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Stretched-exponential behavior in Ising critical dynamics
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By use of Monte Carlo simulations in 10002 and 100° Ising systems in the para phase, magnet-
ic relaxation is shown to have a Kohlrausch-type stretched-exponential behavior, M (¢)
~exp(—1/1)?, 0<a <, for t <t and normal Debye relaxation with a=1 for 7 > t.; the cross-
over time t. diverges near the transition point 7,.. The average relaxation time r shows normal
critical slowing down: t~(7—T,.) ™", vz=1.8 and 1.1 in dimensions 4 =2 and 3, respectively.
We find a=0.33 for d =2 and 0.4 for d =3. These are compared with previous observations of
stretched-exponential relaxation and critical slowing-down behavior of Ising critical dynamics.

The study of relaxation of some average macroscopic
variables, before the (many-body) system reaches equilib-
rium (thermodynamic or statistical), has recently become
a subject of great interest. The phenomenon has been
studied, experimentally and using computer simulations,
in a widely different class of systems. The systems studied
include polymers, glasses, spin-glasses, etc. '

The critical dynamics near ordinary (continuous) phase
transitions, which have been extensively studied, show a
typical relaxation behavior?

1:(T) =ne(T) — A(T)exp(—1t/7) (1)

for the response function 7,(T). The relaxation time
7(T) shows a critical slowing down, as the critical point
T, is approached, with an exponent vz

~&~(T-T.) ™", (2)

where z is the dynamic exponent and v is the exponent
with which the correlation length & diverges near 7.. For
a random statistical system near its fluctuation driven
singular (percolation) point? p.,

t~&~(p—p) . 3)

The value of the exponent vz depends on dimension (d),
as well as on the symmetry.

An altogether different critical dynamics was suggested
to characterize relaxation phenomena of glassy systems
where, near the glass transition temperature T,, the
response function 7, (T’) is observed to behave as follows:

1 (T) =ne(T)— A(T)exp(—t/1)°, 4)

where 0 < a < 1. A careful analysis of the different obser-
vations* indicates that a tends to a constant value § as T
approaches the glass transition temperature T,. The form
of Eq. (4) is commonly known as the Kohlrausch
stretched-exponential form. The relaxation time 7(7) in
some cases (of glass) is observed to show the so-called
Vogel-Fulcher® behavior which is considered to be the
most important characteristics of the following glassy re-
laxation behavior:

t~expll/(T —Ty)1, (5)

where To < T, in general. Different novel mechanisms®
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have been suggested to explain this anomalous dynamical
behavior [Kohlrausch stretched-exponential (4) and
Vogel-Fulcher behavior (5)] in glasses using models in-
volving a hierarchically organized set of free-energy bar-
riers or using Lifshitz-like arguments for the density of
states in the tail of random matrices. Accurate (simula-
tion) data’ ~° for spin-glass relaxations indicate, however,
a critical slowing-down behavior [cf. Eq. (2)], rather than
Vogel-Fulcher-type behavior, for the temperature varia-
tion of 7.

An important observation found in recent years was
that this stretched-exponential [a <1 in (4)] behavior is
also found in pure Ising dynamics,'®'" and in simple dis-
ordered (percolating) systems.'? Although the stretched-
exponential behavior is observed in these systems, none of
these systems obeys Vogel-Fulcher law for the average re-
laxation time t; rather, normal critical slowing down
(r~&7) is observed.

The critically slow dynamics [of, say, the magnetism
M (¢)] of Ising systems near T, has been extensively stud-
ied using Monte Carlo, etc., simulations.>'* Such relaxa-
tion data, for normal critical phenomena, have traditional-
ly been fitted>!? to the simple exponential form, with
a=1 [in (4)], and one estimates the dynamic exponent z
[in (2)]. Indeed, systematic deviations (indicating & < 1)
were clearly observed'® for early (small-time) relaxation
data, when fitted to the simple exponential form. These
deviations (which become prominent as T approaches T.)
were, in fact, attributed as errors (which is rather sys-
tematic than random) or nonlinear relaxation behavior in
relaxation time r.'> As mentioned before, a stretched-
exponential relaxation behavior (@ < 1) has recently been
observed and recognized for Ising critical dynamics very
near the transition point 7. 10.11 These observations are,
however, restricted to the determination of a and not ex-
tended to that of z. We repeated the study of dynamics
for fairly large Ising systems and we show that the Monte
Carlo simulation data for (pure) Ising systems all fit with
the relaxation type (4) with @=0.33 and 0.40 for d =2
and 3, respectively, for times (Monte Carlo steps) ¢ below
a crossover time ¢.(T), above which a crossover to a=1
occurs. . is usually very small (of the order of 10 Monte
Carlo steps for Ising systems for 7/T.==1.1 in 3D) and
diverges near T, [t. e ™%, e=(T —T,)/T,; we could not
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estimate the exponent x from our datal. The relaxation
time t has the usual critical slowing-down divergence
1~E"~e Y lasin (2)]; vz=1.8 and 1.1 in d =2 and 3,
respectively.

We have studied the dynamics of two- and three-
dimensional Ising systems with system size 10002 and
100°, respectively, and the study has essentially been
confined to the para state (T/T. > 1.0). Our range of ob-
servation has been 1.01<T/T.<13 in d=2 and
1.005=<T/T, < 1.100 in d =3. The critical temperatures
were taken as equal to 2/In(1++/2) (d =2) and equal to
4.5111493 (d=3)."

The simulation results are shown in Figs. 1-3 for a
square lattice and in Figs. 4-6 for a simple cubic lattice.
The results show that for both d =2 and 3 we get a devia-
tion from the straight line in the first few steps (~40 for
d=2 and ~10 for d =3 for T/T,=1.10) in the InM(¢)
vs ¢ plot (Figs. 1 and 4). This clearly shows that the relax-
ation is certainly not simple exponential (in at least the
first few steps up to ¢.) and cannot be associated with a
single value of relaxation time . However, after these
few (z.) steps, the magnetization shows an exponential de-
cay, and this ¢, increases as T/7.— 1.0.

The best fit of InM (¢) variations for ¢ <t. seem to be
obtained with ¢ %33 in two dimensions and ¢%° in three di-
mensions (Figs. 2 and 5), indicating that the possible
fitting is of the stretched-exponential type having ex-
ponent @¢==0.33 for d =2 and 0.40 for d =3. We do not
find the value of a to depend on temperature and converge
to the value § as T— T, as observed in spin glasses.* It
seems that for pure Ising systems (as in percolating sys-
tems'?) the exponent a is only dimension dependent.

In the InM(¢) vs t curves (Figs. 1 and 4), we see a sys-
tematic increase in the curved portion (for which a <1)
as T/T. approaches unity. This indicates that the cross-
over time ¢, after which a=1, increases as T— T. (al-
though no exponent value could be determined for its
divergence near T,). The slope of the curve for ¢ > ¢,
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FIG. 1. Time development of magnetization M (1)/M(0) for
different temperatures, 7/7. =1.01, 1.03, 1.05, 1.07, 1.10, 1.20,

and 1.30, respectively (from top to bottom). Lattice size is
10002,
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FIG. 2. A possible fitting of M (1)/M(0) vs ¢° to an exponent
value ¢ =0.33 in d =2.

gives 1/7. We have plotted 7 (Figs. 3 and 6) and get 1.8
and 1.1 for the exponent (vz) values for the  divergence
near T, in d=2 and 3, respectively (compared to*'?
vz=2.0 and 1.4 in d =2 and 3). Vogel-Fulcher-type be-
havior is neither expected nor observed.

Although the effects are thus clearly there, the origin of
the stretched-exponential relaxation behavior (even for
disordered or para phase at T > T,) for normal critical
dynamics of (pure) Ising systems is still not very clear. It
may be mentioned that in the ferro phase (T <T,) a
stretched-exponential behavior (¢ = § for d =2 and a=1
for d = 3) has been argued'* for asymptotic relaxation
(t — o) over droplet fluctuations; specifically, stretched-
exponential behavior should occur for ¢ > ¢/; where ¢, is
some appropriate crossover time such that a=1 for ¢t <¢/
and a<1 for 1>1,. Apart from numerical disagree-
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FIG. 3. Variation of relaxation time 7~ ' against . Inset:
The log-log plot giving the exponent vz==1.8 in 2D.
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FIG. 4. Time development of magnetization M (t)/M (0) for
different temperatures; T/7T. =1.005, 1.010, 1.030, 1.050, 1.070,
and 1.100, respectively (from top to bottom). Lattice size is
100°.

ments'®!'! (in values of a) the qualitative behavior seems
to be exactly opposite to what we observe. It seems, how-
ever, that the individual spins diffuse in the thermally pro-
duced dynamic (spin-flipped) fractal produced by other
spins. When the diffusion spread (~1""*) is less than the
thermal correlation length &, the solution of the diffusion
equation gives the anomalous behavior,?> and magnetiza-
tion has a time dependence of the form exp(— D), where
spin-diffusion spread D~t"*™_ When diffusion spread is
greater than &, the diffusion does not see the fractal and in
such cases we get normal diffusion, with @ =1. The cross-
over time ¢, is determined by tcl/d”’w’; or t.~¢€ *, where
x =vd,. Thus, anomalous diffusion or classical localiza-
tion may also be considered'? here to be the cause of the
fractional value of a. The value of 4., on such Ising
(correlated) clusters, however, are not known. '’

We thus see that the stretched-exponential behavior is

-1t

InIM(t)/M(0)]

-2
0

t0.1.

FIG. 5. A possible fitting of M (1)/M(0) vs ¢° to an exponent
value a=0.4 in d =3.
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FIG. 6. Variation of relaxation time 7~ ' against €. Inset:
The log-log plot giving the exponent vz==1.1 in 3D.

rather general and occurs even in the critical dynamics of
simple Ising-like systems. In fact, the important point we
note is the existence of a crossover time ., below which
the relaxation is stretched exponential (with a=2/d,
< 1) and simple exponential (e =1); above it t.~e ™~
with x==vd,, so that the stretched-exponential region
tends to dominate as one approaches the critical point.
One also observes critical slowing-down behavior of aver-
age relaxation time v (r~¢€~*?). Normally this region
(¢t <t.), for which a <1 is observed, is very small (e.g.,
t.~20 for 3D Ising systems, even for T/T.=1.05; of
course f.— oo as T— T.), while for glasses, this region
may be normally and routinely very large (e.g., 1. ~103
for T/Ty =1.05 for 3D Ising spin glass®). In none of these
well-studied cases is Vogel-Fulcher behavior for 7(T) ob-
served (see also Ref. 1 for comments on the lack of clear
evidence of Vogel-Fulcher behavior even in standard
glasses); rather, the ordinary critical slowing-down-type
behavior is observed.

Two established different kinds of relaxation behaviors
are thus observed in many-body systems:

(a) Kohlraush stretched-exponential relaxation with
critical slowing down: n,(T)~exp(—t/1)% @ <1 and
(T)~& ~e™"; a <1 and vz, depending on the dimen-
sion and symmetry of the order parameter. For Ising sys-
tems ¢==0.33, 0.4, and 0.5 for d =2, 3, and 4, respective-
ly,"%!"" with vz==2.0, 1.4, and 1.0 (exact).? For percolat-
ing systems'? @==0.6 and vz=4.0 for d=2. Above the
lower critical dimensions, =+ and vz=7.9 for Ising
spin glass® and =8.54 for XY spin glass® in d =3.

(b) Kohlrausch stretched-exponential relaxation with
Vogel-Fulcher behavior for relaxation time: n,(7)
~exp(—1t/1)% a <1 and 7(T)~expl1/(T —Ty)]. This
type of behavior now seems clearly ruled out for spin-glass
dynamics,® although, for some dipolar glass this Vogel-
Fulcher-like behavior for 7 is traditionally being dis-
cussed.'® In fact, in glass, where the free energy has
many metastable (local) minima, the relaxation time
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t~ (hopping diffusion constant) ~' comes from thermally
activated hopping over “typical” barrier heights hg
[t~exp(—ho/T)].'? In cases where there is a thermo-
dynamic rearrangement of the barrier heights due to
cooporative structural rearrangements, the typical barrier
height may diverge as ho~¢&'~(T—Ty) ™" near the
structural-rearrangement transition point 7. This would
give a Vogel-Fulcher-like relaxation behavior'’ (7

~explA/(T —Ty)"1). Observation of such behavior (in
standard glass, for example) would then indicate the ex-
istence and divergence of another correlation length near
the barrier-height rearrangement transition point.
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