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Path-integral representation and critical properties of the quantum Potts model
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A path-integral representation for the d-dimensional q-state quantum Potts model has been ob-
tained starting from the microscopic Hamiltonian. The terms in the functional Hamiltonian,
which are relevant in the renormalization-group sense, are given explicitly up to a quartic term in

the order-parameter field. The critical properties of the model at zero temperature near five di-

mensions are analyzed within the field-theoretic renormalization-group approach with the help of
the minimal subtraction method. In particular, some critical exponents to first order in e 5 —d
are presented, and the occurrence of a d d+ 1 dimensional crossover is pointed out.

The q-state Potts model, as a possible generalization of
the Ising model, has attracted a great deal of attention in
condensed-matter physics. It exhibits much richer criti-
cal properties but much less is known about it. In particu-
lar there have been several attempts to understand the na-
ture of its phase transitions by varying the lattice dimen-
sion d and the number of states q regarded as continuous
parameters.

A new investigation into the properties of the model has
been made by looking at its quantum version. The d-
dimensional q-state quantum Potts model is worthy of
study for its own sake both for possible applications in sta-
tistical physics and for its relevance in understanding the
physics of elementary particles at very high temperature. 5

The initial motivation for studying the quantum Potts
model was the underlying belief that the d-dimensional
classical models and their (d —1)-dimensional quantum
counterparts have the same phase diagrams and lie in the
same class of universality. This is certainly true for the
d 2 classical Potts model case where the exact Baxter re-
sults can be carried over to the one-dimensional quan-
tum model and they are borne out in higher dimensions by
approximate calculations. However, no definitive con-
clusions have been drawn for any d and q. Up to now,
mean-field and real-space renormalization-group
(RG) calculations have been realized by working on the
quantum lattice model. Unfortunately, the real-space RG
transformations are not free from ambiguities and uncon-
trollable approximations which prevent reliable results for
realistic values of d and q from being obtained, and may
fail to predict correctly the order of possible phase transi-
tions. So, it would be desirable to have RG transforma-
tions which have little arbitrariness in them and allow for
systematic improvements.

In this Brief Report we present a path-integral repre-
sentation of the q-state quantum Potts model in d dimen-
sions which gives the possibility of conveniently studying
its critical properties and the role of quantum Auctuations
by varying q and d with the use of the reliable techniques,
as the field-theoretic and Wilson RG treatments, well es-
tablished for other quantum models. ' As an evidence of
the effectiveness of our functional representation, we ap-
ply the field-theoretic RG near five dimensions for arbi-

trary values of q. In particular the effects of quantum
fiuctuations are pointed out: a dimensional crossover
d d+1 occurs as the temperature goes to zero.

An analogous study in the vicinity of three dimensions
is not so immediate and a detailed analysis will be present-
ed elsewhere.

The quantum model we shall consider is described by
the Hamiltonian
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where
~ cr)J (o 1, . . . , q) denotes an eigenstate of the

spin operator QJ at the jth site satisfying the relations

I rr+nq)J I ~&J (n 0 «1 «» (5)

It is easy to show that

We shall find it convenient to work in the representation
{~A.),';k-l, . . . , q} in which M, is diagonal with

M, ~X),'-ro " "~&),', (7)

Jh

where the eigenstates ~A, )J' of MJ in the representation

where J;J and I denote the ferromagnetic exchange cou-
pling and a transverse field, respectively, and the sums on i
and j are assumed to be over the N sites of a regular d-
dimensional hypercubic lattice.

In Eq. (1), re, , Q~' (a 1, . . . , q
—1), the spin opera-

tors Q~ and MJ commute for different sites and, on a
given site, they obey the Zq algebra'

MQ ro 'QM, M Q roQM, Qv Mv I, (2)

where I is the identity operator, ro e "~v and the dagger
denotes the Hermitian conjugation. In the representation
{( o)~;cr 1, . . . , q} in which QJ is diagonal, one has
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where the Potts coupling is diagonal are expressed by where h = [h~,j is an auxiliary field,

—I/2 (I.—I)(a- I)
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e 1

Here it is also
~
A+, nq)J ( k)J and we have
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Notice that, owing to Eq. (6), one can put the Hamiltoni-
an in the form
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With Xa p ha+ p q.
The microscopic model (11) can be mapped in an

imaginary-time path-integral representation. Indeed, the

partition function can be written as"
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In Eq. ($4), T, denotes the r-ordering operator and

g, .(r) -e'"'qj, ae
Now, we use the functional identity"
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where C is a normalization constant,

~ IIT-ZZ„, d~,.(),
and J ' denotes the inverse of the exchange matrix J (J").

Then, apart from an inessential constant factor, we find

fO
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where the functional Hamiltonian P lpj, expressed into functional power series of the fields [p,,(r)j, has the general
form
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Here p,,(r), with p,,(r+n/T) p,,(r) (n 0, +'1, ~ 2, . . .), represents the order-parameter field on the d-dimensional

hypercubic lattice,

u„(J)(rl, . . . , r„)-—(T,g.,..(rl) it, ,.(r„)&p""',

and ( . &(I'" is the irreducible part of
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By neglecting higher-order terms which are irrelevant in the RG sense, with some algebra taken into account [Eqs.
(S)-(10)l, the functional (19) reduces in the low temperature (I /T » 1) and continuum limits to
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with
k —1

~a, , . . . , a, Z ba, + +a, e nq s

n 1

Aa&, . . . ,a~ 3 +a~.aga3, aq+ ~a~.aPagag+1ta~, agagay)

(23)

In Eq. (22), y, y (x, r) is the order parameter field in

the (x, r) space and the coefficients cp, rp, wp, and Up are
expressed in a simple way in terms of the lattice spacing a,
the transverse field I, the number of states q, and the
defined positive parameters Jp g,J;, and

J( Jp 'g[(x; -x, )/a]'J;, .
J

I

It is immediately seen that, for the two-state quantum
Potts model, one has a„ 1 (v 1, . . . , 4), 1,„„1,

0, and the functional (22) reduces to
that ~e}l known for the transverse Ising model.

As T 0, the quantum nature of the model becomes
relevant and the Matsubara frequencies rol 2xlT (I 0,
+ 1, +' 2, . . .) in the Fourier representation of the fields

d

-/
(24)

become a continuous variable. Then, with an appropriate
rescaling of the fields, at T 0 Eq. (22) reduces to
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where

4p d~p/(2ir) ~
& Ipl (A dro/2rr, Hp) (2ir) ~b(p), Hro) -2mb(ro) .4 QP 4 —oo

rp rp Z2(w)p he, (26)

with rp —r~ const, where h (I —I;)/I, is the trans-
verse field critical deviation, Z2 denotes the renormaliza-
tion constant and rp, (I,) is determined by the equation
I 2(p 0, ro 0) 0 for the two-point vertex function
I z(p, pi). Here w and p depend on the RG parameter I.

Then, using the minimal subtraction method' and Eq.
(26), one obtains at the one loop level the following RG

The functional Hamiltonian (25) has two borderline di-
mensions d 3 and d 5. For a RG study of the criti-
cal properties of the (T 0) quantum Potts model in the
vicinity of five dimensions it is sufficient to preserve in
(25) the cubic terms only. The quartic couplings become
relevant near three dimensions. Here we limit ourselves to
analyze quantum criticality near d 5 within a field-
theoretic RG approach via the minimal subtraction
method.

The functional Hamiltonian (25), considered up to
0(yi) terms, is renormalizable for d ~ 5. In order to for-
mulate the corresponding renormalized theory without ul-
traviolet divergences, we introduce the renormalized pa-
rameter w related to the bare wp as

p '~'wp Z, '~'(w)Z (w)w=g(w)

and the rescaled field lv, (P, ai) Zv
'~ (w) y, (P,oi).

Here p denotes an arbitrary renormalized momentum
unit, e 5 —d and Z~ and Z are renormalization con-
stants.

Now, we define the RG parameter —ao & I & + aa by
the relation

l

equations:

p ——w 1 — (10—3q)w
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du 2 32e
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with the initial conditions p p and w w for h 1 and
K ~2 x /I (d/2). Heie,

v(w) —1—lo(q —2)
2 32

W2 (29)

w'w "l[w'+(w" —w')(p/p)e], d & 5,
w

w /[1 ——,', w (10—3q)ln(p/p)], d 5, (3o)

and the correlation length exponent for d ~ 5 is given by

lo(q —2)v- v(w') -
2 1 — e+O(e')

3 (10—3q)
(31)

Other critical exponents can be obtained in the usual
~ay 10

and we have assumed h as the scaling variable by using
the condition he' l.

Equation (27) has two fixed points: (i) the Gaussian
fixed point, stable for d ) 5, with w 0 and scaling ex-
ponent y ~ —e/2; (ii) a nontrivial fixed point, stable for
d ~ 5, with w [32K'/3(10 —3q)]e and y„. e. It has
physical sense for q & —", . In this case, the nonlinear solu-
tion of Eq. (27) reads
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Notice that for q ) '&' only the Gaussian fixed point is

physical, but it is unstable for d (5 and no continuous
phase transition may occur. Thus, for the quantum Potts
model at T 0 one has q, (d (5)

Comparing the quantum critical exponents with the
corresponding classical ones, ' it immediately follows that
the dimensional crossover d d+ I occurs also in the
present quantum model near five dimensions. ' Prelimi-
nary RG calculations indicate that a different picture of

the quantum fluctuation effects may appear in the vicinity
ofd 3.
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