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Regular fractal models of snowflakes and critical dynamics of the kinetic Ising model on fractals
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A group of regular fractal models for real snowflakes is proposed on a triangular lattice. The
scaling form of the dynamics exponent of the kinetic Ising model on this group of fractal models,

Z Df+2/v, is found by the exact time-dependent renormalization-group method. The dynamics

exponent Z Df+3/v is suggested for real snowflakes. Critical-dynamics behavior of the kinetic

Ising model on fractals with R;. 2 is investigated. The universal form of the dynamics ex-

ponent Z Df+R/(2v) is suggested for fractals with R;. 2.

Recently, more and more attention has been given to
the diA'usion-limited-aggregation (DLA) model. Many
phenomena are described by the DLA model. One of the
most interesting of these phenomena is the snowflake. ' It
has been fascinating human beings for many centuries due
to its delicate features. The DLA model has deepened our
understanding of it, but this is far from satisfactory.
Here, we study the critical dynamics of the kinetic Ising
model on snowflakes.

We introduce a group of regular fractal models as an
approximation to real snowflakes. This is an extension of
the Christon and Stinchcombe work with a triangular
lattice. This group of regular fractals must characterize
the most important feature of the snowflakes' sixfold sym-
metry Obvious. ly, they must be dendritic and have suit-
able dimension. First, we define that a fractal with a point
as the smallest unit is the site model of the fractal. Simi-
larly, a fractal with a bond as the smallest unit is the bond
model of the fractal. Koch curves are examples. The
fractals proposed in this paper are represented by the site
model. A seed has N generations. Such a fractal has
Df ln(N)/ln(b), where b is a rescaling factor. The sim-
plest regular fractal is shown in Fig. 1. The fractal of Fig.
2 has Df ln391/ln35, which is very near the Monte Carlo
result of 1.678 for snowflakes.

An Ising spin is set on every point of the fractal. Here,
the bonds connecting points of the fractals stand for in-

teraction between the spina. We study the kinetic Ising
models on fractals by the time-dependent renormaliza-
tion-group (TDRG) method. We will not repeat state-
ments about the TDRG method here, and employ all
TDRG equations and notes from Ref. 6 in the following
study. We define decimation as the multiple b function
Q;-&&(p; —cr, ) (see Fig. 1), and only study magnetic
perturbation.

Up to now, critical dynamics of the kinetic Ising model
has only dealt with a few kinds of fractals. Also, a set
of geometrical parameters has been introduced to classify
the universality classes. 9 The most important one is the
order of ramification R. Gefen, Mandelbrot, and Aharo-
ny9 showed that an Ising system located on a fractal with
R;„(~ has no finite-temperature transitions (T, 0
only). One of the aims of this paper is to try to under-
stand the relation of R to critical dynamics.

First, we perform TDRG on the simplest fractal model
(see Fig. 1). The fractal in any stage (N~ 2) can be
made up of the three kinds of basic structures, which have
a four-spin linear cell with 0, 4, and 5 hanging spina. The
field parameters h~, h2, and hs relate the points with the
nearest interacting numbers 1, 2, and 6, respectively. Fol-
lowing the decimation of Fig. 1, we start from Eq. (7) of
Ref. 6. After taking the trace, the first term on the left-
hand side is transformed into Q;A, t;)e

"'"' with A, t;)
1[(2coshk)'t')4coshsk]/coshk'l k' tanh '(tanhsk),

N=1
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FIG. 1. The simplest regular model for snowflakes. The re-
scaling factor of length is b 3. The fractal dimension Df
-ln7/ln3.

VV
FIG. 2. The generator of the generalized regular model of

snowflakes. b 35, Df ln391/ln35.
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and s(i) 0,4, 5 indicates the number of hanging bonds at
point i. There is only an unstable fixed point at K
The transformation of the second term is described by the
following recursion relationship of the field parameters:

hI -5b+a+h6, hq 4b+2a+h6, h6 6a+h6. (1)

In Eq. (1), b tanhkh~ comes from a hanging spin while
a [[tanhk(l+tanhk)]/(1+tanh k)]hi is from a linear
cell. The matrix A has the eigenvalues 7, 1, and 0 at
k ~ (tanhk 1). The transformation of the field pa-
rameters is h» b ~h» at the critical point. The magnetic
perturbation contributes Dr to the dynamics exponent Z.

The right-hand side of Eq. (7) of Ref. 5 becomes
the terms [(4cosh k) /Ao]P, 'W'(p)h6p, [(4cosh k)/A5]
&P,'W'(p)hsp, [(4cosh~k) /(A4Ao)]P, 'W'(p)h6p, which
result in h6, hI, hq, respectively. The matrix 0 [a;,I
(ij 1-3) only has three nonzero elements, which
are a~i coshk'/(32cosh6k), aqq coshik'/(16cosh6k),
a33 cosh k'/cosh k. So W,„, the largest eigenvalue of
the matrix 0, is equal to cosh 6k'/cosh 6k. From
k' tanh '(tanh k), W,„can be rewritten as b
with v 1 at k ~. So, the right-hand side of Eq. (7) of
Ref. 6 contributes 3/v to Z. The scaling law of the dy-
namics exponent Z DI+3/v is found. In the following
study, we will show that it is universal to a group of regu-
lar fractal models for snowflakes.

FIG. 3. One of the basic structures of the fracta1 of Fig. 2
and the renormalization procedure.

So, we perform TDRG on the generalized fractal model
for snowflakes, which is generated by Fig. 2. The three
kinds of basic structures of the fractal are the basic cell of
Fig. 3 with 0, 4, and 5 hanging parts, which is a —,

'
part of

Fig. 2 except its seed point, respectively. The field param-
eters are still hi, hq, and h6 as before. After Fig. 3's de-
cimation, we obtain k tanh '(tanh "k) and A, &;&

[[(2coshk)'t' (2coshk) 2 cosh k]/coshk'} with s(i)
0, 240, 300, which is the number of hanging spins at

point i.
As we have done in Ref. 6, it is easy to show that a

hanging spin contributes the factor h ~
tanhk to h» and the

basic cell shown in Fig. 3 denotes the factor

a [hitanhk+hqtanh~k+hqtanhik+(4h~tanhk+4h6)tanh k+
+hitanh' k+(20h~ tanh'k+4hqtanh k+4hqtanh'k+4hqtanh k+4h6tanh k+h6)

&tanh "k+ +hi tanh' k]/(1+tanh "k) (2)

to h». So the recursion relations of the field parameters are

hI b+a+h6, hi c+2a+h6, h6 6a+h6,

with

b (125tanh' k+20tanh k+20tanh k)h~

+(25tanh' k+25tanh' k+25tanh' k+Stanh''k+5tanh' k+5tanh k+Stanh k+Stanh6k+Stanh k

+Stanhik+Stanh k+Stanhk)hi+(25tanh' k+Stanh' k+5tanh k+5tanh k)h6,

c (100tanh' k+16tanh k+16tanh k)h
~

+(20tanh' k+20tanh' k+20tanh' k4tanh''k+4tanh' k+4tanh k+4tanh k+4tanh k+4tanh5k

+4tanh k+4tanh k+4tanhk)hi+(20tanh' k+4tanh' k+4tanh k+4tanh k)h6.

(4)

(5)

From Eqs. (2)-(5), the matrix A can be written out. At
k ~ it has eigenvalues 391,-1, and 0. The largest one
X .,„-391 can be rewritten as b I (b 35, DI ln391/
ln35). The h» -b h» is obtained again at k -~. The
magnetic perturbation contributes Dy to Z.

It is not diflicult to show that W .,„ is equal to
cosh6k'/cosh k with k tanh '(tanh k) on any one of
this group of fractals and can be rewritten as b i" with
v 1. So the right-hand side of Eq. (7) of Ref. 6 always
contributes 3/v to Z. We get Z DI+3/v again.

Up to now, we have shown that there is the scaling law
of the dynamics exponent Z DI+3/v on this group of
fractal models for snowflakes and that v is always equal to

I

1. Through the above investigation, we arrive at the fol-
lowing conclusions.

(i) We introduce a group of fractal models for
snowflakes. By the exact TDRG method, we find that
there is a universal scaling form of the dynamics exponent
of the kinetic Ising model Z DI+3/v on this group of
fractals and that v is constant on them. So this group of
fractal models characterizes essential features of
snowflakes and is a reasonable model for snowflakes.
Therefore, we suggest the dynamics exponent of the kinet-
ic Ising model Z DI+ 3/v for snowflakes.

(ii) In the renormalization transformation, the parame-
ters [h»j form a constant subspace in the large parameter



42 BRIEF REPORTS 2609

space of the RG. The parameters fhq} involve all impor-
tant information produced in the RG transformation.
We find that the h~ consist of the factors tan hk,
tanh k, . . . , tanh "k, . . . . Because the parameter k is pos-
itive (antiferromagnetic system), the contribution above
the factors hq is additive as the pieces of small mass be-
come large ones. When the system arrives at the critical
point (k ~), all the factors become l. At this time,
each factor behaves as the unit mass of a fractal. The
change of jhq} caused by these factors from the renormal-
ization is just like that of the mass M of a fractal. So, the

hq b hq like the M' b M is the typical scaling form
of jhq} in critical area. Because an Ising spin system lo-
cated on a fractal with R;„&~ only has a zero-
temperature transition, k ~, we can conclude that the
magnetic perturbation of the master equation contributes
Df to the dynamics exponent Z of the kinetic Ising model
on fractals with R;„&eo. Therefore, the dynamics
exponent Z has the form Df+f(R, v) for all fractals with
R;„&~. What is the f(R, v)? It comes from the con-
tribution of the Liouville operator, which is a response to a
spin wave. The correlation between Ising spins is the key
factor to f(R, v). When R;„2,v is finite for Ising sys-

tems on fractals, however, when R;„)R, 3, v ~ for
Ising systems on fractals. So, Ising systems on fractals
with R;„2 and R;„~3 have essential diA'erences.
Having considered all the studies here and before, we
write

W,„(coshk'/coshk) - (dy'/dy) i b (6)

for fractals with R;„2. In more detail, W,„
b '* "

is for site models of fractals and W,„
b '" '

is for bond models of fractals. So, we con-&mini~ ~

elude that the dynamics exponent of the kinetic Ising
model on fractals of R;„2is

Z Df+ R/(2v) (7)

with the condition that if the fractal is a site model,
R R,„ in Eq. (7), if the fractal is a bond model,
R R;„in Eq. (7).
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