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Applicability of the Rayleigh hypothesis to real materials
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The validity of Rayleigh's hypothesis with permeable media is investigated. For the two-

dimensional transmission problem, the extinction theorem and boundary integral equations are ob-
tained within a common framework, for the surface with periodic corrugations. The surface field

functions are found from the integral equations; these functions can be analytically continued to
complex values of the coordinates. Then the extinction theorem provides a criterion for the validity
of Rayleigh s hypothesis. We find that it is valid for all materials, absorbing or otherwise, when
2m.h /D &0.448. Here h is the depth and D the period of the sinusoidal surface. Criteria of this na-

ture have previously been established only for the Dirichlet problem, with the assumption that the
medium of incidence was also nondissipative. Accurate application of Rayleigh's method requires
accurate knowledge of both the interface geometry and the material properties. In particular, when

"perfect-conductor" formulas are used to measure the dielectric constant and calibrate the corruga-
tion depth of gold gratings, significant errors are introduced into the data. Such distortions may be
the true cause of discrepancies observed when Rayleigh-type calculations are applied to light
scattering from real metals with rough surfaces.

I. INTRODUCTION

A. The Rayleigh method and Rayleigh hypothesis

Lord Rayleigh was the first, in 1895, to use Fourier
series to study wave-scattering processes at rough sur-
faces. ' At that time, he also introduced the so-called
"Rayleigh hypothesis, " which states that the far-field ex-
pansions could be extended all the way back to the sur-
face itself in order to satisfy Maxwell boundary condi-
tions. The validity of this supposition was admittedly un-
known, but at the time it was the most powerful theoreti-
cal tool available for attacking such problems.

Despite the subsequent development of exact
differential and integral methods, the Rayleigh hy-
pothesis is actually being used more frequently now than
in earlier years. " Part of this current interest is due to
the relative simplicity' of the Rayleigh method com-
pared with, for instance, the widely used extinction
theorem. The original convenience was further enhanced
by Toigo et al. , who "reduced" the Rayleigh matrix
equations to allow reAected and refracted Bragg waves to
be calculated separately. From these reduced equations
Maradudin' has developed an accurate and useful per-
turbation theory. Greffet' has very recently generalized
Maradudin*s procedure, and also introduced a hybrid
method combining the Rayleigh hypothesis with the ex-
tinction theorem.

This ongoing activity leads us to consider the condi-
tions under which the Rayleigh hypothesis is valid. Petit
and Cadilhac' showed that it is not valid for Dirichlet
boundary data on pure sinusoidal corrugations whenever

I =~h +0.448,

where

(1.2)

is the "reciprocal-lattice vector" of the grating whose
profile is described by

z =h cos(ax)—=g(x) (1.3)

as in Fig. 1. In a difficult and very instructive series of
papers, ' Millar showed, again for the Dirichlet prob-
lem in two dimensions, how to locate the singularities of
a local Fourier or Fourier-Bessel series. In the last of
these papers, he asked the following: for what corruga-
tion dimensions do all the singularities of the Helmholtz
equation lie below the line z = —h? In that case, the
Fourier analysis of the scattered field 4, into plane
waves, which constitutes the Rayleigh series, is valid
everywhere in z ) —h; the Rayleigh hypothesis is thus
confirmed. He found that for this geometry, Rayleigh's
hypothesis does hold when I (0.448.

Millar's result was later obtained for more general sur-
face textures by Hill and Celli ' using a completely
different approach. These authors began with the extinc-
tion theorem, which provides an integral expression for
the Fourier expansion coefficients of the reAected field,
valid at all points z ) h above the highest point of the sur-
face described by Eq. (1.3). This expansion is again the
Rayleigh series. Hill and Celli then asked under what
conditions the series converges at all points (even within
the grooves) outside of the perfect conductor. This con-
vergence is the Rayleigh hypothesis. They recovered
Millar's result in a way that is applicable to a large class
of surface profiles in two or three dimensions.

The foregoing research provides the reason and also
the tools for the present work. Hill and Celli had to as-
sume certain analytic properties of the boundary data for
the electromagnetic fields, which are not at all guaranteed
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B. Assumptions behind the extinction theorem

tc

2W

FIG. 1. Geometry and notation for the scattering object.

to hold. Accordingly, they offered their readers only "a
high degree of confidence" that the Rayleigh hypothesis
is valid under the condition anticipated by Millar. But it
is just these analytic properties that were established by
Millar's labor, and which his earlier papers showed hotv

to establish. More importantly, Hill and Celli considered
only the Dirichlet problem (as did Millar), stating that
the extension to Neumann or impedance boundary condi-
tions is straightforward. These "textbook" problems
can provide only idealized models of reality, in that light
of s-wave (p-wave) polarization satisfies Dirichlet (Neu-
mann) boundary data for E (H) at a perfect conductor.
They are also idealized in the mathematical sense because
they involve prescribed boundary data: in reality, the
surface fields and their normal derivatives are both
nonzero and unknown.

The present work considers the conditions under
which the Rayleigh hypothesis is valid for a corrugated
interface between two permeable media. This question
has not been previously addressed. The analyticity of the
surface field functions is studied with Millar's methods;
these functions are then used in the Hill-Celli procedure
(cited from now on as HC) to validate Rayleigh's hy-
pothesis. Implicitly, we thereby render the latter work a
true proof of Millar's criterion in the special case of the
Dirichlet problem. The new result is that the Rayleigh
hypothesis holds for real materials, under the same condi-
tions established for the Dirichlet problem by these ear-
lier authors.

Several authors' ' have found that in practice the
Rayleigh hypothesis sometimes gives good results even in
the regime of inequality (1.1), where it cannot be justified
mathematically. Reference 3 showed that the Rayleigh
series can be viewed as an expansion in a complete but
nonorthogonal set of basis functions. So while the expan-
sion itself is always legitimate, stability of the coeScients
is not guaranteed when the series is truncated for compu-
tation. Outside of the regime in which convergence is
theoretically certain, the series may still be useful in the
same sense that a nonconvergent asymptotic series is use-
ful. We note that Glass and Maradudin reported in-
stances in which certain calculated quantities diverged
when the truncated Rayleigh series contained too many
terms; this behavior is typical of asymptotic expansions.

Before considering the boundary integral equations, we
need to look in some detail at that part of the extinction
theorem which underlies the HC procedure. In the
present work, two quite different mathematical ap-
proaches are combined, which must be mutually con-
sistent if the results are to be taken seriously.

The extinction theorem formulas for a plane corrugat-
ed surface are obtained from Green's second identity in
the form of the Helmholtz-Kirchhoff integral. However,
the formulas are applied in a form that depends on cer-
tain definite approximations, which are sometimes not
recognized. These have to be made explicit in order to
investigate the Rayleigh hypothesis.

Figure 1 shows the geometry of the scattering object
alone. Figure 2 shows the configuration of the scattering
problem. No dimension in Fig. 2 is assumed to be
infinite: the drawings could serve as a schematic for an
experiment. But the problem becomes mathematically
tractable if the various dimensions satisfy

Ds»R ))8»Do
A. «t„k«8',
8'»D,

(1.4a)

(1.4b)

(1.4c)

Source

Ds

FIG. 2. Configuration and notation for the scattering prob-
lem. Two-dimensional scattering is considered: C is the cross
section of a cylinder illuminated by a line source. Cz is a large
cylinder used to close a volume V for application of Green's
identity.

where Dz is the source-scatterer distance, R is the radius
of a large circle used to close the volume of Green's iden-

tity, 2 Wis the cross section of the scattering object, Do is

the observer-scatterer distance, t, is twice the radius of
curvature of the scatterer at the shadow line, A. is the
wavelength of the incident light, and D is the period of
the corrugation. The Helmholtz-Kirchhoff integral, as it
is always applied to large planar objects, requires all of
the inequalities (1.4). We consider only two-dimensional

geometry, so that the curves of Fig. 2 are cross sections
of cylinders.

For this geometry, Green's second identity is

(4V"' 4 —4V' 4')dv'
V

= I (
—%V'4+@V'4) n'ds', (l.5)

where n' is the normal into V from its bounding surfaces
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and s' is arclength. Now let 4(r) be the total transverse
field: E in the case of s-wave polarization, H in the @-
wave case. 4(r) satisfies

where 25 is the arclength of the illuminated surface.
From Fig. 1,

(V +k')4=0 . (1.6)
2 1/2d (1.12)

Let 4—=G(r, r') be the free-space Green's function satis-
fying

( V +k )G (r, r') = —4vr5(r —r'), (1.7)

where, for two dimensions,

G(r, r')=imH'0' (kp); p=ir —r'~ (1.8)

and HD is the usual Hankel function of the first kind.
Equations (1.6}—(1.8) are now put into (1.5) to obtain

844m@(r.)=i mf . —HD("(kp)
R

aH,"'(kp)
+4(r'), ds' . (1.9)n'

If the first inequality of (1.4a) holds, then the incident
wave can be considered a plane wave; if the second of
(1.4a) holds, then the Hankel function in (1.9) can be re-
placed by the leading term in its asymptotic series.
Carlson and Heins showed rigorously that under these
conditions

g@(r ) BHQ" (kp)
im f —H0 '(kp), +4(r'), ds'

R Bn' dn'

84@(r}=4;„,(r) ——f H0" (kp)

BHD" (kp)—@(r'), ds' . (l.1 la)n'

Without further specification about the surface described
by C, any analysis that leads to (l. lla) requires that the
object have finite size. Taking certain limits to infinity
must be the last step in the development.

Equation (1.1la) still involves an integral over the en-
tire surface of the scatterer. But the back of the scatterer
can be ignored if the radius of curvature of the sample is
large in the region where the shadow begins and if the
cross section presented to the source is large, compared
to the incident wave length. In this case the surface
fields decay exponentially with distance from the shadow
boundary into the shadow region. Thus, inequalities
(1.4b) allow us to approximate (l. 1 la) by

=4m.@;„,(r), (1.10)

where 4;„,is the incident wave, so that (1.9) becomes

For the present work, the critical approximation is the
final one: that of extending S~ ~ in Eq. (l.lib). This
will be physically realistic for scattering objects that satis-
fy inequality (1.4c) and the last member of (1.4a). In
studies that have been concerned with the mathematical
validity of this step, it has been customary ' ' to give k
a small positive imaginary part, to ensure convergence of
the integrals. The physical fields on the boundary are
then assumed to be the limiting values of 4 and d4/Bn'
obtained from (1.11b) as first S~~ and then Imk~0.
Since the domain of validity with respect to complex
dielectric constant is itself an important part of the ques-
tion under study here, it is preferable not to let any part
of this depend on making specific assumptions about k.
In Appendix A we show that for the special case of the
periodically corrugated surface, S can be taken to infinity
in (l. lib) even when k is real, and the integrals remain
bounded. This fortunate result was unexpected: it seems
to have been previously unnoticed. It will be used in both
Secs. II and III to follow, in which Eq. (l. lib) is the
starting point for two separate developments that will
then be put together in Sec. IV. In Appendix B we show
how this result is related to another surprising fact
discovered by Millar, which played a key role in his ex-
amination of the Dirichlet problem in Ref. 20.

From here we proceed as follows. Section II outlines
the method of Hill and Celli for the surface with pure
sinusoidal corrugations. Section III obtains the boundary
integral equations that determine the surface field func-
tions. Section IV uses Millar's method to analytically
continue the surface field functions, and shows that the
continuation is sufficient to validate The HC calculation.
In all of this, we use a notation as close as possible to that
of the original authors, to make that work immediately
accessible to the reader. The new result is that the Ray-
leigh hypothesis is valid for real materials under the same
conditions established for the Dirichlet problem by Mil-
lar. In Sec. V we discuss the little available data from
this standpoint, and relate Rayleigh's method to two oth-
er mathematical treatments of rough surfaces. Section
VI summarizes the results.

II. THE HILL-CELLI (HC) METHOD
IN TWO DIMENSIONS

We begin by setting S = ~ in Eq. (1.11b) to obtain

84,(r'}
@,(r)=@;„,(r) ——f H0" (kp)

@(r)=W;„,(r) ——f H0 (kp)
i s (&) B@(r')

aH,"'(kp)—4(r'), ds',
Bn'

(1.11b)

aH,"'(kp)—N,(r'), ds',
Bn'

(2. 1)

where the subscript "1"indicates that (2. 1) is written for
medium 1 in Fig. 1. Into Eq. (2.1) we now put the expan-
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sion for the Hankel function

H" (k )=—f dq (k q—)
' e'q (2.2)

For definiteness we consider only m)0. Then for the
surface profile given by Eq. (1.3) we set x =x&+i»2 to
find that the saddle points are located at

where

p=r —r'; p=IpI; q+—:xq+z(k —
q )'~

vx, sp=jm. (j =0, 1,2)

x 2sp
= (

—1)~ 'sinh 'I
(2.10)

The scattered field and the incident field are expressed as
Fourier series:

4,(r) g FGe
G

(2.3a)

4;„,(r) =e (2.3b)

Then (2.1) becomes (after some algebraic manipulations)

D y (x)
J dxe [M, (x)(pG +G( ) iL1(x)],

2pGD o
(2.4)

1'~ (x )—: lpG((x ) /KG»

which is the starting point of Ref. 21. (The expression for
FG given in Ref. 21 contains two typographical errors. )

In Eqs. (2.3) and (2.4),

~'=(+0 po) ~G =(+G pG) '

where I is given by (1.1). L, (x) has branch points given

by

g„=+i, (2.11)

X2

(a)

half of which coincide with the saddle points of the ex-
ponent y (x). Since L, (xsp)=0 at the saddle points

xsp we simply omit an arbitrarily small neighborhood of
each such point from the deformed contour. The analyt-
ic structure of L, (x) in the complex x plane is shown in

Fig. 3(a). The cuts are drawn in such a way that the re-
quired deformation will be possible.

Although Millar's calculations were completely
di6'erent from that of HC, his earlier work required the
same deformed contour as theirs. ' As he showed, only

N
ko ———,K~ =Ko+ G,

C

po
—= (e,kc —Kc )' ', pG—:(e,kc EG )'—

G = =ma (m =0,+1, . . . ) .d 277m

dx ™ D

(2.5)

D X)

Here the surface profile is described by z =g(x) as in Eq.
(1.3), and the variable of integration has been changed
from that in (2. 1) using

d, =(I+g2) ~d».

Finally, the (unknown) boundary fields in (2.4) are

M, (x)=4,(r' on boundary)—:P, (s'),

L, (x)—= (I +g„)' , (r' on boundary)Bn'

(1+(2 )1/2J (S )

(2.6)

(2.7)

0

(b}

X,

which relate the HC notation to that of Millar. Note that
M, (x) and L, (x) could be found explicitly as in Ref. 3,
but the purpose here is only to find out when (2.3a) con-
verges for all z )g(x), with FG given by (2.4). For that, it
is much more useful to know the general behavior of M,
and L &, which is found in Sec. IV.

Convergence is determined by the behavior of Fz when
IGI~~. HC evaluate FG by deforming the integration
contour to use the method of steepest descents. For large
I GI, the exponent in Eq. (2.4) is

(c)

y (x)= Im lag(x) imx», —

which has saddle points at

dy- = ==o= ImIag„imlr . —
dx

(2.8)

(2.9)

FIG. 3. Geometry of the complex plane as it enters into the
calculation of F&. {a) The branch points and associated cuts of
L &(x). {b) The contours of constant phase {solid lines) and con-
stant magnitude {dashed lines) of exp{i@ ). (c) Required defor-
mation of the integration path to evaluate FG by the method of
steepest descents.



42 APPLICABILITY OF THE RAYLEIGH HYPOTHESIS TO REAL MATERIALS 2805

the two saddle points of y in the lower half-plane are
useful for the deformation. With the definitions

X) =KX ), X2 =KX2 (2.12)

~mthe contours of constant phase and magnitude of e are
given by

Imy (x}=m ( —I sinX, sinhXz —X, }=const,

III. BOUNDARY INTEGRAL EQUATIONS

The starting point for this section is again Eq. (1.11).
The coordinates are defined in Fig. 1. We follow Millar's
notation almost without exception. Q is a field point in
the volume V of Fig. 2. s' is a value of arclength that
serves as the coordinate of a source point on the surface.
The boundary values of the field 4, and its normal
derivative are denoted by

Rey (x) =m (I cosX& coshX2+Xz) =const,

(2.13)

C,(r') r. o„c—=P, (s');
8@i(r') —:X,(s');

r'on C

~FG~ -e =exp[m(I" cosX, coshXz+Xz)] . (2.14)

The exponential that multiplies FG in (2.3a) behaves for
large m as

'"a'
e

—Im~Iz (2.15)

If (2.3a) is to converge for z ) —h, then I' must satisfy

which are plotted in Fig. 3(b). The contours of integra-
tion must be deformed as in Fig. 3(c). The contributions
from segments ab and ef cancel because the integrand is
periodic. (It is not symmetric because the phase increases
with X, . ) The contribution from cd is vanishingly small

because cd is chosen to be a "level curve" of e along
which Rey (x) «Rey (xsp) is constant. Hence only
bc and de contribute to the integral in Eq. (2.4), and those
contributions are found by the familiar method of
steepest descents.

Evaluated in this way, FG has the asymptotic depen-
dence for large m:

@inc( r' on C —(tine(
r}4;„,( r')

Bn'

(3.1)
r}((};„,(s

'
)

Bn'

Let Q approach a point on the boundary C whose arc-
length coordinate is r, so that (l.1 la) becomes

P;„c(r)—lim —f Ho" (k,P)X&(s')
Q~7 4 C

aH,'"(k,p)
P, (s') ds'=P, (r) .n'

2P;„,(r)=P, (r)+ —f d s'P, (s') kpH', "( kp)

(3.2)

Now the familiar limiting operation ' is used to separate
out the integrable singularity, resulting in a Fredholm in-
tegral equation of the second kind for the boundary func-
tion P, :

cosX &sp coshX2sp +Xpsp +r (0 + —f ds'Xi(s')Hoi'i(k, p), (3.3)

where Xsp
—=X,sp+iX2sp or, usin'g (2.10),

(1+I )' —sinh ' —+I &0,r

which requires that

(2.16)

where Jc denotes the Cauchy principal value of the in-

tegral. Equation (3.3) is the first boundary integral equa-
tion we need.

Next we differentiate Eq. (l.1 la) at a point Q very near
to C along the normal to C, and let Q~r once again, to
obtain

I (0.448 . (2.17) ay, „,(r)
Bn,

= lim — f Ho" (k,p)X, (s')
g-r 4 r)n& c

This estimate is always available if M, and L, can be
analytically continued throughout a strip that includes
the axis of real x, such that the saddle points in the lower
half-plane lie within the strip of analyticity. In Sec. IV
we will show that the required continuation is possible
for any e, and e2, so that the criterion (2.17) established
by Millar for the Dirichlet problem is also valid for any
real materials, independently of their dielectric constants.

r)H "(k,p)
Pi(s')

=X&(r) . (3.4)

The last integral in (3.4) requires a procedure given by
Millar;' otherwise the limiting process is the same as
that which leads to (3.3). Thus Eq. (3.4) becomes

2 =X,(~)——f ds'X, (s')k, pH', "(k,p} — +—f ds'p, (s')(k, p) Hoi "(k,p)
2 C P 8ll

1 ap

p Bn,

l ~, 0 1 Bp
2 C 07Z P 8Pl

k, pH', "(k,p)P, (s')+ —P, (r} (3.5)



2806 THOMAS C. PAULICK

which is the secondary boundary integral equation we need.
All normal derivatives are taken outward from medium 2 into V. The equations for medium 2 analogous to (3.3) and

(3.5) can be written by inspection, by everywhere changing the signs of 8/Bn ', 3/Bn„and y in (3.3) and (3.5), and drop-
ping the incident-field terms. The results are

4

0=hz(z) ——f ds' (()z(s')kzpHI" (kzp)
p Bn'

——f ds'y (s')H"'(k p) (3.6)

and

O=yz(r)+ —f ds'yz(s')kzpHI" (kzp) — ——f ds'Pz(s')(kzp) HOI "(kzp) 1 ap

p Bn

i *, 8 1 Bps
2 c Bn, p Bn' kzpHI '(kzp)Pz(s')+ —Pz(r)(]) 21

(3.7)

For brevity, we denote

1 Bp ~ 1 Bp N
8 1 Bp (3.8)

for which explicit expressions will be given shortly.
We now add Eq. (3.3) to Eq. (3.6); then add (3.5) to (3.7). Pz and yz are eliminated using the Maxwell boundary con-

ditions

(3.9)

where ri, =
gz

= 1 for TE ( s-wave) polarization, and z) ~

=e „' n z
= ez for TM (p-wave) polarization. Here, ej is the dielec-

tric constant of medium j. These manipulations yield coupled integral equations for Pz and g, :

2(t, (r)+ —f ds'(t, (s')E[k,pHI" (k,p) —kzpHI" (kzp)]+ —f d sy, (s') Ho" (k, p) — Ho (k,p) =2),„,(r)2 e 2 c

(3.10a)

and

y, (r) 1+ +—f ds'P, (s')KK„[(k,p) Ho" (k,p) —(kzp) Ho" (kzp)1
2 c

+ — ds' ]
s' N k]pH] k]p kppH] kpp

2 e

——f ds'y, (s')E, k,pH", (k,p) — k,pH', "(k p) (3.10b)

Kress and Roach showed on purely mathematical
grounds that when Imk, ~0 and Imkz ~0, Eqs. (3.10)
have a unique solution under very general conditions.
One of their specifications implies that k] and kz are
such that (t &

and y& do not correspond to a natural oscil-
lation of the space contained within C. The same as-
sumption is made in the present work.

Following the discussion in Sec. I, the integrals can be
evaluated using only the illuminated part of C. The
theory of the solubility of equations such as (3.10), wheth-
er starting from Fredholm's theorems or from more
abstract linear functional analysis, assumes that the in-

tegration interval is of finite length. In Appendix A,
however, we show that the integrals in Eqs. (3.10) exist
even for S = ao, so that no operational distinction exists
between "very large" and "infinite. " %'e therefore carry
out the same sequence of approximations in (3.10) that
underlie the extinction theorem formulas of Sec. II,
namely

(3.11)

where again the asterisk indicates the Cauchy principal
value.
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At this point, P, and y, could themselves be analytical-

ly continued to complex values of arclength, and then in-
troduced into the HC calculation using (2.7). But the dis-
cussion is more direct and easier to follow if we change

variables in Eqs. (3.10) themselves from arclength s' to
Cartesian coordinate x, using (2.6), and correspondingly
go from ~ to the related x,. In this case, the explicit ex-
pressions for E, K„and N of (3.8) are

K ds'=

dz.—(x, —x, ) +(z, —z, )
s

P'
dx (3.12a)

(x, —x, } —(z, —z, )
dx~ x~

p
2 d7-

(3.12b)

dz. dz,

dx~ dx ~
N ds'=—

dZ~ dZs—1 [(z, —z, )
—(x, —x, ) ]+2(x,—x, )(z, —z, ) +

$

'2 ]/2

p 1+
dx~

s (3.12c)

where

x=x
(i =s, r} .

p =(x, —x, ) +(z, —z, )
(3.13)

Putting (3.11), (3.12), and (3.13) into (3.10), and using (2.7) to explicitly relate Millar s work to HC, we obtain the cou-
pled integral equations in the form

dZs—(x, —x, ) +(z, —z, )

2M, (x,)+—I M i(x, )
2

[k~ pH', "(k&p)
—k2pHI" (k2p)]dx,

+ —J L ~( )xHo '(k, p) — Ho" (k2p) dx, =2((};„,(x, ) (3.14a)

and

L, (x, ) 1+
'92

91

dz,
(x, —x, } —(z, —z, )

P' k, pH', "(k,p) — k2pHI" (kzp) dx,
g]

Zs
(x,—x, ) —(z,—z, }

+—I M, (x, )

(x, —x, ) —(z, —z, )

' [(k,p) Ho" (k,p) —(k2p) Ho" (k2p)]dx,
P

+— M) x,

dZs dZ~
2 2 dZs dZ~—1 [(x, —x, ) —(z, —z, } ]—2 + (x, —x, }(z,—z, )

X [(k,p) Ho" (k,p) —(k2p) Ho" (k~p)]dx, =2
Bn d&

(3.14b}

At this point, a single physically motivated but
mathematically justified set of approximations has pro-
duced both Eq. (2.1), which in turn leads to the extinction
theorem and Eq. (2.4) for the retlected amplitudes; and

the boundary integral Eqs. (3.14) from which we can get
general information about the functions M& and L&.
[Equations (3.14) could also be solved directly for M, and
L, , which would correspond to the method of Zaki and
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Neureuther for permeable media. ]
In his study of the Dirichlet problem, Millar was able

to specify the boundary data P, (s) by an analytic func-

tion, and proceed from there to the analytic continuation
of y, (~). In contrast, the transmission problem involves

two boundary functions M, and L
&

which are themselves
determined by Eqs. (3.14) rather than prescribed a priori.
We could here restrict k, to be real (which includes al-

most all cases of physical interest) and use the known an-

alytic properties of real elliptic differential equations to
find that 4,(r) is analytic in V; then proceed to a discus-
sion of L, and M], . Instead, we use a slightly different

approach to preserve as much generality as possible.
Reference 32 established that 4,(r) is twice con-

tinuously differentiable in V and once continuously
differentiable on C, assuming only that the closed contour
C is "Lyapunov" (has a continuously turning tangent).
When C is analytic, having at every point a Taylor-series
description in terms of some parameter, it is easy to show

by continuity considerations that the twice-continuous
differentiability of 4, (r) also holds on C itself. Then a
different argument by Garabedian shows that 4, is ac-
tually analytic throughout V. The analyticity of the
boundary function g(x ) is then used once again to deduce
that the boundary function M, is analytic. (Garabedian's
argument used only the "smoothness" of C, but he as-
sumed a priori the twice-continuous differentiability on
C. ) These facts having been established, L~ is then ana-
lytic for real x by definition.

Therefore, if two functions can be found that are ana-
lytic for complex x and that reduce, respectively, to
M, (x) and L, (x) when x is real, then these extended
functions are the unique analytic continuations required
by Hill and Celli. Millar's procedure is now used to find
Mi(x) and L&( )xalong the deformed contour of Fig. 3(c).

ds'
p=(x —x )

dx

(4.3)

Ho" (k;Ipl); (k;Ipl)'Ho" (k;Ipl); k;IplHI" (k; pl)

(4.2)

which have branch points at ~p~ =0. Consider first the
set (4. 1) for both x, and x, on the real axis. Then K and

K, have a finite limit as x, ~x„and X diverges as
(x, —x, ) . However, the kernel containing N, i.e.,

N[kglplHI"(kgIpl) —kelp H'i"(k2lpl)]

has only a logarithmic singularity at x, =x, for x, on the
real axis. The corresponding integral is thus well defined.
[The solution theorems applied to Eqs. (3.14) by Kress
and Roach hold true because such a singularity is
"weak. "] So the functions (4.1) contribute no singulari-
ties to M, and L, when x, and x, are real.

Next, consider set (4.2). Each of these contributes at
worst a weak singularity to a kernel in which it appears.
So the only task in analytic continuation is to cancel out
the multivaluedness inherent in the Hankel function of
complex argument. Then M& and L, will be regular
within a strip containing the axis of real x. Each of (4.2)
is actually a function of ~p~ rather than ~p~, so that the
branch cut of the mapping p=(p )'~ can be drawn (in
the p plane) along the cut inherent in the Hankel func-
tion. This consideration allows us to worry only about
continuation in the p plane, and p is an entire function
of x, for every x, ~ At this point, then x, is allowed to be
complex.

From (3.13) we have the relations for small ~x, —x, ~:

dz,
'

p —= (x, —x, ) 1+

IV. VALIDITY OF THE RAYLEIGH HYPOTHESIS
so that x, —x, = ~x, —x, ~

e'~. Thus, (=0 when x, )x,

A. Analytic continuation of M, and L, (Pi andy, )

The difference between Millar's work and this is that
the integrals in Eqs. (3.14) run over the entire real axis,
while Millar's work involved integrals over either a
closed finite curve or over one cycle of a periodic surface.
In this section we let x become complex. Then p becomes
complex according to (3.13). It has to be kept in mind
that the complete x plane is not being used to represent
the real x-z plane, a technique common in two-
dimensional problems. Rather, (3.14) involves only one
coordinate, x, which is now allowed to take complex
values as a computational artifice. From now on, the
symbol p in Eqs. (3.14) must be replaced by ~p~ in the
sense of the complex plane. The symbol p will be used
from now on for a complex variable.

There are two different types of functions here to be
analytically continued. The first consists of the set

Re x

(b}

Re p
I!limni

k, p)

K,K„A' (4.1)

which can have poles when ~p~ =0; the second consists
of the set

FIG. 4. (a) Domain of x, (unshaded) that contains the de-

formed integration contour for evaluation of FG. Correspond-
ing domains of (b) p and (c) k,p.
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with x, real. Then when x, moves to the lower half-

plane along the deformed contour, ( ranges from 0 to m

as shown in Fig. 4(a). In particular, when x, is real and
now x, &x„(=+a.. In that case

Hankel function of the second kind.
Taking the limit of (4.5) as v~0, we get

Ho" (k, ~p~ ) =2HO" (k,p)+Ho '(k;p) (4.6a)

~p~ =pe ' (x, real, x, &x, ) . (4.4)
=Ho '(k, p)+2JO(k, p) (x, real, x, &x, ) .

Now we can use formula (9.1.37) of Ref. 23:

sin(ver }H,"(ze '")= —sin[(m —1)vm ]H'„"(z)

—e " sin(mvm)H'„'(z}, (4.5)

with m = —1 and z =k;p from Eq. (4.4): here, H'„' is the

Then we take the limit of (4.5) as v~ 1 to get

H'i" (k; l pl ) = —2H"'(k;p) —H"'(k, p)

so that

(4.6b)

k; ~p~HI" (k; ~p~ ) =( —k;p)[ —2H'i" (k;p) Hi" (—k;p)]

=k;p[2H', "(k;p)+HP'(k;p)]

=k,p[H', "(k,.p)+2J, (k;p)] (x, real, x, &x, ) .

(4.7a)

(4.7b)

p =(x, —x, ) +(z, —z, ) =0; Imx, &0. (4.9)

These kernels are analytic functions of complex x, near
the axis of real x, for all real x, as a parameter. There-

As a particular example, when (4.7b} is substituted into
the first integral on the left-hand side of (3.14a), we get

f" Mi(x, )KkilplHI" (kilpl)«,

~f M, (x, )Kk,pH", (kip)dx,
X

+2f M, (x, )Kk,pJ, (k,p)dx, , (4.8)

which was obtained by Millar using a less compact ap-
proach involving separation of k~p~H', "(k p ) into an en-
tire part and a part with a logarithmic singularity in the
complex p plane. [See Eqs. (23) and (28) of Ref. 19.] He
also continued k~p~HI" (k~p~) into the lower half p
plane, that is, into the upper half x plane. By the symme-
try principle, the resulting function is the analytic con-
tinuation of (4.7a). Since continuation into the lower
half-plane is exactly analogous to that into the upper
half-plane, and is not needed here, we omit the details.

All the other terms in both Eqs. (3.14) take on a form
similar to (4.8). The kernels that appear in these integrals
have singularities only for

fore Eqs. (3.14), as analytically continued using (4.6a) and
(4.7a), formally defined M, (x, ) and L, (x, ) for complex
x~.

Equations (4.6a), (4.7a), and (4.8) show that the analyt-
ic continuation introduces new integrals extending to
x, = —00, whose kernels contain a Hankel function of the
first kind. When x, traverses the contour of Fig. 3(c),
0 ~ argp ~ m, so that

a, & arg( k, p ) & a; +n, .

where

(4.10)

k;—= Ik;le'" (i=1,2) (4.11)

as illustrated in Figs. 4(b) and 4(c). Because the function
H', "(k;p) diverges in the lower half-plane, it appears at
first sight that these new integrals all diverge when-
ever a, WO; i.e., for dissipative inedia. However, for
arg(k, p)) m the function H'„'(k;p) also diverges in the
lower half-plane. (This is not obvious from the common-
ly used asymptotic expansion for H(, ', which holds for a
range of arguments that does not include the present
case. ) It turns out that the divergent parts of H'," and
H'„' exactly cancel in (4.6a) and (4.7a). Specifically, in

Appendix C we show that

2Ho" (k,p)+Ho '(k;p) 3
I/2 —I (k, p

—n. /4)
e ' [~&arg(k, p) & rr+a; ]

mk, p
(4.12)

and

k;p[2H'i" (k,p)+H, ' '(k, p)] =
—3

Qo
S

1/2
2k&.P, (k p 3m/4)

e ' [m. & arg(k, p) & ~+a, ] (4.13)

so that the asymptotic forms are well behaved in the lower half (k;p) plane.
From these results we can conclude that the analytic continuations L, (x, ) and M, (x, ) always exist. With (4.6a) and

(4.7a), Eqs. (3.14) become a pair of coupled Volterra equation for L i and M i. As an example, term (4.8) can be written,
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using (4.7a) rather than (4.7b), in the form
X

f M, (x, )Kk, ipiHI" (k, ipse)dx, ~f M, (x, )Kk, p[2H", I(k,p)+H', (k,p))dx,

+f M, (x, )Kk, pH', "(k,p)dx,
I

=f M, (x, )Kk, p[2H', "(k,p)+H", (k,p)]dx,

+ M x Xk]pa', k]qax,
X

X

+ f M, (x, )[H',"(k,p}+H', (k,p)]Kk, pdx,
X

=I~+ ID +IF,

where x' is prescribed to be real. Each integral like IC
and ID can be treated as a known function of x„because
M

&
and L, are themselves known for real x, after Ref.

32. Each such integral can therefore be lumped with the
"free term" in Eqs. (3.14a) or (3.14b) in which it occurs.
On the other hand, the kernel of IF is analytic within a
strip containing the real axis. Thus, for x, within the
strip, L, and M, satisfy a pair of coupled Volterra equa-
tions of the second kind on finite intervals, whose kernels
are bounded and integrable. Such a system always has a
solution, which is demonstrated by construction.

It remains to show that when M& and L, are thus con-
tinued, the strip of analyticity that includes the real-x
axis also contains the saddle points needed by HC to
evaluate FG by Eq. (2.4). Millar showed that this is true,
but his work contains a small error. We correct the mis-
take and complete the present argument by brieAy dis-
cussing the roots of Eq. (4.9) in the next few paragraphs.

the (+) in (4.14)] are just the refiections of (4.17) through
the T, axis.

That the root loci are symmetric about the vertical line
T, =~ can be seen by considering the solutions T' for
X'=2m. —X. We can further compare the root loci cen-
tered, respectively, on T, =0 and T, =2m with the locus
centered on T, =m. In (4. 16) we substitute T:sr+a, to-
obtain

I [cosh„—cos(X —
m ) ]+i [b, —(X n)] =0—. . (4.18)

The solution 6 of Eq. (4.18) for X':—X vr is th—e com-
plex conjugate of the solution T of Eq. (4.16) for X. The
root loci centered about T& =0 and T, =2m are thus
translated (along the T, axis) refiections (through the T&

axis) of the locus centered about T, =n, as shown in Fig.
5. This picture is identical to Millar s Fig. 6 of Ref. 16 in
the upper half-plane, but it diff'ers from his results in the
lower half-plane. Since he did not present the detailed

B. The root loci and validity criterion

Millar called the solutions of (4.9} "root loci." These
are most easily studied by factoring (4.9) to get

X2

Kh [cos(Kx~) cos(KX~ )]+i(Kx~ Kx~ ) —0 (4.14)

We discuss only the root loci having the lower ( —) sign
in Eq. (4.14). With the definitions

&x7:—T—:T& +&T2, Kxs =X

that member of (4.14) becomes

(4.15)

I (cosT —cosX) i ( T —X)=0—, (4.16) 27K
1

where I is given by (1.1). This corresponds to two real
equations

cosX —T, yr
cosT]:

cosh T2
(4. 17a)

X —T]
I sinhT2 =

sinT,
(4.17b)

In all of this, —~ &X & ao and 0& T, &2m. [Equations
(4.17) are the same as Eqs. (50) and (51) of Ref. 16.] Us-
ing (4.17) it is easy to show that the other root loci [with

FIG. 5. The "root loci" (solid lines) that demarcate the strip
in which L, (x) and M, (x) are analytic. The envelopes (dashed
lines) pinch together onto the root loci rapidly with decreasing
r.
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9"

4"

3 I
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Rayleigh's hypothesis.
The experimental configuration of Raether is shown

in Fig. 7. He produced gratings of various depth and
period in photoresist by holographic exposure, then over-
laid these with silver (about 2000 A} or gold (about 1500
A). In each case the metal was sufficiently thick to sup-
port a bulklike surface-plasmon polariton (SPP) at the
metal-air interface. ' Raether measured the angular po-
sition 0 and half-width 0, &z of the reQectance dip associ-
ated with the excitation of the SPP by the first-order
diffracted wavelet, for each film, at AD=5682 A. These
are related to the SPP wave vector and frequency by

0
100 10 10 10

0sin8= Res-
D

Ims
cos9 '

(5.1)

FIG. 6. Saddle-point location X2sp, and the width d of the
strip of analyticity of L& and M& in the lower-half X plane, as
functions of I .

solutions of his equations [corresponding to (4.16) and
(4.17) above], we are unable to find the source of the
discrepancy. We also keep in mind that there is another
set of root loci determined by taking the upper (+) sign
in Eq. (4.14}. The complete set is then symmetrical about
the T, axis and about the T2 axis.

The envelopes of the root loci are shown as dashed
lines in Fig. 5; they are obtained by setting cosX =+1 in
Eq. (4.17a}. The envelopes approach each other as I de-
creases, but the distance d is always a lower bound on the
width of the strip of analyticity. From (4.17a}we obtain

cosh' =1+—.r (4.19)

V. DISCUSSION

At the saddle points, X2sp is given by (2.10) and (2.12).
Figure 6 shows that ~X2sp~ &d for all I &0.448, so that
Hill and Celli did prove the validity of the Rayleigh hy-
pothesis subject to this condition, for the Dirichlet prob-
lem. For I &0.448, HC showed that the Rayleigh hy-
pothesis would fail even if the saddle points lay within
the strip of analyticity.

Figure 6 concludes the theoretical part of this work.
We now brieAy discuss some published data that are at
least consistent with the foregoing conclusions.

where s =cq, /co, is the normalized SPP wave vector, q,
the SPP wave vector itself, co, the frequency, and A,o the
vacuum wavelength.

Raether himself fitted his data using the Rayleigh
series for the scattered light, and obtained excellent
agreement for both metals. His calculations are not use-
ful for our purposes, for two reasons. First, as the corru-
gation depth goes to zero, (5.1) must give the easily calcu-
lated Aat-surface values for 0 and 0, &2. In fact,
Raether's reported grating constants give poor agreement
with the data as extrapolated to h=0, especially for
D & A, in which case 8 is very sensitive to small errors in
D. Even if the values of D are adjusted to agree with the
extrapolated 8(h=0), the calculated and extrapolated
8i &2(h =0) still differ from each other well in excess of the
error bars shown on the author's graphs. So we know
that the reported data are not precisely correct. Even
more importantly, his calculated curves agree beautifully
with the data all the way down to h=0, so it is certain
that he normalized the calculations to the Hat-surface
values of 8 and 8,~2 separately. (See also the discussion
of the Kroger-Kretschmann theory below. }

Secondly, it is well known ' that one can often get
good results from the Rayleigh method by using
sufficiently few plane waves, even when the series eventu-
ally diverges. Our interest here is in the conditions under
which the Rayleigh hypothesis is valid in principle, while
Raether's concern was the interpretation of his experi-
ments. We have no information as to how he truncated
the series or how it was then behaving.

The determinental equation for the SPP dispersion re-

A. Comparison with data

Through the years a number of experimentalists have
compared their light- and sound-scattering data with the
description offered by Rayleigh's method. There have
also been many numerical studies of the convergence of
Rayleigh's method for the Dirichlet problem, and also
numerical comparisons of this method with other (i.e.,
extinction theorem, boundary integral equation, etc. ) ap-
proaches. We know of only one investigation, however,
in which identical experiments were conducted on two
different metals, with results that invite comparison with

resist

FIG. 7. Raether's experimental configuration.
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lation that results from Rayleigh's method is the same
one that is obtained from the extinction theorem. The
routines for solving such equations require very accurate
initial guesses to succeed. But Wirgin has pointed out
that finite computer precision will cause a Rayleigh cal-
culation to diverge for any corrugation strength, even one
for which the method is valid theoretically, if the ma-
trices are large enough. We see then that a direct conver-
gence test, by summing increasing numbers of Fourier
components, is not only very difficult in practice, but ac-
tually impossible in principle. There is, however, another
way to test Rayleigh's hypothesis, which we now use to
analyze Raether's data.

Maradudin' developed a perturbation theory that ex-
pands the complete sum of the Rayleigh series in powers
of the corrugation depth, and which has the correct ana-
lytic properties. The resulting SPP dispersion relation, to
order ]]],which was also given by Toigo et al. ,

' is

&2A]+&]A2 (&2 &]) kQ

Xrlr- I'
A. + A

(ss' —A IA2)(ss' —A, A2)

S e2A )+e)A2

(5.2)

where s has the same meaning as in (5.1). The other sym-
bols are

—
(

2 )1/2 A
& —[( )2 ]]/2

J

(5.3)

, =—f e 'g(x)dx.

For the surface of (1.2),

f=a—e'~I]

(E] E2) Q E] E2A

4E'] Eg

2

(W+o+ W ]]), (5.8)
C

in which s]2] =e]e2/(e]+ e2) describes the flat-surface SPP,
and W+o are the values of W+ evaluated at s =so. In
that work we obtained f empirically by fitting (5.7) to
published data. For this work we use Eq. (5.8) to com-
pute f from information given by Raether. In Ref. 46 we
also estimated using Maxwell's equations that (5.7) is use-
ful for

If I
50. 1, roughly. Since (5.7) and (5.5) are identi-

cal to O(h ), we have that the second-order dispersion
relation is valid for h ~ h 2, where

' 1/2
0. 1h2= (5.9)

Figure 8 shows the magnitude and phase of f/I] for
silver and gold at A.o=5682 A used by Raether. The
sharp peak is due to the degeneracy at the first Brillouin-
zone boundary, which can be correctly dealt with only
with some sort of degenerate perturbation theory.

Because the SPP is a free oscillation, its dispersion can-
not depend on the sign of h in (1.2), so the error in (5.5)
[and therefore in (5.7)] is O(h ). For small corrugation
depths, this expression is then a very good approximation
to the completely summed Rayleigh series if this series
converges. Moreover, if the series converges, it
represents the unique solution to the physical problem
represented by the Helmholtz equation and associated
boundary conditions, and hence must describe the corre-
sponding measurements.

0s —s'
2

( ~s s', ]]O/D] ~s' ——s, (20/D] )

27TC 2'
- =k.

in which case (5.2) becomes

(5.4)

10

10

(e2 —~])'
E2A]+e]A2 (hkp) ( W++ W —),

4
(5.5)

10':

where

(ss+ —A ] A2)(ss+ —A] A2
—

)
S~ =S+

e2A ) +e]A2 D

(5.6)

10
10

1.0

10
n(A)

10 105

In previous work we found that to order h, (5.5) can
be written

0.5

e, e2 —eze] ( I f)—
E2 E2(1 f)2

(5.7)

0
10 10

o(A)
10

~ ~ l I I I I I ~

I
I

I I I ~ L

10

where

FIG. 8. Magnitude (a ) and phase (P) off /h ' at Ao= 5682 A
for simple sinusoidal gratings, as functions of grating period D.
Solid curves describe silver; dashed curves describe gold.
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TABLE I. Parameters characterizing the four gratings studied by Raether in Ref. 40.

Figure

9(a), 10(a)
9(b), 1o(b)

11( ), 12( )

11(b), 12(b)

Metal

Ag
Ag
Au
Au

Reported
period

(A)

4400
14 910

4417
7965

Assumed
period

(A)

4413
15 000

T TW3

8003

h RFM

(A)

313
1065
315
568

h~

(A)

213
597
247
415

a
(10' A ')

22. 1

2.81
16.4
5.82

1.11
0.768
1.00
0.744

—13.3+i0.49
—13.3+ i0.49
—6.8+ i1.81
—6.8+ i1.81

We evaluate (5.7) using the parameters in Table I. The
dielectric constants are Raether's. The "assumed period"
is the value of D that brings 8 calculated by (5.1) with the
flat surface value of s into agreement with Raether's ex-
trapolated value for h=0. (In the following subsection

we will show that Raether's value for e~„contains a sys-
tematic error. In this comparison with the Rayleigh
method, however, we need to avoid a wholesale adjust-
ment of constants. ) hRFM is Millar's bound, calculated
from (2.17), and hz is the limit beyond which (5.5) and
(5.7) can no longer be trusted. Results are shown in Figs.
9-12. Each theoretical curve has been drawn only as far
as hz. %henever hRFM lies within the graph, it has been
indicated with an arrow. Except for the small changes in
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QlI 0 ~
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e -14.2"
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-14.4--
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0.5
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I', b',
I
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I
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hI,'A)
600 800 0.4

FIG. 9. Angular location of the reflection minimum as a
0

function of grating depth, for silver at A,o
=5682 A. When no

degeneracy is present, the minimum corresponds to the excita-
tion of a SPP. (a) D=4413 A; (b) D = 15 000 A. Curves are cal-
culated from Rayleigh theory, out to h =h&, where the second-
order perturbation expression is no longer trustworthy. The ar-
row denotes the theoretical limit of validity of the Rayleigh hy-
pothesis.

200 400 600

hI,'A',
I

800

FIG. 10. Angular width of the reflection minimum as a func-
0

tion of grating depth, for silver at ko= 5682 A. When no degen-

eracy is present, the width is derived from the imaginary part of
the SPP wave vector. {a)D=4413 A; (b) D = 15000 A.
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D (without which the theory would only qualitatively
resemble the data in Figs. 9-12), these graphs contain no
adjustable parameters. We now consider them from both
theoretical and experimental viewpoints.

B. Discrepancies between calculations and data

We first note that each Rayleigh curve shows a slight
downturn near h =h 2, these confirm (5.9) as an upper
bound for the validity of second-order perturbation
theory. With that in mind, considering only the data for
h & hz, where equation (5.5) can accurately sum the en-
tire Rayleigh series, we see the calculations are consider-
ably closer to the data for silver than for gold. In partic-
ular, Fig. 9(b) shows very good agreement, and the
translation in Fig. 10(b) can be removed by small changes
in D and e~ that leave Fig. 9(b) essentially unchanged.

We first considered the possibility that higher harmon-
ics in the surface profile function strongly influence the
data, and also reduce the value of h2 above which (5.5)
cannot be used. It is very easy to generalize (5.8) to more
complicated surface profiles. We found that the curves

for both films with D=4400 A could be brought into
much better agreement with the data in this way, but
only if the second-harmonic amplitudes were 23% (Au)
and 17% (Ag) of the fundamental amplitude h of the cor-
rugation. These fractions are far larger than the values
measured by Raether for any of the films of Ref. 40. We
therefore looked for more likely sources of error.

The minimum prerequisite for a rough-surface light-
scattering calculation is that it pass smoothly to the
correct flat-surface result as a limit. Figures 9-12 show
that some of the given information D, E, and h must be
incorrect. In these graphs we suppose e to be correct, but
in fact Raether's value for eA„ is distorted by the method
used to measure it. Kretschmann derived approximate
expressions for a nonradiating excitation of a thin metal
film on a prism. The formulas give the dielectric constant
of the metal from the measured position and linewidth of
the reflectance minimum, but they are practical only
when ~e„~ ))e;, where e=e„+i@, is the metal dielectric
constant. At A,0=5682 A, silver meets this requirement
but gold does not. To estimate the error that results, we
can ignore the correction term for finite film thickness,
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FIG. 11. Same as Fig. 9, but for gold. (a) D=~~~3 A; (b)
D= 8003 A.

FIG. 12. Same as Fig. 10, but for gold. (a) D=4443 A; (b)
D= 8003 A.
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which is very small for films of thickness d) 500 A, as
were Raether's.

The SPP dispersion relation for a flat metal surface in
air is given by

TABLE II. Values of D, e„, and e;, which correctly repro-
duce the flat-surface values 8(0)= —11.72' in Fig. 11(a) and
8, /, =2.1' in Fig. 12(a). The values given in Ref. 40 are
D= 4417 A, e, = —6.8, and e; = 1.81.

N N ~r+E~ik~:——s=—
C C 1+6'„+lE;

(5.10)
D

(A)

When (5.10) is expanded in a power series in e;, we obtain

k~=——
e Ie„l —1

4380
4400
4417
4430
/IHIP

—5.89
—6.20
—6.50
—6.74
—6.95

0.98
1 ~ 10
1.23
1.35
1.45

(5.11)

1 ~I
'

1 —4I~„I = —0.006 .

This seemingly small correction turns out to make a big
difference in data interpretation. In reality, the rneasure-
ments for gold give, through Eq. (5.1),

1/2

Res = (1—0.006), (5.12)

but without the correction term, the investigator inter-
prets

in
Res = (5.13)

In Eq. (1.1) of Ref. 48, Kretschmann omitted the second-
order term in the square brackets of (5.11) above, and this
seems at first to be justified. With gold, I e„ I

=7 and
e; =1.8 at A.o=5682 A, so that

less significant, since variations in the true dielectric con-
stant of a metal (depending on sample preparation and/or
film deposition procedure} are often greater than the er-
rors shown by (5.14}—(5.16). Such natural variation is
difficult to eliminate; this is no doubt why Raether nor-
malized his theoretical curves to the flat-surface values.
However, we cannot account for the discrepancies in Fig.
12(b) even with (5.14) and (5.15). This film, with
D =8000 A, appears to have a special feature, which we
will also see from a consideration of the values of h that
are used in Figs. 9—12.

The rneasurernents of corrugation depth h for the gold
films were also distorted. Raether determined h by
measuring the intensity of the low-order diffracted beams
of s-polarized light, using a formula derived from the
Kirchoff approximation for a perfect conductor. As a
specific example, this so-called "scalar theory" gives the
relative intensity of the first-order diffracted beam with
normally incident light as

'2
1 N—h (1+cos8 )1 4 1

(5.12) and (5.13) show that the correct value
I e„l is related

to the reported value
I e„ I by

(5.14)

2~h 1+[1—(~o/»'l'"
D 2

(5.17)

Likewise, from (5.1), (5.10), (5.11), and (5.14), we find that
the true value e, is related to the reported value e; by

e, =0.81K, . (5.15)

In less sensitive applications a11 of these errors would be

These estimates have been obtained only from the gen-
eral formula (5.11) and the known bulk dielectric con-
stant of gold. However, we can also take Raether's extra-
polated fiat-surface values 8(h =0) and 8, /z(h =0} as
given; then invert (5.1) and (5.10) to find combinations
(D, e„,e; ) that simultaneously reproduce 8(0) and 8, /z(0).
Table II shows the results for the film of Figs. 11(a) and
12(a), for which D =4400 A, 8(0)= —11.72', and
8, /z(0)=2. 1. For realistic values of D, the correspond-
ing values of e„and e; are evidently consistent with (5.14)
and (5.15).

This same analysis indicates that for silver at A.o=5682
A,

(5.16)

~here 01 is the angle at which the first-order beam propa-
gates with respect to the surface normal. Equation (5.17)
itself was used earlier by Pockrand and Raether. ' Be-
sides the assumption of perfect conductivity, (5.17) also
requires that A,o/D &(1.

Heitmann derived a much more useful expression
from the Kroger-Kretschmann perturbation theory.
The general expression is simple, but contains an abun-
dance of symbols. In the special case of the first-order
diffracted beam with normally incident light,

2 1/2
2~A ~o

D D
2

1 —v'e

[1 (g /D)2]1/2+[6 ( jL /D)2)1/2
(5.18)

where e is again the dielectric constant of the metal. For
the perfect conductor with Ao/D «1, (5.18) and (5.17)
are equivalent. But (5.18) requires only that h/D «1
and h/k. o«1 so that a perturbation theory is valid;
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moreover, it does not assume that e is real.
We do not know the details of Raether's configuration.

For instance, he could not have used normally incident
light at A,p= 5682 A, with D =4400 A, because no
diffracted beams are obtained under those conditions.
But the general deficiency of the "scalar theory" is shown
in Fig. 13. Here we have evaluated RI(h) for silver and

gold using (5.18), and for the perfect conductor using
(5.17), at A,O=5682 A for D=8000 A and D =15000 A.
We see that as D increases, the scalar theory does very
well for silver. It is significantly in error for gold, and the
error remains large as D increases. Although (5.17) and
(5.18) represent only one experimental configuration, we

expect these same discrepancies to occur generally: real
gold absorbs, so that a corrugation must be deeper than
predicted by (5.17) to produce a given R, .

Figure 13 suggests that the disagreement between the
gold data and Rayleigh calculations is largely due to mis-

calibration of the h scales in Figs. 11 and 12. It also sug-
gests that the good agreement in Figs. 9(b) and 10(b) is
partly due to the large value of D, at which the scalar
theory becomes more accurate even for silver.

The linewidth data of Fig. 12(b) are still unexplained,
since they give the impression that the measured h values
are too large rather than too small. We believe that this
is due to a peculiarity of the period D. Figure 14 shows
the flat-surface SPP dispersion relation for gold in air,
calculated with the optical data of Johnson and Chris-
ty. The shaded area on the right-hand side shows
the broadening of the state as indicated by Imk. At /ji. p= 5682 A ( =2.18 eV), the SPP has a wave vector
kspp 1.19X 10 cm '. It is therefore separated from its
mirror image (which travels in the opposite direction) by
twice this amount, or

Akdeg2. 38 X 10cm

The reciprocal lattice vector of a grating with period
8000 A is k&„=7.85X10 cm ', and three times this is

8--

6-

scalar

/,
'a',

I hk3 = —3k)at = —2.36X 10 cm

Even the flat-surface linewidth is approximately sufficient
to let hk, mix the two degenerate states. This quasi-
momentum could be provided by even a small admixture
of third harmonic in the surface profile function. Furth-
ermore, the same argument shows that

K 4..

C4
Q

0 100 200 300
hl', A',

i

400

5k~= —2kiat 1.57X10 cm

couples the incoming radiation directly to the excitation
at point B when k&„couples it to the excitation at point
A. Raether measured the relative admixture of second
harmonic in his surface profiles to be about 6%; this pro-
vides the quasimomentum b,kz. Both of these effects
modify the data but are not contained within the second-
order nondegenerate perturbation formulas.

A quantitative description of this situation is very com-
plicated, and is beyond the scope of this report. It is

16 ~

12-
X

C9

T
8- SP

deg

4-

100 200 300
hl', A',

I

eA
400

FIG. 13. Relative intensity of s-polarized normally incident
light scattered into the first-order diffracted beam. The "scalar
theory" is the Kirchoff approximation applied to a perfect con-
ductor. The curves for Ag and Au come from Heitmann's for-
mula for real materials. {a)D= 8000 A; (b) D = 15 000 A.

-1.5 -1.0 -0.5 0.5 1.0 1.5

k t10a/cm)

FIG. 14. The flat-surface SPP dispersion relation for gold in

air. Light horizontal lines at Ace=2. 18 eV locate the experimen-
tal conditions of Raether's experiments of Ref. 40. The shaded
area shows the linewidth.
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nonetheless possible to suggest a plausible interpretation
of the data of Figs. 11(b) and 12(b). We suppose that at
h=0, both ~bk2~ and ~hk3~ are either slightly too large
or else are just beginning to mix the two degenerate states
at Ace=2. 18 eV, as shown in Fig. 15. As h increases, the
individual excitations broaden further, and (for fixed A'co)

move to larger values of ~k~, until at h =ho the excita-
tions have maximum overlap at 2.18 eV. Then
kk3 —hkd, g. The level may split, and small gap in ei-
ther k or co can occur. Weber and Mills showed that
if a ~ gap occurs, there can still be a minimum in the film
reflectivity within the gap. In measurements that sweep
19 at fixed co, this minimum evolves continuously out of
the minima that characterize the true SPP dispersion re-
lation away from the gap. These are just the sorts of
measurements done by Raether. However, within the
gap, neither the position nor the linewidth of the
reflection minimum is associated with the excitations
themselves, which (at the point of degeneracy) lie slightly
above and below the frequency of the incident light. (See
Figs. 1 —3 of Ref. 57.) Finally, as h increases further to hi
in Fig. 15, both ~b, k2~ and ~b, k3~ are no longer large
enough to couple the excitations at 2.18 eV. Then the de-
generacy becomes irrelevant, at least to lower order.

In the reduced zone picture, the dispersion relation can
be viewed as a pair of branches above and below
%co =2.18 eV, which have different characteristics.
When co is successively fixed at increasing values, and the
reflection minimum found by sweeping 8, the coordinates
(k, co) of the minimum move from the lower branch
through the gap to the upper branch. In Raether's exper-
iments co was fixed, but the reflection surface is translated
to smaller co as h increases. If the topography of the
reflection surface remains qualitatively unchanged, then
the coordinates (k, co) of the minimum, here also, move
smoothly from the lower to the upper branch as h in-
creases. In view of our uncertainty as to the correct
values of D, h, and eA„, we cannot know for certain where
(or even whether) the data of Figs. 11(b) and 12(b) exhibit

I

25"

~ 2.0"
O

3
1.5 -.

these effects. It is possible, however, that the sudden
change in slope in Fig. 11(b) occurs either at ho, as the

gap moves through the chosen energy fico =2.18 eV
(Ao=5682 A), or else at some smaller h at which the
reflection minimum first departs from the SPP dispersion
curve. And if the linewidth data of Fig. 12(b) were taken
as (kco) crossed the gap, then it has nothing to do with
the theoretical curve, and no agreement should be expect-
ed.

C. Other perturbation theories

The Kroger-Kretschmann (KK) perturbation theory of
rough-surface light scattering also depends on the Ray-
leigh hypothesis. Those authors began by integrating
Maxwell's equations from the true rough surface back to
the plane of the average surface. Since the wave fields are
well-behaved functions in space, this procedure is gen-
erally valid. They then expanded the fields in both media
as Fourier series, and used these to express the Maxwell
boundary conditions at the average surface. For random-
ly rough surfaces of small amplitude, they could then di-
agonalize the matrix that mixed the separate Fourier
components. Their specific interest was the dispersion
relation for SPP's on a rough surface.

Although KK correctly accounted for the change in
the surface normal as the roughness was "deformed" into
a plane, their procedure is not quite the same as
Rayleigh's, which matches the boundary fields at the true
rough surface. But these authors did assume that the
boundary conditions can be satisfied by the same Fourier
series that describe the fields outside of the roughness;
i.e., that these series converge everywhere in their respec-
tive half-spaces. This is the Rayleigh hypothesis. Pock-
rand and Raether modified the last step of Ref. 58 to
obtain a "two-beam" scattering formula suitable for a
sinusoidal rather than stochastic surface. But in applying
this formula, they separated real and imaginary parts as
if the metal had a real dielectric constant; hence the com-
parison shown in Ref. 40 seems to have ignored Ime.„
completely. Moreover, the authors normalized the
theoretical formulas to the flat-surface values of 8 and

8»2 independently. We therefore cannot use their KK
curves as an indicator of the validity of Rayleigh s hy-
pothesis.

Finally, we note that the model of Ref. 46 is also based
on Rayleigh's hypothesis. In fact, that work is a sort of
"poor man's Rayleigh method, " which used only the sin-

gle Fourier component that dominates at a nonradiating
mode resonance.

D. Other materials

0.5 1.0
k (10s/cm)

FIG. 15. Possible evolution of the gold-air SPP dispersion re-
lation as corrugation depth increases. Curve A, h=0; curve B,
h =hp, at which the excitation coordinates coincide simultane-

ously with the photon frequency and the texture-related wave-

vector Ak3/2; curve C, h =h
&
)hp.

Almost a11 the recent applications of Rayleigh's
method have been to silver, perhaps because the little
available data for another metal (i.e., gold) have not been
satisfactorily described by Rayleigh-type methods (which
was also remarked in Ref. 45). The present work suggests
that the fault lies not with the Rayleigh hypothesis or
method, but with the difficulty of accurately determining
the geometry and material properties of the metals whose
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optics are being studied.
Neither have there been applications of Rayleigh's

method to absorbing insulators. In a previous work we

mistakenly claimed that Chuang and Johnson ' used
Waterman's original extinction theorem to analyze their
sound-scattering data. Toigo et al. showed that this
method is equivalent to the Rayleigh hypothesis. In fact,
however, Ref. 61 used the extinction theorem of Ref. 3,
which is exact.

VI. SUMMARY

We have combined the work of Millar with that of Hill
and Celli to investigate the validity of the Rayleigh hy-

pothesis for real materials. In doing this we implicitly

complete the Hc study of the Dirichlet problem for the
purely sinusoidally corrugated surface. For that particu-
lar geometry we find that the Rayleigh hypothesis is valid
for all real materials under the same conditions estab-
lished by Millar (and by Hill and Celli) for the perfect
conductor.

The perturbation theory of Maradudin was used to
compare light-scattering data on corrugated gold and
silver with calculations using Rayleigh s method. Agree-
ment is better for silver than gold, but the discrepancies
with gold appear to be caused by the use of auxiliary
measurement techniques, which suppose very small ab-
sorption in the metal, and by degeneracy effects acciden-
tal to one of the gold films investigated.

APPENDIX A

Here we show that certain integrals occurring in Secs. I—III converge for real k when their limits are taken to
infinity. The kernels that appear in Eqs. (2.1) and (3.14) are of five different kinds:

zs—(x, —x, ) +(z, —z, )

(kip)HI" (k;p), (Al)

0,"'(k,p),
dz.

(x, —x, } —(z, —z, )
T

p' (k;p)HI '(kip),

(A2)

z$ dz.
(x,—x, ) —(z, —z, ) (x, —x, ) —(z, —z, }

p' p' (k;p) Ho" (k,p), (A4)

de dz ~ 2 2
dzs dz,—1 [(x,—x, ) —(z, —z, ) ]—2 + (x, —x, )(z, —z, )

S S

p' (k,p)H', "(k,p) . (A5}

Inspection of these functions reveals that (Al) —(A4)
have the same limiting forms for large ~x, —x, ~. (A5) has
a limiting form that contains an additional factor of
(x, —x, ) in the denominator. Therefore, we need only
show that an integral with the kernel (Al) is convergent,
and the convergence of all the other integrals follows
directly. We need this proof only for the solution of the
boundary integral equations for the physical fields, before
analytic continuation. Hence in (A 1)—(A5) we take x„
x, k, , and k2 to be real. For definiteness we consider

X, &X .
We first note that

and that the Hankel functions have the limiting forms

(k;p)H', "(k;p)
ik, (x, —x )

x x
S T s

(x, —x, )

X 1+0
X X

(A7}

where C, is a constant of order unity. Combining (A6)
and (A7), we obtain the asymptotic form of the kernel
(Al):

ik, (x, —x )

K (k;p)H', "(k;p)= —C,
dz.—(x, —x, ) +(z, —z, )

s

p
X 1+0

X X
(A8)

dz +0
x, —x Xs X~ dXs X X

(A6)
for large (x, —x, ).

When the periodic surface extends to infinity in both
directions, there are no "end effects;" then the functions
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L, (x), M, (x), and products of these with functions of
g(x) can all be written in the form

f„satisfy Parseval's equality

F(x, ) = 1 i(KO+nx){x, —x )

„e
D

(A9)
If„l'= f IF(x)l'dx=V.

n = —oc

(A 10)

for any fixed point x,. Here, Ko is the x component of
the incident wave vector as defined in (2.5), and K is the
"reciprocal lattice vector" defined in (1.2). Moreover, the

Consider, for example, the first integral that occurs on
the left of equation (3.14b). The contribution to that in-
tegral for x, —x, ) A can be written, using (A8) and (A9),

—f L ()x}E(k)p}HI"(k p))=C f e ' * ' g f e ' ' ' 1+9
Xs X~ oo Xs X~

(Al 1)

iII)(KO+nx+k
&

)

.f„' dw (A12)

where F(x)=(dz, /dx, )L)(x, ) in (A9). Because the "er-
ror term" in (Al 1) is bounded by C2/& /I, with

I C2 I

=0 ( 1), we need only to find an upper bound for

Ito (KO+ n~+ k
&

)

U=f dw

where the last step used the identity

CSC 'TTX

m „= „(x n)—
Hence we find that the integrals of Secs. I—III that con-
tain the kernels (Al) —(A5) are bounded even when k,
and k2 are real.

1/2 2 1/2

f dw
e

v'w

2 1/2
iwS„

V'w
x

using the Schwarz inequality and (A10). But
iwS„

f oo e —dw =Qn/ iS„erfc+. —i AS„—
&w

cy1 /2
(A13)

iAS

1+0iS„&/I—AS„
(A14)

using formula (7.1.23) of Ref. 23. Putting (A14) into
(A13), we obtain

The integration and summation can be interchanged be-
cause the Fourier series (A9) converges uniformly over
every interval on which F(x) is continuous.

Now define Sn:—Ko+ n ~+k, When S„=O, the
diffracted wave of index n propagates parallel to the sur-
face. This is a Rayleigh-Woods anomaly, in which we
have no interest. Hence we can specify that S„XO. Then

imS„

y f„f"' dw

APPENDIX 8

—i (k cosa+me)u +i~ U4uU= a e (B1)

This section derives a very interesting result of Millar,
who gave it without details in Ref. 20. The context into
which it fits is given in Ref. 19, to which we refer the
reader for particulars. The result to be demonstrated was
central to his proof of criterion (2.17) above, and is close-
ly related to that aspect of the present work established in
Appendix A. We are able to begin with expression (3) of
Ref. 19 and show that it leads to Eq. (9) of Ref. 20, in a
self-contained development that uses Millar's notation
with only minor changes for clarity.

Figure 16(a) shows Millar's geometry. His principal
coordinate system was offset from the origin 0 for reasons
that are not important to this calculation; he himself in-
tended to show that the contour S~ could be ignored for
any values of the offset coordinates (R0, 80). For simpli-
city we therefore take R 0

=h, 80=m /2, to obtain the
coordinate system in Fig. 16(b), from which we work.
Figure 16(c) will be explained shortly.

Millar set out to locate the singularities of the scattered
wave, denoted here by

I Ul ( col/2
oo

1

S„AX
1/2

1+0
AS„

1/2 where

2'
K =[k —(k cosa+mK) ]'; K-:

D
(B2)

1/2
9

CSC 7T
A

Ko+k,

1+0 1

A

( oo (A15)

Here, k is the incident wave vector and a the angle of in-
cidence measured from the u axis. [Our Eq. (Bl) is Eq.
(6) of Ref. 20; N is defined as the scattered field above Eq.
(4) of that work, and above Eq. (2) of Ref. 19.]

In connection with (B2), it is convenient to define
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2
II

t'ai g)

(b)

NO 0
FIG. 17. Distribution of Bragg angles in the complex plane.

we see that when ~ is real, 0(B 1(m; the imaginary
8 must be located as shown in Fig. 17, in order that ~
be positive imaginary for evanescent waves.

Millar's approach required him to prove that

(c)

H„'"(kp) '" d = O[N '/ ]()V N~ oo

(B5)

k cosa+m~=—k cosB

—=k sinB
(B3)

FIG. 16. (a) Geometry used by Millar in his investigation of
the Dirichlet problem for the infinite periodic surface. (b) A
special case of Millar's geometry: Ro =h, 00= —,

' m. . (c) The same

geometry for large Ro.

where ()I()v= —()I()p is the normal derivative, N is a
number of periods as shown in Fig. 1(a), and H„"(kp) is
the Hankel function. n is an integer that labels a
Fourier-Bessel coefficient for which Millar wished to find
an estimate; here it is a fixed parameter. He terminated
SN at each end on one of the peaks of CN, so that SN lay
entirely outside the so-called "selvedge" region. There-
fore (Bl) converges everywhere on SN. The variable s in
(B5) is arclength.

Along SN, u =ND cos0 and v =ND sin0; for
sufficiently large N and fixed n,

The 8 are diffraction angles for Bragg wavelets. x and
8 are positive real for propagating wavelets. ~ is posi-
tive imaginary for evanescent wavelets. It will clarify
what follows to have a picture of how the 8 are situated
in the complex plane. Setting

H'"(kp) = 2
m.kND

1/2

e i (kND —n77/2 —n'/4) (B6)

B~ —=B~,+iB~

=sinBm 1coshBm 2+1 cosBm 1 sinhBm

(B4) With these definitions, (Bl), (B2), (B3), and (B6) are put
into (B5) to obtain

iND( —k cosB cos9+ k sinB sin8);n B

0 m = —oo

1/2
2

m.kND
e'" "" '( —ik ik cosB —cosO+ik sinB sinO)

2—I
mk

1/2

(ND)1/2 i(kND —nn/2 —n/4) y f m (8)dO l+O
m ———

(B7}

where

f (8)= i (k cosa—+mi()cosO+~ sinO

ik cos(8+8 —
) (B8a}

g (8)= —k —(k cosa+ mis )cosO+a sinO

(8)= —k+ (B8b)

and The asymptotic behavior of I for large N is determined by
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the integrals that appear in Eq. (B7}:

I—:f e g (8)d8 (B9)
0

along with the factor N' in (B7). I in turn is deter-
mined by the behavior of f (8), which has stationary
points at 8sp given by f~ (8sp) =0, or

(a)

sin(8sp+8 ) =0 . (B10)

We will now evaluate the dominant part of I (N) for all
Pl.

1. ~ imaginary

For definiteness we take m such that (B4) becoines

Bm 1
=0~ Bm2=sjnh (B1 1)

for which the solutions to (B10) are 8sp=8sp, +i8spz
given by

8', =0, n-, 8sp2 = —sinh
—1

and (B8a) becomes

(B12)

Bb

(c)

IIc. If (8)= ik 'c—os8, cosh 8z+sinh
0 TTQ,

X

i sin8—) sinh 82+ sinh

(B13}

The saddle points, as well as the contours of Ref and
Imf, are shown in Fig. 18(a). It is possible to deform
the integration path as in Fig. 18(b) and generate a com-
plete asymptotic expansion for I (N). For the leading
term, the method of steepest descents is much more
convenient. The appropriately deformed path is shown
in Fig 18(c). .Along segments C, and C2, Imf is con-
stant and Ref decreases rapidly. Along segment Ci the
integrand is exponentially small. The important feature
here is that the deformed contour does not terminate on
the saddle points: therefore, the first derivative f' does
not vanish at 0=0 and 8=m. Hence, the leading contri-
bution to I from C, is

FIG. 18. Geometry of the complex plane for ~ imaginary.
(a) Contours of constant Itnf (8) (solid lines) and constant
Ref (8) (dashed lines). Dots show paths of steepest descent
from 8=0 and 8= m. (b) Deformation used to find an asymptot-
ic series for I by stationary phase calculation. (c) Deformation
suitable for the method of steepest descents.

the remaining integral converges. In the same way the
contribution from C2 is

pf (()) ( 1+cosB~ ) ()vDl, o,af e g (8)d8=
2 ND»

»l~~ l(.~—sb)
e dw,

0

(B14b)

wh«e by (Bll» co» =(1+I» I'/k')'". So f«»
imaginary, I (N)=O[N ']: These I contribute to I
only to 0 [N ' ] as Millar found.

ANDI o.8 2. ~ real

In this case (B4) becoines

Xf 'e- dw
0

(B14a} +m8 2=0; B,=sin
k

(B15)

using (B3) and (B1 1) to simplify. Since Rew) 0 along C, , for which the solutions of (B10)are
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Km

Hsp,
= ir —sin; Hsp2

——0
—1 (816)

and (88a) becomes

Kmf (8)= i—k cos 0, +sin cosht92

Km—i sin 0 +sin '
k

sinh82

(817)

The corresponding contours are shown in Fig. 19. Com-
parison of (813) and (817) shows that these contours are
translations of those in Fig. 18(a). From Eq. (810) it is
clear that the saddle point with Osp, = n in Fig. 18(a) has
moved up and to the left to take its place in Fig. 19. Fig-
ure 17 helps to visualize this, and to find the correct root
(816) of (810).

In this case the method of steepest descents is not
available, so we find an asymptotic expansion for I (N).
This is first expressed in the form

FIG. 19. Geometry of the complex plane for K real.

Equation (820) is still exact. On the right, the ci are the
coefBcients in

I (N)= —k+ —. f e d8
i dl 0 y=ND

(818) 1=0
C(X (821)

using Eq. (88b). Now we need to find the simpler in-

tegral,
and we have written

t9 dt eiky costyf (19)
1= —Bl

(819)
b, =—Q 1 cosB 1', b—

2
—=Q 1 +cosB (822)

where we have used (88a) for f (8), then substituted
t =m. (8+B,). —Now set cost =1—w to obtain

b2 2 &ky(1 —w )

1 — 2 1/2(2—w )

iky y
—ikyw

0 2i d(ky)'

(820}

The remaining integral in (820) is now written as a sum
of error functions of complex argument. Because these
have exponential factors in their asymptotic forms, all
the derivatives with respect to ky must be retained in
(820). They produce a simple algebraic power series in
the final result. To evaluate (820), we need only the
well-known Fresnel integrals and formula (7.1.23) of Ref.
23. Keeping only the leading terms, the result is

f b2 2 1
e

—ikrw
—bl &k)

; ~4+ i e

2&k'

—ib )ky —b ky2
2

+ (823)

When (823) is put into (820), we obtain to leading order in y

I =&2e'kr
1

1/2 —ib2ky
—i~/4+ e e

2ky b (1 b&/2)i~& b (1—b~/2)~~

1/2
2i cos(ky cosB, )

ky sink
(824)

where all the derivatives have been removed using (821).
The first term in (824) is just the asymptotic form of the
outgoing Hankel function. When (824) is put into (818)
to finish this calculation, the leading term is 0(N }, so

that these I also contribute to I only to order N ', as
Millar found.

However, in Fig. 19 there is another saddle point to the
left of the origin, whose leading contribution contains an
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incoming Hankel function. This is a property of the
plane-wave expansion (Bl) used for the scattered field. If
the offset coordinate Ro in Fig. 16(a) is large enough,
then SN in Eq. (B5) encloses an angle greater than m as
in Fig. 16(c). In particular, if R o is such that
lsin8l &sinB,„anywhere on Siv, where 8,„ is the
Bragg angle of the most extreme diffracted order, then
the leading term in I is of order unity, not N ' . Then I
cannot be neglected as Millar's proof required. Such an
inconvenience survives only if Rol(ND) is kept constant
as N~oo. Since this particular limiting process would
not ordinarily be used. Millar could in fact conclude that
I is "O(N '/

) uniformly with (Ro, Ho).
"

Millar assumed at the outset that his surface was
infinitely periodic, then applied Green s identity to a part
of it. In this way he eliminated "end effects. " Without
the strict periodicity, a more-detailed (and difficult)
analysis of the fields on Sz would have been needed.
Likewise, the result the Appendix A required strict
periodicity of the surface. Without making that assump-
tion, we could not have obtained the extinction theorem,
the boundary integral equations, and the necessary ana-
lytic continuations of the surface fields from one and the
same progression of approximations.

APPENDIX C

Here we derive an analytic continuation of a Hankel
function needed in Sec. IV A. The commonly used
asymptotic expansions for Hankel functions of fixed or-
der and large argument are given by formulas (9.2.3} and
(9.2.4) of Ref. 23:

H'"(z)-
1/2

2 ei(z —vm'/2 —n'/4)
( « 2 )

H'"(z)-

(C 1)
1/2

2
e " " " '

(
—2m&argz&a).

The limiting form (C2) is valid for z =k,p„.
To do this we need formula (9.1.38) of Ref. 23:

sin(vm. ) H'„'(ze ') =sin[(m +1)vn]H'„'.(z)

+e' 'sin(mvm)H'„"(z) . (C4)

Let z =k;p z and m =2 from Eq. (C3), to obtain

sin(3v7T)

sin( vm. )

+ sin(2' ) ~«Hi&~(k
sin( vn. )

Taking the limit as v~0, we find

Hoi '(k, p)=3HO '(k;p„)+2Ho" (k;p„) .

(C4a)

(C5)

Because —
m & arg( k;p „)& n, Eq. (C2) now applies, so

that (C5) becomes

(C2)

But Fig. 4(c) shows that when argk, & 0, then
arg(k;p) & n, in which case (C2) does not hold. We there-
fore have to relate H' '(k;p) to H' '(kip& ), where

(C3)

H(') '(k;p) = 3
ikpi oo

1/2 —i (k,.p&
— /4)

e
n.k; p„

' 1/2
i (k, p

—n'/4)
e

mk;pq
' 1/2 —i (k,.p —m/4)

e
1/2

i (k, p
—n/4)

mk, p
(C6)

Ho" (k; lpl)=2HiI '(k, p}+Ho"(k,p) (x,~—oo)
' 1/2 —i (k,.p —n/4)

e
2

mk, p
(C7)

where (C3) was used in the last line. When (C6) is used in
Eq. (4.6), we get the asymptotic form of Ho" (k, lpl ) in the
third quadrant of Fig. 4(c):

H' '(k p)=3H' (k p„)+2HI"(k p.„}, (C8)

k, lplH', "(k, lpl)
Ipl- ~

' 1/2
2ki p —i(k, p —3m/4)

e

and when this is put into (4.7), and (C3) is used once
again, the result is

In the same way we take the limit of (C4a) as v~ 1 to get (x,~—oo) . (C9)
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