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A functional-derivative Green s-function solution of the Anderson model, obtained in a previous
paper [Phys. Rev. B 32, 5002 (1985}],is discussed in the context of chemisorption theory The.

short-chain model is used to make comparisons with the best of previous solutions. The functional-
derivative solution yields exact results in the electron-hole-symmetric zero-bandwidth limit and in-

terpolates accurately between the weak-binding and rebonded-surface-complex limits.

Since the work of Newns, ' the Anderson model has
been applied to chemisorption theory by many research-
ers. A variety of solutions and methods for obtaining
them have been reported. Notable among these are the
solutions given by Brenig and Schonhammer and by Bal-
do et aI. These solutions are marked by their simplicity
and accuracy. The Hamiltonian under consideration is

H = g Ek~Ck~Ck~+ g (Edmund~+ ,' Undvnd —)

+ g ( Vdk Cd~Ck~+ Vt,.d C„~Cd~) )

k, o.

where nd =Cd Cd, Ct, ( Ck ) creates (destroys) elec-
trons in the single-particle states of the host, k denotes
the relevant quantum numbers, cr denotes the spin
(cr = —o ), and d denotes the adatom state. The first term
describes the host, the second term describes the adatom
with intra-atom Coulomb repulsion energy U, and the
last term describes the host-adatom interaction. In the
renormalization-group and Bethe-ansatz solutions, the
form of the parameters Ek and Vdk is usually chosen to
be very simple. Thus these solutions are not generally
applicable to chemisorption theory, where it may be im-
portant to retain some of the complexity involving these
parameters.

In a previous paper (hereafter referred to as paper I)
we presented a solution that gives very accurate results
for the simple form of the parameters. The solution was
obtained without making any simplifying assumptions re-
garding the parameters. In this paper we demonstrate
that this solution also gives very accurate results in the
context of chemisorption theory. Important features of

Xdd (co)=U')( (co) ri (co)+ Q IVdkl Gk (co)yk (co)

A, (co)=[co Ed —U(1 —(nd —) )
—S (co)]

(3)

(4)

(5)

G„(co)=(co Et,. )—
Equation (3) is Eq. (43) of paper I. The quantities

g (co) and y& (co) are determined by sums over the Fermi

this solution and the procedure " used to obtain it are
that it preserves the conservation laws" (of particle num-
ber, momentum, and energy) and may be applied at tem-
peratures above absolute zero. Furthermore, this solu-
tion is amenable to a procedure for systematic correc-
tions.

For the sake of clarity, in this paper, we repeat some of
the results and equations of paper I. In paper I an exact
expression [Eq. (36)] for the self-energy Xdd of the An-
derson model was derived using the functional-derivative
technique. ' '" This equation was solved approximately
by evaluating the functional derivatives [in Eq. (37)] with
the Hartree-Fock solution for the adatom Green's func-
tion Gdd . Theresultis

Xdd (co)=U(nd )+U A, ( )(con )d[1
—(nd )]

+Xd'„(co),

where ( ) denotes the thermodynamic average. The
self-energy correction Xd'd is
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1
q (co)=—g Gdd" (co„)g-(cu—cu„), (7)

frequencies co,=2~i v/P, where v is an odd integer and P
is the inverse temperature:

and may be transformed ' into Eq. (1) as follows:

Z„.= &—ZT, O, &ZT,

Vdk
= V/2, V/&2, V/2 .

(20)

(21)

1
yk +4k

Pklr(~} Gke(~)Gddo (~)
1

etT(~B ) y [Gddcr(~v) Vp(~v+~B }
V

The self-energy may be determined analytically using the
standard techniques" ' for evaluating the frequency
sums. Then the Green's function is written as

Gdd (~)= g
q q

CO X

—Gdd" (co,+cos)V (co„)], (10)
=[co Ed —S(—co) Xdd

—(cu)] (22)

co~ is a Bose frequency,

V (co)=S (~)Gdd" (co),

Gdd ( co ) is the Hartree-Fock Green's function:

Gdd" (co)=[co Ed —U(n—
d ) —S (co)] (12)

where the poles x generally must be determined numeri-
cally. The extension to temperatures greater than abso-
lute zero is straightforward as all of the above equations
are applicable at all temperatures.

Figure 1 shows the results of our calculation. We have
calculated the chemisorption energy AE as a function of
V using the well-known formula'

Equation (3) yields exact results in the limits U~O for
arbitrary V«, V«~0 for a~bit~a~y U, and E, ~0 for
arbitrary Uand Vdk (zero-bandwidth limit).

For calculational simplicity we restrict our discussion
to the symmetric case (Ed = —U/2 and (nd )
= ( nd ) =

—,
'

) at zero temperature.
First we consider the zero-bandwidth limit (Ek =0).

Equation (3) becomes
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(o)
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Xdd (co}=U A, (ru}[rl (co}+V y (co)/c0], (13)

where the quantities V, A, (co), g (co), and y (co) are
given, respectively, by —2.0-

y lV l2'I/2
k

(14)
—30-

A, (co)=
co —V

3 V
r) (~)=—

z2(co —9V )

(15)
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From Eq. (2) this gives

U
Xdd (co)=U/2+

(co —9V )

(17)

(18)
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which is exact. The same result was obtained by the
method of Baldo et al.

We now consider the case of an adatom adsorbed at
one end of a chain of three host atoms. ' The Hamiltoni-
an for this system is

—2.0-

H = —T g (C; C;+, +H. c. )

+ g (Ed nd + ,'Und nd )—
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—Vg (C, Cd +H. c. } (19) FIG. 1. AE vs Vfor (a) U=2.5 and (b) U=4.0, all in units of
2 T. The exact points are from Ref. 12.
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b.F. = g I dz z+Ed +S (z)
1

4~i c

a—2z S (z) Gdd (z)
az

—y (1—(n„.),)Z, (23)

where C is a contour that includes the real axis and is
closed in the upper half of the complex z plane, and

( )o denotes the thermodynamic average at V=O.
Our approximate functional-derivative (FD) solution is
compared with the weak-binding (WB), rebonded surface
complex (RSC), and exact numerical results reported by
Einstein. ' The FD results clearly show good agreement
in the transition region between the WB and RSC limits.

In summary, the FD solution interpolates accurately
between the weak-coupling and strong-coupling limits
and yields exact results in the zero-bandwidth limit. The
interpolating schemes ' typically give slightly more accu-
rate results' for the ground-state energy and the quasi-
particle spectrum in the transition region than the FD
solution considered here. However, such schemes are
typically not easily extended to temperatures above abso-
lute zero and are generally not amenable to systematic
corrections as is the FD solution. We believe that the
FD solution should serve as a useful complement to the
many solutions available in the literature.
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