyy;— o, U,, =0, and make a canonical pertur-
bation theory with respect to ¥ to fourth order, then the
resulting exchange is J ~y*/( €4 TEp )3~0.06 and is con-
siderably smaller. Thus, one should not neglect U,
terms when discussing exchange terms in the strong-
coupling limit. However, the aim of this section is to
show that at large doping it might be worthwhile to con-
sider more terms than those contained in the effective
one-band model. To this it is sufficient to consider
U,,=0.

(ii) With respect to superconductivity and the possible
importance of p'’-p') interaction terms like (32) one
should go back to the original five-states model and elimi-
nate ¥ together with 8 and 8’ to a given order. Such a
canonical perturbation theory could then be accom-
plished by projecting out double occupancy of d states.
The resulting terms will be discussed at the end of this
section.

The reduced three-states model in the limit Uy; — o is
given by

H=FH+HH, (39)

Ho= T eaX3”+ T eaXX+ 3 EpP:rzkoPaka ) (40)
n,o n,o a.k,o

7{1‘-‘—1: > (—1)2Sg(e*nx 3% .
n a

\/N a,n,k,o 7

—eiknpl X07) . @1

In order to eliminate uneven powers of ¥ to any desired

order one can use an onionlike procedure:
Fhog= """ esceslj.[e_sle —Se ... , (42)
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where S; (S,.) eliminates the term linear (cubic) in y. 1

: =1 ytogypto ot 50t
This leads to Tim= 5 KXo T Xm) 7= (Xn + X )
[SIY}[O]:_?{l’ [Scy-WO]:—%[SI’[SI’ﬂI]] , (43) _T}?(X:O+X310)_‘/l__2_’(xgl +Xgll) . (49)
Hog=Fo+ 118,711+ 1S, 1S, (S, #1111+ 0(v*)
(44) .. . s
It was originally pointed out by Parmenter that within
where S, is given by the strong-coupling limit of the Hubbard-model terms in-
2 1 . volving spin operators as in (47)-(49) should be taken
S;=- —1—7: 3 (—1)2Sg(e* X% 0 into account.* All the spin operators obey the usual
€% YN 4nko commutation relations, but (S3)2=(S%)*=(SZ)*=#/4
+eiknpt x00y is only fulfilled for X }* + X! =T. In addition we use the
akoTn following abbreviations:
(45)
Wlth Ed =Ed —E'd()'
The last term on the right-hand side of (44) contains 4
among two-particle interactions, terms with six opera- —L, A= —7—“7 ) (50)
tors. These have been systematically truncated. The final €& &4 (e, =%4)

result can be written in rather compact form if spin
operators are defined by

. kea _
oX=x1t+x}1 S ok =sin 2 C, =cosk,a , (51)
ol=—i(x}t—x}i"), (46)
B=(—1)7"8S 4 Spr M= (S )?, (52)
0;=X£T—X,ﬁl , Mkq k° Bq k 20:, ak

with o} =287 /#, etc. and are generalized to spin opera-
tors involving more than one lattice site,
=~ = P l-oPac—o)
Uzmzv_(xTO_i_XTO) Xo¢+X01) aBk (53)
kq= D [Cax T Cog X777 .

4+ L yiogyioy_L yor 4 yot
‘/ (X +X0 ) — v (Xp' +X.), 47)
Ol =—i | —=(X]0+ XTO) ( X% +x0) The f;ollowing notation§ are used for ‘summing over lat-
‘/ tice sites: (mn), NN sites; {mnl/ ), n is NN of m and / is
NN of n; mn)), NNN sites (in x or y direction);
— L(Xlo +X10) (XOT +XOT ) , (48) ((mn)), NNN sites (over .CI'OSS). ) . . )
V2 The fourth-order effective Hamiltonian is then given by
J
ﬂeﬂ'=j~{0+ﬁl ) (54)
zedox,, + E[sd—4A2+20A4]X‘”’+ S [A,—8A0X0xY%
(mn)o
+ 3 28 XXV + T AXPXY + 3 [e,8,5+ 4088, — 40 AP 0P o - (55)
{mn)o ((mn))o a,B,k,0

The fourth-order effective interactions are contained in #, and consist of the following.
(i) A term describing magnetic interactions and charge correlations among d electrons including frustration effects:

W[ 3 (1+48)g o, + 3 gpl@m—toa—1to)— 3 (1-4OXFX]7— 3 XPXIX>

(mn)o (mnl)o (mn)oo’ (mnl)oo’
(56)
(ii) A term describing charge correlations among p electrons:
—o— 1 ¥
.—8(1_(Xn e ))A‘#W 2 z ngﬁq,k‘—an'ﬁkpak+qap27k’—q—opyk’—ap§ka . (57

a,B,v,8 k,k',q,0

(iii) A term describing charge correlations among d and p electrons:
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1
N a,Bn,k,q,0

D> ngge—“k—q)'ﬂ[—2A2+4A4[2(xk+xq)—¢kq+2g];p3kox,;°“”pﬁq,,. (58)

(iv) A term describing spin-flip scattering of d and p electrons:

1 —i(k—q)- -
N S e TN 28,48 1200+ o)~ Pra )i X 5 “Ppa-o XY - (59)
a,Bnk,q,0
(v) Another term describing charge and spin correlations:
“20,3 S S w4 N X oS e, +p o X g o X (60)
a,f {mn) k,q,0

(vi) A term describing excitonic correlations:

1 a i . -
3A4F2 2 2 nkg(e (k+q)mX:0Xmaopak—aqua+e

a,B (mn) k,q,0

(vii) A Falicov-type of interaction term:

8AL 3 3 mife 1TVl pp X3 . (62)
a,B,v,8 n,k,q,0
The Hermitian conjugate should be added to each of
these interaction terms.

Some physical implications of these interactions have
been discussed earlier [15]. However, a few comments
should be added here.

The perturbation theory presented here leads to an
effective Hamiltonian, vg'hich besides translation degrees
of freedom included in ¥, contains effective interactions
of second (= A,) and fourth order (<A,) in y. This
method which can be regarded as the lattice generaliza-
tion of the Schrieffer-Wolff transformation,>® was recently
applied to the Anderson lattice model.>! As was noticed
in,’! the resulting Hamiltonian can be used to calculate
fourth-order contributions to the ground-state energy due
to magnetic interactions between localized electrons.
Such contributions would follow from matrix elements of
7_:[ | connecting two possible degenerate ground states of
Ho, which differ only in the z projection of the spin of
two localized electrons. Since #, is not diagonal on the
same basis as #,, there exist excited states of #, that are
connected to the two degenerate states through 7?,.
Proetto et al. showed that for the periodic Anderson
model the second-order contribution gives rise to a
longer-ranged Ruderman-Kittel interaction, while the
fourth-order contribution leads to a pronounced peak of
the modified Lindhard function. The total effective in-
teraction between localized moments can be written as

(Gi|HPv)vHP|f)
E,—E,

Tg=C(ilHY|f)+ 3 , (63)

where |i ) and |j ) are the two degenerate states, E|, is the
ground-state energy of #,, E, is the energy of intermedi-
ate states, and H'® and H'¥ stand for the second- and
fourth-order contributions. It would be worthwhile to
perform the same calculations with the effective interac-
tions obtained in this work and to discuss the importance

of the different terms as a function of the hole concentra-
tion. However, this is a tedious problem, since the

~tkrarmpt ot x0-ax0) (61

transfer terms in #,q give rise to correlation effects due
to the nature of the Hubbard operators.

Another comment concerns the magnetic interactions
in (56). The spin-spin interaction involving two sites will
be antiferromagnetic for holes while the spin-spin in-
teraction involving three sites gives rise to antiferromag-
netic and ferromagnetic interactions and thus leads to
frustration in the case of doping. Such a term also ap-
pears for finite U, and U,,; this is discussed is more de-
tail in Ref. 49. At finite doping these terms certainly help
to destroy the magnetically ordered state.

Finally we would like to say that this perturbation ex-
pansion is reasonable if

N Y Y

A <1, U, <1, Uw—A <1 (64)
holds, where A is the charge-transfer energy defined pre-
viously (i.e., the energy cost of transferring an electron
from the O site to the Cu site or a hole from the Cu to the
O site). The first two inequalities just state that we have a
correlation gap while the last relation defines the region,
in which perturbation theory can be applied. We would
like to mention that recently Zaanen et al.>? have per-
formed a similar calculation up to fourth order with the
help of the projection operator method. They have kept
U,, finite. For finite Uy, the relevant denominators in
the expansion are A and (Uy; —A), which shows that per-
turbation theory in the case Uy — o leads for #.4/7 to
an expansion in uneven powers of ¥ /A=0.36. A close
inspection of (55)-(62) shows that second- and fourth-
order contributions always appear with different signs
and that second-order contributions dominate. This is
important for (58)-(59) which can be transformed into a
Kondo-lattice-like Hamiltonian (and remaining charge
correlation terms). This means that with increase of dop-
ing the superexchange terms become less and less impor-
tant than spin-spin interactions and charge correlations
between localized and delocalized carriers. Perhaps this
is a hint that attractive interactions among carriers ob-
tained in fourth order will probably not lead to a super-
conducting ground state as assumed in Ref. 10. Apart
from details these observations remain valid for finite



values of Uyy.>> Thus the relevant terms at low doping
are Kondo-like interactions, charge correlations, and su-
perexchange interactions. With increase in doping the
second-order contributions will probably dominate and
due to the different sign might lead to repulsive interac-
tions among holes on neighboring sites. For more details
of a similar discussion we refer to Ref. 52.

V1. KONDO-TYPE FEATURES
AND LIFETIME EFFECTS

The discussion of relevant interactions in the last sec-
tion has shown that the reduced three-states model can
be considered as an extended version of the Anderson
model. Therefore it might be interesting to look for
Kondo-type features either in the three- or in the five-
states model. To this we have calculated the propagators
of the reduced three-states model by using a more refined
decoupling procedure. The decoupling procedure actual-
ly used in this paper is of the same type as the one uti-
lized by Theumann®® and others®* for the discussion of
the Kondo effect in the single-impurity model. It gives
rise to a Kondo resonance in the impurity case, but the
Kondo temperature turns out to be wrong. As recently
shown, the same decoupling procedure (together with a
1/N expansion, where N is the orbital degeneracy) if ap-
plied to the Anderson lattice model, not only reproduces
the impurity results,> but becomes exact in the limit
N — . If the decoupling procedure is applied to the
Anderson model without the 1/N expansion, then no
pronounced Kondo effect was observed.’® However,
Kondo-type features were seen (in the sense that with de-
creasing temperature the density of states develops a
small peak at the Fermi level’’). The suppression of the
Kondo resonance in the lattice case is due to large life-
time effects which survive at T =0. Hence it follows that
the condition

Im3(0) < (0—py)? (65)

is not satisfied. This means, that not only Luttinger’s
theorem is not fulfilled, but also that there is no discon-
tinuity of the momentum distribution function at the Fer-
mi momentum. This also means that the Kondo contri-
butions to the self-energy will not diverge at the Fermi
level, since divergencies of the real part of terms like

1 < 4 I— oCk—o )

D (66)
occur only at discontinuities of the distribution function.
In spite of these failures, numerical results obtained for
the specific heat and magnetic susceptibility turned out to
be quite reasonable.*®

In this section we would like to show that on the basis

J
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of the decoupling procedure cited above, Kondo-type
features for the reduced three-states model are even less
pronounced than for the Anderson lattice model [for
which at least Kondo-type terms like (66) appear]. Since
the resulting expressions are rather lengthy we will only
discuss the limit Uy — o while U,, and V,, and B’ are
set equal to zero. As before, Hubbard operators will be
used for the creation and destruction operators of
infinitely strongly correlated d electrons. In compact no-
tation the propagators are given by

N,d
(X% |xg0)=—2L% (67)
Dk
o0 — ( - 1 )ﬂ o 2
(P oo | XN = 2iySuNy(z —e—4BSk )
BFa, (68)
€PaxolPlae W=—1(z —e4+ My )z —¢,)
Dk
—4y’SpN,l, B#a, (69)
«plka IP 2%ko »= «sza ‘plka »
45, S
=~l—2l[3(z—ed+Md)—y2Nd] . (70)

Dy

In this limit the three-pole structure of propagators has
changed due to the presence of frequency-dependent
functions giving rise to lifetime effects. The denominator
D, is given by

Dk(z)=(2 —E&4 +Mdk)dk

- §B4yzs§k(z—ep—4ﬁsgk N1-F(2)], (71

while the remaining functions are defined as follows:
di(2)=(z —€,)*—(4BS, S, )* , (72)
Nd(z)=l—(X'”“’)—F(z) , (73)

=1 2 —?’-( — 1S w [ X% o Mz —,)
+4BS 1, Sy { X -1,
B#v, (74)
Mdk(z)=%()(“’_”> % [S%(z—¢,)
+4B(— 1S S ']

+My(z), (75)

and

M =L 472 (re2 (, _1)a+8 2 —o0y0—0 ) _ —o—0o
4(2) N}‘,d [Sox(z —€,)+4B(— 1T E(S 3, S 21X °X D77 ) —2(X ))
a,k “k

-2 (=1 )a+vSakSvk[ (ptk—apak"o )z —§ )+4ﬁslkszk(pzkapﬂka )]

BFa . (76)
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The functions My, and M, can be considered as self-
energies, while the remaining terms in D, are kind of ver-
tex corrections which renormalize y.

The general structure of the propagators reminds of
many-body Kondo-type features known from corre-
sponding expressions for the Anderson lattice mod-
€l.3%3%38 One might expect that Kondo-type resonances
can appear due to internal momentum summations in
F(z) and M (z). However, there is a remarkable
difference between the usual form of propagators leading
to a Kondo resonance and the propagators in the present
work.

First, the bare energies of d and p electrons are disper-
sionless. Dispersion is created by allowing for hybridiza-
tion. Second, Kondo-type terms are of the form

1 (_1)a+vsaksvk<p1k—apvk~o)(z_sp) 77)
N Zk (z—g,*—(4BS, Sy )

and are considerably different from (66). Lifetime effects
will again suppress the Kondo resonance since the expec-
tation values have no discontinuity at the Fermi momen-
tum. In addition the Kondo-type features will be further
suppressed due to the specific analytical structure of the
last relation. All other contributions of similar structure
(including terms which contain (X{°XD’)) are higher-
order contributions. Since the expectation value in (77)
has not a discontinuity at the Fermi momentum and
since (77) has a different analytical structure as compared
with (66), we expect only a very weak resonance.

A detailed numerical analysis of the impact of lifetime
effects on the charge-transfer insulator at small hole con-
centration is under current investigation. At present the
convergence achieved while solving the self-consistency
equations is not high enough to see any resonance. If it
would turn out that there is a pronounced Kondo effect
in the reduced three-states model then one should switch
over to the five-states model because this would allow us
to describe two interpenetrating lattices of strongly
bound singlets (as in the -/ model) and weakly correlated
nonbonding p' carriers.

VII. FINAL REMARKS

We have calculated a few normal-state properties of
highly correlated fermions of the two-dimensional CuQO,
lattice. We think that the results such as the phase dia-
gram and quasiparticle spectrum are relevant for high-T,
copper oxide superconductors.

The spectrum and phase diagram show that undoped
CuO, (which corresponds to approximately nine elec-
trons in the bands) is a charge-transfer insulator. For
realistic parameter values spectral weight of d and p elec-
trons is distributed in such a way that in the doped case
(i.e., taking electrons away in the vicinity M) the Fermi
level comes to lie in a band of mainly p'-type symmetry.
To what extent this result has to be changed if d and p
carriers are strongly bound into spin singlets remains an
open question. Probably this would lead to the appear-
ance of d spectral weight at the Fermi level (which would
not be much different from the appearance of a Kondo

resonance). It is unclear, whether considerable d-type
spectral weight at the Fermi level would contradict the
observation that most high-T, systems should behave as
charge-transfer insulators. However, the charge-transfer
insulator state has not always to be very pronounced.
Our calculations show that the nature of the insulating
state (charge or Mott-Hubbard insulator) depends on the
amount of d-type charge localized at the Cu sites.

In any case, whether strongly bound d-p singlets exist
or not, we expect that weakly correlated nonbonding p’
carriers are present at the Fermi level. This means that
in the presence of attractive interactions at least a partial
fraction of fermions that originate from these orbitals are
bound into Cooper pairs. The actual number of Cooper
pairs consisting of weakly correlated fermions is difficult
to estimate. It depends to a large extent on the energetic
position of the nonbonding orbitals with respect to the
bonding ones. If at the same time strongly bound d-p
singlets were present at the Fermi level one might face
the interesting situation that one system might behave
Fermi-liquid-like, the other not.

To what extent the present reflections would rule out
purely electronic mechanisms for superconductivity is an
open question. The weakly correlated fermions at the
Fermi surface will certainly strongly couple to local lat-
tice distortions. Moreover, excitations of this weakly
correlated Fermi gas may be important. However, we do
not claim that an electronic driven superconducting in-
stability has become impossible. There is clear evidence
that strongly correlated fermions possess an inherent ten-
dency to form local singlet pairs. This has been
confirmed by mean-field-like calculations for the single-
band Hubbard model in the large-U 1limit*>® or by nu-
merical studies of the two-dimensional Hubbard model.
For recent numerical work in this context and further
references we refer to Ref. 61.

One should also note that besides the influence of spin
or charge fluctuations electron-phonon interactions could
be of crucial importance for high-T, superconductivity.
There is experimental evidence that La,CuQO, has a tilt
soft mode of the octahedra around a [110] axis.®* At
present we investigate the problem of to what extent the
coupling of weakly correlated p'’ holes to phonons and
above all, the coupling of excitations of this weakly corre-
lated Fermi gas to phonons, might help us to understand
high-T, superconductivity. To this we have coupled via
volume-dependent O-O transfer integrals the holes to the
most important modes of the oxygen octahedra, and exci-
tations of the weakly correlated Fermi gas are taken to
induce attractive interactions among the more correlated
d-p particles and vice versa. Results will be published
elsewhere.®

The magnitude of the charge-transfer gap obtained in
this work is of the order Uy —U,, =~6.5 eV. If this were
true then probably any excitoniclike mechanism for
high-T, superconductivity as originally proposed would
be ruled out. With respect to the validity of the present
calculation, we would like to say that if the generalized
Hubbard-I scheme is combined with the constraint Eq.
(31), which ensures a certain degree of localization of d
electrons, then the resulting electronic spectrum of a



CuO, layer should bare a few realistic features. If we
make use of the constraint (31) then the insulating gap
obtained in this work (=4 eV) corresponds to the value
that was obtained in Ref. 30. Unfortunately, the Lut-
tinger theorem cannot be fulfilled within Hubbard-I and
the constraint (30).

The interesting problem of the rapid decrease of the
Néel temperature upon doping cannot be discussed
within the generalized Hubbard-I scheme. To treat this
problem we have to use the four-momentum method dis-
cussed briefly in Sec. III by extending the calculation to
the two-sublattices case. As has been stated before, the
increase of frustration with increasing hole concentration
might be primarily responsible for the rapid decrease of
the Néel temperature.
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