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Orbital magnetism in Fe, Co, and Ni
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The spin and orbital contributions to the magnetic moments of Fe, Co, and Ni are calculated
from first principles, using the linear muffin-tin orbitals method with the spin-orbit coupling treat-
ed at each variational step. In these calculations the spin and orbital moments agree with previ-
ously reported results obtained from spin-polarized Dirac calculations. When Hund's second rule
is accounted for in the band Hamiltonian by adding an additional term for orbital polarization,
the orbital moments agree better with experiment and the trends in the experimental orbital mo-
ments across the series can be explained. Specifically, the maximum orbital moment for Co is
shown to occur because of its hcp equilibrium crystal structure.

INTRODUCTION

The magnetic properties of Fe, Co, and Ni have previ-
ously been thoroughly investigated. ' For instance, on the
theoretical side, the magnetic moments have been calcu-
lated self-consistently from first principles, and good
agreement with experiment has been found. This theory
used a band picture together with the local spin-density
approximation (LSDA). i Thus, it is reasonable to as-
sume that the band picture is essentially correct for Fe,
Co, and Ni and hence they form an excellent testing
ground for further theoretical refinements attempting to
go beyond the LSDA, to remove the remaining small
discrepancies between theory and experiment.

It is known that the LSDA fails in describing the y-a
transition in Ce. 5 This type of failure is typical when the
LSDA is applied to narrow-band systems. However, by
going beyond LSDA to treat all of Hund's rules in the
band Hamiltonian, a good description of the y-a transi-
tion in Ce was recently obtained in Ref. 5. Hund's first
rule (maximum spin) was included by using the LSDA for
the exchange splitting. By allowing for orbital polariza-
tion it was shown that an —E'L /2 term in the total ener-
gy described Hund's second rule well (maximum orbital
angular momentum). Here Es is the Racah parameter
of the f states (for d states the Racah parameter is denot-
ed 8, which we will use in the following ) and L is the or-
bital moment of the system. This expression for the orbit-
al polarization energy was obtained by a mean-field treat-
ment of the interaction 1; l~ (I; being the orbital mo-
ment of electron I) This mean. s that at the variational
step and for each k point an orbital with azimuthal and
magnetic quantum number (I,mt) will be shifted an
amount BmtL. Finally, Hund's third rule (for total angu-
lar momentum) was treated by including the spin-orbit
coupling self-consistently at each variational step (VS).
The third Hund's rule can alternatively be accounted for
by solving the spin-polarized Dirac (SD) equation, and it
is one of the goals of this paper to compare results treating
Hund's first and third rule in the two diN'erent approaches

(VS and SD). We would also like to test the approach
suggested in Ref. 5 for the orbital polarization of Fe, Co,
and Ni. However, the main motivation for this work is to
explain the published experimental results' on the orbital
contribution to the magnetism in these systems and espe-
cially to understand why it peaks for Co. We will choose
this sensitive quantity together with the spin moment to
compare theory and experiment.

Magnetism in the 3d metal alloys is known to follow the
Slater-Pauling curve. This curve indicates that adding
impurities with more unpaired spins than the host in-
creases the magnetism (Fe in Co, for example). The spin
moments of the 3d elements themselves follow such a
curve, which can be understood using band-filling argu-
ments based upon spin pairing. To explain the spin mo-
ment in Fe, Co, and Ni it is important to first point out
that the majority spin band is mostly filled in all these sys-
tems. Therefore, when going from Fe to Co and then Ni,
which has the effect of adding more valence electrons, the
minority spin band has to become more populated with
these extra electrons and the spin moment drops accord-
ingly. In the 3d systems the orbital moment is expected to
result from the spin-orbit interaction. Therefore, one
might intuitively expect the orbital moment to correlate
with the spin moment and possibly also to follow some
kind of Slater-Pauling curve. However, experiments show
that this is not the case, since the orbital moment in Co is
much larger than in Fe and Ni. As we will see below,
there are a number of factors that determine the size of
the orbital moment, but it is mainly because of the
different crystal structure that the observed maximum
occurs for Co.

In our calculations we have used the linear muffin-tin
orbitals (LMTO) technique for bcc Fe, fcc Fe, fcc Co,
hcp Co, and fcc Ni at their experimental volumes [with
Wigner-Seitz radii, Rs, of 2.662 (Fe), 2.621 (Co), and
2.602 (Ni) in a.u.j in the same way as described in Ref. 5,
using 140 (bcc), 240 (fcc), and 180 k points (hcp) in the
irreducible part of the Brillouin zone. Furthermore, the
von Barth-Hedin parametrization" of the LSDA was
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used. At each iterational step the Racah parameter 8 was
recalculated and thus the relativistic calculations were pa-
rameter free and self-consistent.

RESULTS
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The calculated spin and orbital moments are listed in

Table I. Here we list the moments obtained from a spin-
polarized calculation (VS) as well as the results obtained
from a spin-and-orbital-polarized calculation. Both cal-
culations also included spin-orbit coupling. In Table I we
also list the results obtained from a spin-polarized Dirac
calculation '2 as well as experimental data. ' We first turn
our attention to the calculations (VS) that included spin-
polarization as well as the spin-orbit coupling in an (I,s)
basis. Since time-reversal symmetry is now broken, an in-
duced orbital moment is obtained. The size of both the
spin and orbital moments are in good agreement with the
results obtained from the spin-polarized Dirac calculation.
Hence, it seems that treating the spin-orbit coupling at the
variational step within an (I,s)-basis set representation
yields results that are very close to those obtained from a
spin-polarized Dirac calculation.

However, as seen in Table I, neither of the two ap-
proaches (VS and SD) give results in satisfactory agree-
ment with experiment for the orbital moment. Similar
poor results were found in earlier studies on the uranium
monopnictides' and the actinide-iron Laves phases. ' In
contrast, the orbitally polarized (OP) calculations on ac-
tinide' and rare-earth systems as well as the present
work have predicted orbital moments that resemble the
experimental values quite well. The main difference from
the earlier orbitally polarized calculations is that in Fe,
Co, and Ni the orbital moment is very small and the total
moment is dominated by the spin component. The small
value of the orbital moment in 3d systems is a conse-
quence of the well-known crystal-field quenching of the
orbital moment together with the fact that the spin-orbit
coupling parameter is relatively small in these systems.
This is why previous spin-polarization-only calculations
(in LSDA) have been able to achieve relatively good
agreement with experimental data for the net magnetic
moment.

To develop an intuitive understanding of our results, it
is useful to discuss them in terms of the Slater-Pauling
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FIG. 1. Spin and orbital moments for Fe, Co, and Ni. The
curves are straight lines connecting our theoretical values. The
solid curves refers to the spin moment, the dotted curve to the
orbital moment (in the experimental crystal structure) and the
dash-dotted curve to the orbital moment in the hypothetical fcc
phase of Fe and Co and the true fcc phase of Ni. The experi-
mental spin moments are marked by triangles whereas the ex-
perimental orbital moments are marked by open circles.

curve. To illustrate this we show in Fig. 1 the calculated
as well as the measured spin moments; the monotonic de-
crease in the spin moment is obvious. In Fig. 1 we also
show the calculated and the experimental values of the or-
bital moments and it is seen that, with a maximum in the
middle at Co, they do not correlate in any simple way with
the spin moment. However, the crystal structures of Fe,
Co, and Ni are all different and in order to eliminate vari-
ations in the orbital moment due to these differences we
have also calculated the spin and orbital moments for Fe
and Co in the fcc structure (Table I and Fig. 1). First,
notice that for the fcc structures the orbital moments
monotonically decrease just like the spin moment.
Second, it is seen that the change in the true crystal struc-
tures (bcc in Fe and hcp in Co) lowers the orbital contri-
bution in Fe and raises it in Co, so the experimental trend
is obtained. Finally, note that adding the orbital polariza-
tion term gives the calculated values within 0.02ptt of the
experimental values in all cases.

The trends in the orbital moment for Fe, Co, and Ni in
the fcc phase can now be understood as follows. When the
spin-orbit coupling I s, is introduced in the band Hamil-
tonian, there will be matrix elements of the type Izsz (and

TABLE I. Spin and orbital moments for Fe, Co, and Ni.

pspin

Fe (bee)
Porb pspin

Co (hcp)
Porb pspin

Ni (fee)
Porb

OP4

Expt.

2. 12
2.22

2.22
2.20

2.21
2.22

2.13

0.04'
0.04b

0.04'
0.07(fee) '
0.06'
0.14(fcc)'
0.08'

1.54
1.59

1.57
1.60
1.57
1.60

1.52

0.07'
0.09

0.09'
0.07 (fee) '
0.14'
O. l2(fee)'
0.14"

0.57
0.60

0.61

0.61

0.57

0.05"'

0.05b

0.05'

0.07'

0.05'

'Ebert eI. al. , Ref. 12.
Gunbanov, Ref. 12.

'This work, no orbital splitting.

Orbitally polarized calculations.
'This work, orbital splitting.
'Experiment Ref. 10.
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l+s +I-s+). Hence the spin-up electron states with
positive (negative) magnetic quantum numbers (m() will

be pushed up (down). Exactly the opposite is found for
spin-down electrons. Therefore, the contribution to the
total orbital moment from the spin-up (down) electrons is
negative (positive). Filled bands, of course, give no con-
tribution. Fe, which has almost all of the spin-up states
filled, will therefore have a positive orbital moment due to
the partially filled spin-down bands. However, some of
the spin-up states are unfilled because of hybridization
with the very broad sp band, and we calculate a small neg-
ative contribution (-—0.03p(() from these states. Be-
fore continuing, it is worth noticing that the magnetic
state in fcc-Fe is actually a meta magnetic one. ' In Co
and Ni the spin-down band becomes more completely
filled. The positive orbital contribution from these states
also drops (when completely filled, these bands give no
contribution). This is slightly compensated, because in Co
and Ni the spin-up band is also more completely filled and
the tiny negative contribution to the orbital moment due
to hybridization is, therefore, suppressed even more(-—0.02@(t for both systems). Hence Co will show an
orbital moment similar to Fe. However, for Ni the spin-
down d-band-filling effect dominates, and the orbital mo-
ment therefore drops.

To illustrate this we show in Fig. 2 a very simplified
state density for Fe, Co, and Ni in their fcc phase. The
correct number of valence electrons is here simply ob-
tained by shifting the Fermi level to higher energies, as in-
dicated in Fig. 2. As is also indicated in Fig. 2, the spin-
up band in Fe is filled and we have a negligible orbital mo-
ment from this subband, leaving only a positive moment
associated with the minority states. The same situation is
found in Co, and from the schematic figure we would ar-
gue that the orbital moment should be very close to the
one found in Fe, as is also the case (Table I and Fig. 1).
However, in Ni the minority d band also starts to become
completely filled and therefore there is a drop in the orbit-
al moment as indicated in Fig. 2. Hence, the trend in the
orbital moments in Fe, Co, and Ni, in the fcc phase, can
also be viewed as following a Slater-Pauling type of curve,
being heavily infiuenced by band-filling effects. However,

hEp, t
——'H 8 (m() iD,

ml ~ —I

2

Here H is the arbitrary small splitting which we eventu-
ally will let go to zero, m( is the magnetic quantum num-
ber, and D, is the value of the state density at EF of the
state m(. The increase in kinetic energy can be written

(2)

The criterion for the onset of orbital magnetism is now
when the energy gain in Eq. (1) outweighs the loss in Eq.
(2), i.e.,

BD,f» 1, (3)

where D,g is

+I
D,((- g D, (m() '.

m —II

(4)

the orbital moments in these systems in their true crystal
structures are shown not to correlate in a simple way to
the spin moments because of the diA'erent crystal struc-
tures.

The development of an orbital moment in the presently
investigated systems is a parasitic effect, since it would be
zero if the spin moment was also zero. The orbital mo-
ment results from the breaking of time-reversal symmetry
when the system polarizes. The inclusion of the orbital-
polarization term, —BL /2, merely enhances the already
existing (from a VS calculation) orbital moment. To see
this we proceed with an analysis analogous to what leads
to the Stoner criterion for the onset of spin magnetism.
Consider, for instance, a normal spin-polarized band. If
the spin-orbit splitting is not included, states with spin cr

and with magnetic quantum number, + mI will be degen-
erate. We then ask the question, how much kinetic and
potential energy is induced if we impose on the system an
arbitrarily small splitting such that the difference between
adjacent m( states is H. The change in potential. energy
can be written

I

I

I

I I

t

I

t

I I

I Energy

In very narrow-band systems Eq. (3) is fulfilled and an or-
bital moment can exist, although the spin-orbit splitting is
omitted. However, in Fe, Co, and Ni, D,ff is of the order
of 50 states/Ry and B is of the order of 10 mRy. There-
fore, the "orbital Stoner product" is about 0.5 and the sys-
tem remains in the symmetric nonpolarized state.

Fe CoNi

FIG. 2. Model state density for fcc Fe, Co, and Ni. Due to
the spin-orbit coupling the degeneracy between the m/ and —m/

states is lifted and an orbital moment develops. The correct
number of valence electrons is obtained by adjusting the Fermi
level as marked in the figure (Fe, Co, and Ni).

CONCLUSIONS

To summarize, we have found that the treatment of the
spin-orbit coupling within an (I,s) basis gives results com-
parable to those obtained from the spin-polarized Dirac
equation. By analyzing the orbital contribution to the
magnetic moment in the fcc structure for Fe, Co, and Ni
we have shown that this contribution approximately scales
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with the spin moment. However, the orbital moment is

very sensitive to the crystal structure; using the correct
crystal structure leads to a decrease of the orbital contri-
bution in Fe (bcc) and an increase in Co (hcp) so that the
experimental trend is obtained. Thus, including orbital
polarization leads to orbital moment values in agreement

with experimental values. We believe that these calcula-
tions therefore give strong evidence that the experimental
orbital values, which are difficult to obtain, are indeed
correct and reasonable, despite the apparent lack of corre-
lation with the spin moment caused by the different crys-
tal structures.

Present address: Department of Physics, University of Uppsa-
la, Sweden.
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