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Supersolitons in layered Josephson structures
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It is demonstrated that in a system of parallel-coupled long Josephson junctions forming a lay-
ered superconducting structure there are nonlinear excitations of coupled fluxon arrays in the
form of dynamical "supersolitons" [A. V. Ustinov, Phys. Lett. A 136, 155 (1989)). The supersoli-
tons in the system may be of two types, dynamical kinks and envelope solitons. The former ones
are described by the elliptic-lattice equation which is transformed into the sine-lattice equation in

the case of the dense fluxon arrays or the modified Boussinesq equation in the continuum limit.
The latter solitons are oscillating ones and are described by the nonlinear Schrodinger equation in

the discrete carrier case. These solitons may be important in transport properties of the flux flow

in layered superconductors or high-T, superconductors with twins under external magnetic fields.
The stability of the nonlinear excitations is briefly discussed.

Nonlinear effects in long Josephson junctions (LJJ's)
have been investigated intensively in recent years both
theoretically and experimentally (see, e.g., Refs. 1 and 2).
The LJJ may be simulated by the perturbed sine-Gordon
(SG) equation, its soliton (kink) solutions describe the
motion of the Josephson vortices (often called "fluxons")
in such a junction. Statics and dynamics of fluxons in a
single homogeneous LJJ have been studied in detail so far
(see, e.g., Refs. 1 and 2, and references therein).

In the last few years some interesting effects in LJJ's
with arranged inhomogeneities (local regions where the
Josephson critical current density is changing) were stud-
ied. 3 9 Of particular interest is the case of inhomo-
geneities periodically installed in the LJJ (the so-called
lattice of inhomogeneities). ' Recently, a feature for
periodically modulated LJJ's has been found by numerical
simulations, ' and also verified experimentally and ex-
plained analytically. It was demonstrated that in LJJ
with a lattice of pointlike inhomogeneities, besides the
well-known flux-flow type of current-voltage (I-V) steps
with numbers equal to the number of fluxons in the fluxon
array, pronounced low-voltage steps arise, 's and the
effect may be explained due to a type of nonlinear excita-
tions which was called "supersoliton. " These excitations
may be described analytically in a spatially modulated SG
system as local solitonlike variations in the density of the
fluxon array. The system is, as a matter of fact, a variant
of the well-known Frenkel-Kontorova model, and the su-
persoliton may be identified with "a dislocation" in that
model, primary fluxons being the effective interacting
"particles. " Unlike the Frenkel-Kontorova model, the su-
persoliton is a solution of the elliptic SG equation.

In this paper we describe another model in which super-
solitons are predicted analytically and may be observed
experimentally. The system under consideration is a lay-
ered superconducting structure. The interest in such a
type of superconducting systems has increased recent-
ly' ' because, on one hand, progress in technology
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where am is the Jacobi elliptic amplitude, k being the cor-

made it possible to produce S-I-S-I-. . . (S represents
superconductor, I represents isolator) systems of good
quality and, on the other hand, some of the high-T, super-
conductors, e.g., Bi-Sr-Ca-Cu-O, are layered ones indeed,
or a layered Josephson structure may be formed by twin-

ning plates in the superconductors (see, e.g., Ref. 13). In
this paper we demonstrate that in the layered supercon-
ducting structures it is possible to have propagation of su-
persolitons, at least, of two types, dynamical kinks and en-
velope solitons. We briefly consider a stability of the soli-
tons and also discuss a possibility of an experimental
verification of supersolitons using the I-V characteristics
of the layered Josephson systems.

We start from the model of the S-I-S-I-. . . system
which is described by the system of dynamical equations'
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where p„(x,t ) is the phase difference on the nth I layer,
and we have used dimensionless variables: the coordinate
x is measured in units of the Josephson length, ll,i

(@oc/16tr j,)(, )'I2 and the time is in units of ran
'

kJ/co where co is the Swihart velocity, j, is the Joseph-
son critical current, and A, is the London penetration
length. The. coupling between the superconductors is
determined by the dimensionless parameter (2), a being
the thickness of the S layer (Fig. 1).

In the case y 0 each Josephson layer of the system is
described by the SG equation without a perturbation
(coupling). An exact solution to the unperturbed SG
equation describing the periodic fluxon array (the fluxons
are of the equal polarities) is

r
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describes the fluxon arrays' coupling. Straightforward
calculations of the interaction energy W(h„)

—,
' (H„+H „)with the unperturbed fluxon shapes (3)

yield
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where z=—6„—= (g„—( )/k. Here sn, cn, and dn are the
standard elliptic Jacobi functions, and

FIG. l. Interacting arrays of Auxons in the layered Josephson
structure: filled circles indicate stable Auxon positions; S repre-
sents superconductors, I represents isolators. The functions

g, (x,t) describe the deviations of lluxons' coordinates from the
equilibrium states.
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whereH„ is the proper well-known Hamiltonian of the
unperturbed SG system for each nth array, and the aver-

responding modulus (0 ( k ( 1) generated by an external
magnetic field, and g Vt, V being the arrays' velocity
(we assume V «1). The spatial period of the array is

L 2k K(k), K(k) being the complete elliptic integral of
the first kind. In the limit k 1 the array (3) tends to a
single Josephson fluxon, and in the opposite case, when

k « 1, the fluxons form a densely packed array.
The interaction between solitary fluxons belonging to

difl'erent layers of the system is repulsive" and, as a re-
sult, the fluxons form the stable structure shown in Fig. 1.
These interacting arrays may be considered as a "non-
linear medium" for propagation of perturbation waves.
To study the waves analytically we will consider the cou-
pling parameter y as small using the Hamiltonian version

of the perturbation theory for solitons. ' In the frame-
work of the approach, the interaction between the fluxon

arrays is described by the perturbed Hamiltonian
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where W(z) is defined in Eq. (6), and p 4E(k)/k K(k),
E(k) being the complete elliptic integral of the second
kind. The Hamiltonian (7) is the basis used to describe
nonlinear excitations in the layered system.

The Hamiltonian (7) gives rise to the system of the
dynamical equations,

~K
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is the complete elliptic integral of the third kind.
In the equilibrium (ground) state the fluxons of the sys-

tem form a two-dimensional triangular lattice (filled cir-
cles in Fig. 1), the fluxons' positions are

g"'-g„"'+ —,
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We will describe oscillations of the fluxons near the equi-
librium points, when the parameters g„=g„—g„are
dynamical variables of the fluxon lattice. The starting
point of our analysis for the perturbation-induced system
(1) is to impose a long-wave modulation on the array (3),
replacing the parameters g„by the functions g„(x,t)
varying on a large scale. Inserting the corresponding wave
form (3) into Eq. (4), it is possible to find the effective
Hamiltonian written in the variables g„(x,t) (cf. Ref. 9),
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where W'(z) dW/dz. The system (8) may be naturally
called a system of elliptic-lattice equations.

When the parameter y is small, one can take into ac-
count only the nearest neighbors in Eq. (8), i.e., rn ~ l.
In such an approach, for the limit of a densely packed ar-
ray, k «1, we obtain from Eq. (8) the so-called two-
dimensional sine-lattice (SL) equation,

I

where u„2$„/k, G y/p= yk2/4. Equation (9) in the
limit of "hard" arrays, („(„(t),has the form of the
one-dimensional SL equation studied in Ref. 15. As is
known, the SL equation has approximate, but well-
defined, one- and multisoliton solutions in the form
u„=A tan '(a, /P, ) for an arbitrary constant A )0,
where the quantities a„and P„are simply discrete ver-
sions of the corresponding ones in the SG equation. ' The
simplest solution of such a type is a one-kink solution (su-
perkink),

u„=A tan '[exp(axn —r0JGt) l,
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where the constants a. and co are connected by the disper-

sion relation t0 4sinh (tra/2). As was demonstrated by

Homma and Takeno, ' although the SL equation does not

appear to be exactly integrable, it shares the soliton gen-

erating properties with the Toda lattice equation. Numer-

ical tests of the existence of approximate N-soliton solu-
I

tions were done for air 0.2, 0.4, and O.S, and the ex-
istence of the nearly integrable kinks appears to be
guaranteed for ar at least up to ax 0.8. '

Let us return to a general case defined in Eq. (8).
Small-amplitude oscillations of the fluxon arrays are de-
scribed by the equation
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k' (1 —k ) 't . In the linear limit Eq. (10) gives rise to
the dispersion law of soundlike oscillations propagating
across the layers,
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In the continuum limit, when
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Eqs. (10) and (11)may be transformed into the equation
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which in the linear limit supports propagation of waves
with the velocities (cf. Ref. 12), V2 1 and V~~ C2. If
we set u g», we obtain the two-dimensional modified
Boussinesq (2MB) equation. Equation (13) has no kink
solutions because for all k we have checked that C(k) & 0
and the parameter p is negative (see, e.g. , Ref. 16). In the
continuum limit the superkinks exist when we will take ac-
count of the next nonlinear terms in Eq. (13).

One-dimensional excitations and superkinks propaga-
ting across the layers are stable against x-dependent per-
turbations. This may be easy to prove in the small-
amplitude limit when the 2MB equation (13) is
transformed into the modified Kadomtsev-Petviashvili
equation (see, e.g. , some proofs in Ref. 17).

Besides the kink soliton, the lattice equation (11)
possesses breather solitons. These solutions may be ob-
tained as envelope oscillating solitons in the "discrete car-
rier limit, "' when we look for solutions in the form

&„(x,t) -F„(x,t) exp[i8„(x,t)]+c.c.,

I

where 8„(x,t) (qx+xan+tot) In .this approach, we
can treat the phase 8„(x,t) exactly and only use the con-
tinuum approximation for the envelope function F(x,y;t).
Thus, in Eq. (11) first we consider 8„(x,t) and F„(x,t) as
functions of the discrete variable n and after taking
differences we go to the continuum limit only for
F, (x,t)=F(x,y;t) As . a result, we obtain the two-
dimensional nonlinear Schrodinger (2NLS) equation,
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and it is, as a matter of fact, a partial case of the general

expression (5.14) given in Ref. 16. As was demonstrated
in a number of papers, the 2NLS equation is unstable

(see, e.g., Ref. 18), and it may give rise to a self-focusing
wave from special classes of initial date. '

Since the dynamical superkink (10) propagates with a
large velocity, it may be very important in the flux-flow
transport properties of layered Josephson structures. To
study the superkink motion in a real situation, one needs
to add the effective bias current f and dissipative losses,
—aa&„/at in the right-hand side of Eq. (1). Considering
the terms as small, we lead to the modified Eq. (8) which
includes the terms —apag/at and —zf/kK(k) (cf. Ref.
9). In the model of hard fluxon arrays, the energy-
balance analysis yields the equilibrium velocity V,q of the
superkink providing equilibrium between dissipative losses
(-a) and energy input from the drive (—f).

The real dynamics of LJJ's is, as a matter of fact, more
complicated and it must take account of two-dimensional
flux motion along and across the layers. But, in any case,
the motion of superkink will lead to peculiarities in the
I-V curves at the voltage —V,q/i, I being the length of the
system in the y direction (see Fig. 1).

The modulus k of the elliptic functions may be deter-
mined by minimization of the thermodynamical potential
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G in the presence of the external magnetic field H,„. In
the case of densely packed array that yields k ' =H,„/2,
and it defines all dependences as functions of the external
magnetic field. For example, C = (ya /2H, „)(I
+ yH~4/3) (cf. Ref. 12).

In conclusion, we have predicted analytically supersoli-
tons in a system of coupled Josephson junctions forming a
layered superconducting structure. The supersolitons in

the system are collective dynamical excitations of in-

teracting fluxon arrays, and they may be described in

some special cases by the two-dimensional elliptic-lattice

or the modified Boussinesq equations (dynamical kinks)
or by the nonlinear Schrodinger equation (envelope soli-
tons). The predicted nonlinear excitations must give con-
tributions to transport properties of the flux-flow in lay-
ered superconductors or systems with twinning planes,
and they may be detected as peculiarities of the current-
voltage characteristics of the Auxon-array dynamics in the
presence of external magnetic fields.

We would like to thank Yu. M. Ivanchenko for useful
discussions.
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