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Interaction of vortices in uniaxial superconductors
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Parallel vortices in uniaxial superconductors may attract each other provided they are tilted
with respect to the principal crystal directions and the intervortex spacing is on the order of the
penetration depth. The vortex-vortex interaction potential and the line energy are evaluated
within London theory.

In the isotropic case, the interaction of two parallel vor-
tices separated by r is proportional to the field h of the
first at the core location of the second: a (t/tp/4»t)h(r), pp

being the flux quantum; it is assumed that r))g, the
temperature-dependent coherence length. ' The field h has
only one component parallel to the axis of the vortex it be-
longs to. When r is large with respect to the core size (,
London theory applies and yields s ppzKp(r/A, )/Str k .
Here k is the penetration depth and Kp is the modified
Bessel function.

In the anisotropic situation, the direction of the field h
of an isolated vortex is no longer parallel to the vortex
axis. Moreover, the h direction changes in space in a
complicated way. It has been shown, however, that the in-
teraction a is still given by the isotropic expression, in

which the total field h(r) is replaced with the projection
h, (r) upon the direction of the vortex axes (z).46 Thus,
the problem of interaction is reduced to that of finding the
spatial distribution h, (x,y) of an isolated vortex.

This work has been stimulated by the observation' that
along certain directions the field h, can change sign. This
implies a more complicated vortex-vortex interaction than
the well-known repulsion. Another indication of a "non-
trivial" interaction came from the recent calculations of
the energy for the formation of vortex chains in low fields
that show that the energy per vortex in the chain may be
lower than the energy of an isolated vortex. s The chain
formation has been observed earlier in (unpublished) nu-
merical calculations of the equilibrium flux-line latices by
the authors of Ref. 5.

Due to linearity of the London equations, the problem
of the field of an isolated vortex is readily solved in the
Fourier space:

h„(k) —h»(k)k„/k» pQ m„,k»/d,

h, (k) yp(1+X m„k )/d,

d (1+X m„k +X m k )(1+X m, k ).

Here m„m, sin28+m, cos 8 and m„(m, -m, )
xsin8cos8; m, , are eigenvalues of the dimensionless
"mass tensor" m;t, along the i,c axes of the uniaxial crys-
tal; 8 is the angle between the c and the vortex axis i; we
choose y c&z. In the notation of Ref. 2, m,~m, 1 and A,

is the (geometric) average penetration depth. The inverse
Fourier transform provides h(r). However, the integra-
tion in

(k) 2tr 22

m, 8 -h, (k) —h 2(k) .
BC

(2)

The first term reduces to the Fourier transform of Kp after
thescaletransformationk„' k, Qm„, k» k»Jm, :

Xhi(r) jm„Kp(pp), p$ +
m» m,

To transform the second term, we use the identity9

(3)

wl

(BC) i-~p du/[uB+(1-u)C]2

The denominator here is [1+a (u)k, +b2(u)k»2] with

a m„—(m„—m, )u, b rn, —(m, —m, )u.

Therefore,

(4)

h(r) h(k)exp(ik r)d2k/4tr2

is difficult analytically. One can simplify the numerical
problem using Feynman's method (see, e.g., Ref. 9) in re-
ducing multiple Fourier integrals to integration over finite
intervals. 'P

To simplify the notation we take A, as unit length and
measure the field in units of pp/2trA, . Next, we rewrite
h, (k) 2tr(1+m„k )/BC with B 1+m„k„2+m,k»2

and C 1+m, k in the form

m» —m, ~] t' d2$ ik r mzz ma ~1 X 2

hq(r) 2tr
" '

du du P K, (p) p'- " +
(2tt)' [1+a'(u)k'+b'(u)k']' 2m. "p ab ' a'(u) b'(u)

(5)

Equations (3) and (5) represent the field h, (r) -hi(r) —h2(r) exactly. In particular, one can verify that the total flux of
h, is iIip. Note that neither Ki (p) nor a (u), b(u) are singular in the integration domain of h 2, thus h 2 can be safely evalu-
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Ki (xv)dv—xJm, cos8
2

1 —v m~sin
(6)h, (x,O) Qm„Kn

jm„,

ated numerically.

ne m, m, and 2 vanis es, wne m, , h h whereas h ~ gives the known resultAt 8-n/2 (the vortex axis in the a-b plane), m„, n

2 t/2 q [/2

E (5) is performed explicitly to giveo«v m m„a(u) b(u)j, the integra m q.For the vortex parallel to c [8 0, m„m„a u

h i , hi h i th
'

tlo of th lane. After simpleL t onsider now the behavior of h, (x,O at the axis x, w ic ise usco
algebra we obtain from (3) and (5

/j d 1/Jm . At large distanceswhere vn 1/jm„an v~

with respect to )I, (x»1), the function K~(xv) decays ex-
'

ll h th change of v is on the order o 1 x.
One can expand the slowly varying function

vm— '
8) ' in the relevant domain (v —ve)-1/x

in powers o v —vg anf ( — ) d replace the upper integration
limit with c, provided

t

h, may be more convenient:

h, (r) Qm, cos 8Kn(pi)+ jm„sin 8Kp pn

2m m . 228 'du x K() K()"' a'b a'p

(10)
v~

—vn m, ' —m„' &&1/x. (7)

5/4
mzz ma 2g g

h (x,0)= — tan2
4m, x x

l/2
x

exp
jm„

(g)

Substitute now for K~ its asymptotic expansion up to t e
d d ) and carry out the integration; combining

the result with the asymptotic expansion for ~ n,
tains"

Here p(u) is defined in Eq. (5); pn p(0) and pi p 1

E . (3) pi ~(x +y )/m, ]. This represen-
tation is more symmetric: For the limiting va ues o
and ir/2, the integral term of (10) vanishes [unlike that of
Eq. (5)1, leaving either the first or the second term to sur-
vive. Equation (10) shows that h, (O,y) is always positive.

The striking feature of this result is tha t the field h, is
negative a arget lar e distances in accordance wit Ref. 7 see

'
n ener oesRef. 12). This means that the interaction energy g

through a minimum, which is like y1 to be situated at the x
axis, because the (c,z) [or (x,z)I plane is the only symme-

f the roblem, ' the conjecture confirmed by nu-

merical results. The position of this minimum x, a
portant feature of the interaction energy, is determine by

E
X

xm Kp(x~v)vdv
xppg jm~ cos8

2 2 I/2
mg sin

(9)

0

3.5

I

30
8(deg)

I I

60

can easil see that at 8 0 and 8 ir/2 [for a given

Equation (9) can be solved numen-

anisotropy y and in Fig. 1(b) for x (y at given vortex

Results of numerical evaluation of h, &x,y
given in Eqs. an. (3) and (5) are shown in Fig. 2. A shallow
minimum in ethe domain of negative h, x,y is c ear
seen ot in e peb h

'
the rspective plot of Fig. 2(a) and in ig.

2(b), which shows contours h, (x,y) cons.
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FIG. 1. The position x, (in units of k 0of the minimum in-

(a) vs orientation 8 of vortices with respect toteraction energy:
the crystal axis c for two values of y m, m, an
for two fixed angles 8.
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c earl in Figs. 2(a) and 2(b).is feature is seen clear y in
one can eva uate oUsing the same meth

h (x,y). Because t ere isponents of the fiel, „~ x,
are derivativesthe roblern, these two are

ho Fo ri t f
E. (i). o

ctor tential A„w ose o
im—„,k~/1 follows from Eq. . ne

he transverse field h«h„x+ ~y areThe stream lines of the
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b
1 t tli liGie t e e h(r, ca eau

(0)(,/2 ~ )first note that the contribution 2 in un'

finite:

m» —m,
h, (0)- du

"ti a(u)b(u)

O. I

e! jm, (1+ I cose! )cos8
l

a

jm„+jm, !cose!
(i2)

, il! I l (

I

X/X

(c)

ent art of h, (0) comes from hi(0)
'b '

o ho ld
'

h constant C on the
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(x, ) C 8 wit a con
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'
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h L d ppo h 0
ence cause dissipation. e c
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d within the on on a

se it b comparing wit e
.15f h li

h'1 /, o
theor or e

'-m, '}n(xm, , w i e a8-o, «(4rr~Ao
}n(xjm, m, ), where x' ts e r

and g, and the core corrections are(geometric) averages k an, an e
omitted. We then obtain

' 2
K4'

zz

jm, (}+)cose()

jm„+ icosei jm,

I

X/g

ive lot of the interac--dimensional perspective p
60' o ll 1tion potential for aa vortex incline at o

o t energies. The con-55. Dashed lines correspoond to negative e
h an intervalh- (x, ) are drawn wit an i

d tx 0. c T estream
verse fie t, inld h the first quadrant of t e x-y p

that the second contnbutio n in (13) hasIt is worth noting t a
fi 1 cutoff or the core

di ff h
with either the arti cia cu

o L Fth rea. son it is retaine mangular dependence o L. F t
t that the correction o

d Bttue to the core is omitte . e erder of magnitude ue o
r can be achieve ind

'
the frame ofment of the line energy

eor; still, Eq. 1 canGinzburg-Landu theory,
materials with x »1. g. Although |}«a

aches its minimumies the line energy approac es i
(13) b i d

ZZ

=55 the error is under 16%.
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