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Parallel vortices in uniaxial superconductors may attract each other provided they are tilted
with respect to the principal crystal directions and the intervortex spacing is on the order of the
penetration depth. The vortex-vortex interaction potential and the line energy are evaluated

within London theory.

In the isotropic case, the interaction of two parallel vor-
tices separated by r is proportional to the field i of the
first at the core location of the second: &= 1(go/47)h(r), ¢o
being the flux quantum; it is assumed that r>>¢&, the
temperature-dependent coherence length.' The field h has
only one component parallel to the axis of the vortex it be-
longs to. When r is large with respect to the core size &,
London theory applies and yields &=¢3Ko(r/A)/87%A%.
Here A is the penetration depth and K, is the modified
Bessel function.

In the anisotropic situation, the direction of the field h
of an isolated vortex is no longer parallel to the vortex
axis.2 > Moreover, the h direction changes in space in a
complicated way. It has been shown, however, that the in-
teraction ¢ is still given by the isotropic expression, in
which the total field 2(r) is replaced with the projection
h, (r) upon the direction of the vortex axes (z).*® Thus,
the problem of interaction is reduced to that of finding the
spatial distribution k,(x,y) of an isolated vortex.

This work has been stimulated by the observation’ that
along certain directions the field 4, can change sign. This
implies a more complicated vortex-vortex interaction than
the well-known repulsion. Another indication of a “non-
trivial” interaction came from the recent calculations of
the energy for the formation of vortex chains in low fields
that show that the energy per vortex in the chain may be
lower than the energy of an isolated vortex.® The chain
formation has been observed earlier in (unpublished) nu-
merical calculations of the equilibrium flux-line latices by
the authors of Ref. 5.

Due to linearity of the London equations, the problem
of the field of an isolated vortex is readily solved in the
Fourier space:? ™3

hy(k) = —h, (K)k./k, =9or’m.k}/d ,
h, (k) =¢o(1 +A’m,.k?)/d (1)
d=+12m k2 4+12m k) +22mak?) .

d2k eik-r

Here m,, =m,sin?0+m.cos?0 and m,, =(m,—m.)
xsinfcos@; m, . are eigenvalues of the dimensionless
“mass tensor”” m;; along the 4,& axes of the uniaxial crys-
tal; @ is the angle between the € and the vortex axis Z; we
choose §=¢&xZ. In the notation of Ref. 2, m2m. =1 and A
is the (geometric) average penetration depth. The inverse
Fourier transform provides h(r). However, the integra-
tion in

h(r) -fh(k)exp(ik' r)d*k/4x?

is difficult analytically. One can simplify the numerical
problem using Feynman’s method (see, e.g., Ref. 9) in re-
ducing multiple Fourier integrals to integration over finite
intervals. '°

To simplify the notation we take A as unit length and
measure the field in units of ¢o/27tkz. Next, we rewrite
h.(k) =2z(1+m,,k?)/BC with B=1+m,k2+m.k}?
and C=1+m,k?in the form

2
mg

h. (k) = B BC

Maz _ Mz~ Ma ]-hl(k)—hz(k). )

The first term reduces to the Fourier transform of Ky after
the scale transformation ky =k~/m,;, k, =k,~/m,:

2 2
h(r) =/m..Ko(po), pg=—=>—+2L—. 3)

mZZ m(‘

To transform the second term, we use the identity’

I
BO) ™' = [ du/luB+(1—u)C12.
The denominator here is [1+a2(u)k2+b2(u)k?]1? with

m

hy(r) =27rﬂ"—_;—”1a— J;ldu f

@2m)? [1+a2wki+b2(w)k?

al=m,, — (my; —mydu, b*=m.—(m.—mg)u. 4)
Therefore,
Mzz = Mg ! P 2 x? 2
- - 2L
2m, Jy au i S TR R

()

Equations (3) and (5) represent the field h,(r) =h,(r) — h,(r) exactly. In particular, one can verify that the total flux of
h; is ¢o. Note that neither K;(p) nor a(u), b(u) are singular in the integration domain of k; thus h; can be safely evalu-
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ated numerically.
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At 8=r/2 (the vortex axis in the a-b plane), m., =m, and h; vanishes, whereas h gives the known result

h(@=r/2) =Kol(x*/m,+y?*/m.) ")/ (mym.) 2.

For the vortex parallel to ¢ [6=0, m,, =m,, a(u) =b(u)], the integral in Eq. (5) is performed explicitly to give

h(0=0) =Ko(r/~/ma)/myg, as it should.

Let us consider now the behavior of A, (x,0) at the axis x, which is the projection of ¢ upon the x-y plane. After simple

algebra we obtain from (3) and (5)

Kl(xv)dv

hz(x,0)=-\/mzzK0l X ]—x\/;n_pcos()fro(

mZZ

where vg=1/</m., and v, -1/\/7n7. At large distances
with respect to A (x> 1), the function K(xv) decays ex-
ponentially when the change of v is on the order of 1/x.
One can expand the slowly varying function (1
—v2m,sin?0) ~'/2 in the relevant domain (v—uvq)~1/x
in powers of (v—vg) and replace the upper integration
limit with oo, provided

vi—vo=ms P—m,; 2> 1/x. @)

Substitute now for K its asymptotic expansion (up to the
second order) and carry out the integration; combining
the result with the asymptotic expansion for K, one ob-
tains''

h,(x— o0,0)= Y

\mgz;
(8)

The striking feature of this result is that the field 4, is
negative at large distances in accordance with Ref. 7 (see
Ref. 12). This means that the interaction energy goes
through a minimum, which is likely to be situated at the x
axis, because the (c,z) [or (x,z)] plane is the only symme-
try plane of the problem,® the conjecture confirmed by nu-
merical results. The position of this minimum x,,, an im-
portant feature of the interaction energy, is determined by

Ko(xmv)vdy
1—v2m,sin20)12 "

K,

i:zz ]=x,,,\/mfcosefv;‘l (

9

One can easily see that at §=0 and 8=r/2 [for a given
anisotropy ratio y =(m./m,) '], the only solution of this
equation is x, =oo. Equation (9) can be solved numeri-
cally; examples are shown in Fig. 1(a) for x,,(8) at given
anisotropy y and in Fig. 1(b) for x,(y) at given vortex
orientation 6.

Results of numerical evaluation of A,(x,y)=h,—h;
given in Egs. (3) and (5) are shown in Fig. 2. A shallow
minimum in the domain of negative h,(x,y) is clearly
seen both in the perspective plot of Fig. 2(a) and in Fig.
2(b), which shows contours h,(x,y)=const. To em-
phasize peculiarities of the interaction potential, we have
chosen y =55 (corresponding to Bi,Sr,CaCu;0g, Ref. 13)
and 6=60°.

In some applications another representation of the field

1—0v2m,sin20)'? "’

1/2
_matma g 2| ep - —2
2x )

(6)

r
h, may be more convenient:

h.(r) = /m cos?0K o(p,) +/m.. sin?0K o(py)

I 2

du ["Tmp)—xo(p)
a’p

_m-——m; .,
5 sin“26 0 2

(10)

Here p(u) is defined in Eq. (5); pp=p(0) and p; =p(1)
[po is given in Eq. (3), p?=(x?+y?)/m,]. This represen-
tation is more symmetric: For the limiting values of =0
and n/2, the integral term of (10) vanishes [unlike that of
Eq. (5)], leaving either the first or the second term to sur-
vive. Equation (10) shows that 4.(0,y) is always positive.

(a)

Xm/ A

Xm/ A

FIG. 1. The position x, (in units of A) of the minimum in-
teraction energy: (a) vs orientation 8 of vortices with respect to
the crystal axis c for two values of y=(m./m,)"? and (b) vs ¥
for two fixed angles 6.
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FIG. 2. (a) Three-dimensional perspective plot of the interac-
tion potential for a vortex inclined at 60° to the c crystal axis;
y=155. Dashed lines correspond to negative energies. The con-
tours of constant h.(x,y) are drawn with an interval
0.1(go/2712). (b) Contours of h:(x,y) =const in the first qua-
drant of the x-y plane (with the same increment); the vortex
axis z is situated at x =y =0. (c) The stream lines of the trans-
verse field hy, in the first quadrant of the x-y plane.
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This feature is seen clearly in Figs. 2(a) and 2(b).

Using the same method, one can evaluate other com-
ponents of the field, A, ,(x,y). Because there is no z
dependence in the problem, these two are derivatives
of the vector potential A,, whose Fourier transform
—imy.k,/d follows from Eq. (1). One obtains
my; U du

——Ko(p).

1)
2 YJo ab3

A, (1) =

The stream lines of the transverse field h,=h.x+h,y are
given by the contours A,(x,y) =const. An example of
hi(x,y) is given in Fig. 2(c).

Given the field A;(r), one can evaluate the line energy
of a single vortex &, =goh,(r— 0)/87.2~* In doing so we
first note that the contribution #2(0) (in units ¢o/27A2) is
finite:

mz; —mg ! du
h2(0) 2m, j;) a(u)b(u)

— lcos8| In ma(1+ | cosb|)
Ma g +/m. | cos8|

The only divergent part of h,(0) comes from h,(0)
~Ko(po). Evaluating this contribution one should use a
cutoff at some po(x,y) =C(0) with a constant C on the
order of the coherence length &. Physically, this corre-
sponds to an elliptical contour of the vortex core chosen so
as to coincide with the stream lines of the persistent
current, i.e., with a cylinder h,(x,y) =const. Any other
choice would imply that current lines cross the “core sur-
face” and hence cause dissipation.!* The constant C can-
not be determined within the London approach. One can
instead choose it by comparing with the results of the
Ginzburg-Landau theory for the line energy:!> at
0=0, g, (471 /90) > =m, 'In(xm,), while at 6=r/2, one
has (mgm.) ~"2In(x~/mym.), where x is the ratio of
(geometric) averages A and &, and the core corrections are
omitted. We then obtain

2
4nh K
o [_] - Jhn
m,

b0 Mg

12)

ma(1+ | cos6|)
++/m.|cos@| In ma( | cos6 |

Jm,; + | cos8| /m. .
(13)

It is worth noting that the second contribution in (13) has
nothing to do with either the artificial cutoff or the core
energy; it is a part of the London energy and it affects the
angular dependence of ¢,. For this reason it is retained in
(13), despite the fact that the correction (of the same or-
der of magnitude) due to the core is omitted. Better treat-
ment of the line energy can be achieved in the frame of
Ginzburg-Landu theory; still, Eq. (13) can be used for
materials with x> 1. Although 9¢,/860=0 at 8=x/2, for
high anisotropies the line energy approaches its minimum
at n/2 very steeply. The energy (13) can be approximated
by «/m..In(xy/m..) with less than 5% error for y=5; for
y =55 the error is under 16%.
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