
PHYSICAL REVIEW B VOLUME 42, NUMBER 4 1 AUGUST 1990

Quadratic quantum antiferromagnets in the fermionic large-N limit
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We show that SU(Ã) Heisenberg Hamiltonians with arbitrary-range quadratic antiferromagnetic
couplings (i.e., &=+I„iJ;,S;.SJ, with J; )0) possess highly degenerate "dimerized" ground states
in the fermionic infinite-N limit on a large class of lattices that includes all Bravais lattices in arbi-
trary dimension. These states break translational but not spin-rotational symmetry.

I. INTRODUCTION

Although it is now generally believed that the nearest-
neighbor, spin- —,, square-lattice Heisenberg antiferromag-
net has a ground state with long-range Neel order, ' it has
been argued that further-neighbor frustrating couplings
could lead to ground states with neither broken spin-
rotational nor broken translational symmetry. These so
called "resonating-valence-bond" or "spin-liquid" insula-
tors play important roles in various approaches to super-
conductivity, but unfortunately there are currently no
soluble models (with short-ranged interactions) that ex-
hibit such spin-liquid ground states. One promising tack
involves generalizing the spin- —, SU(2) Heisenberg model
to a version with an SU(N) spin at each site, where N is
even. There are then N "flavors" of fermion (for N=2
these correspond to "up" and "down"} and the system is
half-filled, i.e., each site is occupied by precisely N/2 fer-
mions. This model was introduced by ANeck and Mar-
ston and has been called the "fermionic" SU(N) model, to
distinguish it from other generalizations ' which utilize
different representations of SU(N). The advantage of dis-
cussing SU(N) Heisenberg models is that they can be ex-
actly solved by saddle point (i.e., mean-field) techniques
in the large-N limit, and may provide insight into their
less tractable (though physically relevant} SU(2) cousins.

The (arbitrary-range) antiferromagnetic SU(N) Heisen-
berg models we consider are defined for a network of
spins by

where S, =ci o~c;& is the spin operator at site i, and the
fermions created by c,- are subject to the constraint
c, c; =N/2 at each site i. (Repeated Greek indices im-

ply summation over flavors from 1 to N. ) The summation
in (1) is carried out over distinct pairs of sites on the net-
work. We will consider model (1) in the infinite-N limit,
where mean-field theory becomes exact.

We say that a network is "dimerizeable with respect to
Jo" if it is possible to partition the network into disjoint
pairs of sites such that (a) every site belongs to one and
only one pair, and (b) for each such pair (i,j) we have
J;J=JO (see Fig. 1). Let J,„denote the largest of the
spin couplings J; . Our main result is that networks

which are dimerizeable with respect to J,„possess
"spin-Peierls" states (i.e., states which are spin rotational-
ly but not translationally invariant) which are among the
ground states of (1}in the injrnite Nlim-it. This is shown
by finding equal upper and lower bounds on the infinite-N
ground-state energy of (1) (thus precisely determining the
ground-state energy) and demonstrating that spin-Peierls
states with this energy exist. As a corollary, we show
that in many cases states which respect the symmetries of
the network have higher energies.

For most familiar networks, exponentially many di-
merizations are possible, and the ground-state manifold
of the corresponding infinite-N Heisenberg model (1) is
highly degenerate. As shown by Read and Sachdev, this
degeneracy is lifted to lowest order in 1/N. The ground
state for large but finite N is then determined by the solu-
tion of a corresponding "dimer model" ' containing ma-
trix elements between the different dimerized states. For
the nearest-neighbor antiferromagnetic Heisenberg model
on the square lattice, the 1/N corrections favor a state in
which the dimers are arranged in columns. It has been
shown in a special exactly soluble case that an appropri-
ate dimer model can display a disordered phase, but the
detailed connection between this result and a correspond-
ing spin model remains undetermined. In exceptional
cases, a network will possess a unique dimerized state,
which implies a unique ground state of (1) for infinite- N
For other networks and choices of J; no dimerized states
are possible (see Fig. 2). For this last class of Hamiltoni-
ans the lower bound on the energy determined below con-
tinues to hold, but no state saturating this bound can be
simply constructed.

The reader should be cautioned that, despite its ap-
parent generality, (1) by no means exhausts the set of
SU(N) invariant Hamiltonians. It is not even the most
general SU(N) invariant pair Hamiltonian: For N ) 2, bi-
quadratic [i.e., (S, S ) ] and higher-order pair interac-
tions are possible and can alter the nature of the ground
state, as discussed by Aleck and Marston. Of course,
SU(N) invariant multispin interactions are also possible,
even for N=2: Wen, Wilczek, and Zee have recently
emphasized the role that the three-spin interaction'—
(S; S, &&S„) may play with regard to the breaking of
time-reversal in variance. The usefulness of simple
arbitrary-range quadratic Hamiltonians of the form (1) is
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FIG. 2. This network, a decorated hexagonal net (also called
the "expanded Kagome net" has two different couplings, J&

(bold lines) and J& (thin lines). It is dimerizeable with respect to
Jl —the bold lines indicate the unique pairing of sites. The net-
work is not, however, dimerizeable with respect to J2, and this
system is not subject to the lower bound derived in the text. If
the sites paired by bold lines are identified the network becomes
a Kagome net, which is dimerizeable.

&= g J;,(c; c, )(chic, &) .
(i,j)

(2)

FIG. 1. (a) Two-dimensional square lattice with first- and
second-neighbor interactions, J& and J&. (b) The network of
part (a) dimerized with respect to J&. (c) The network of part (a)
dimerized with respect to J&.

that they are easily studied in the large-N limit. Unfor-
tunately, we show below that for most familiar lattices
the infinite-N ground state is not translationally invari-
ant.

II. THK INFINITE-N LIMIT

Following Aftieck and Marston, we can use identities
involving the SU(Ã) generators 0~ to cast the Heisenberg
Hamiltonian (1) in the pleasing and manifestly SU(1V) in-
variant form

FMF =Xg +N
(i J) ij a.FX

(4)

where the second summation is performed over the L/2
lowest eigenvalues of y;, which we denote I e„~~EX t. (It

[In obtaining (2) from (1), constant terms have been
dropped. ] Next, introduce Hubbard-Stratonovich fields

for each pair of sites which are coupled by a nonzero

J;J (and define g;J =0 whenever, J;~=0). For a given
choice of fields y; the mean-field Hamiltonian becomes

AMF=N g' + g (y;, c; c +H. c. ) ., Ixijl'

(l,j) ij (l,j)

Primed summations are carried out only over pairs of
sites i and j which have nonzero J, .

The mean-field state corresponding to a given Iy; ) is

simply the Slater determinant obtained by placing X par-
ticles (one of each fiavor) into each of the L/2 lowest-
eigenvalue eigenstates of the matrix y, , where L denotes
the number of spins (sites) in the network. Since the rela-
tive fiuctuations in the number density at each site vary
as X ' for such a state, the violation of the constraint
of N/2 fermions per site becomes less and less important
in the large-X limit, where the state can be considered ex-
act. The energy of such a state is simply
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will also prove useful to define the set consisting of the
L/2 highest eigenvalues, denoted Is, IxEQ).) We look
for values of ty; I such that the energy EM„ is mini-
mized. This procedure is identical to a Hartree-Fock
treatment of the Heisenberg Hamiltonian (2), with the
fields

,

': y, I determined self-consistently via y,, = (J;, /
N)(c c; ).

Expressed in terms of the underlying fermions, SU(N)
Heisenberg models possess a local U(1) gauge symme-
try, " since the particle number on each site is conserved.
This is relected in the invariance of the mean-field theory
(3) with respect to the simultaneous multiplication of the
fermion creation operators at site i by the phase factor

ip, —ip,
e ', and g; by the opposite phase factor e '. All g
configurations related by such a gauge transformation
therefore describe the same spin state. In characterizing
a configuration g, we must accordingly restrict ourselves
to gauge-invariant quantities, i.e., the magnitudes Ig;J I

on
each link and the products y, ~23 g„, for any set of
sites 1,2, 3, . . . , n. The phase of this complex product is
called the "flux" of the closed path 1,2, 3, . . . , n, 1.

III. FLUX, CHIRAL, SPIN-PEIERLS,
AND BOX PHASES

Before searching for the optimal disposition of the
fields y, it is useful to classify possible configurations by
symmetry.

(1) Translational and/or rotational invariance of the
network is broken. '

(a) "Spin-Peierls" phase. y,, vanishes except on isolat-
ed links on the lattice.

(b) "Box"phase. '
y,j vanishes except on isolated clus-

ters of links on the lattice.
(2) Translational invariance of the network is

preserved. For any two closed paths on the network
which are related by a translation, the gauge-invariant
product y, ~23 y„, is the same. Since we have not re-
stricted ourselves to nearest-neighbor Heisenberg models,
consecutive sites on these closed paths need not be
nearest-neighbor sites. The translationally invariant
states can be further classified according to the flux asso-
ciated with closed paths on the lattice.

(a) "Uniform" phase 'The flux . through any closed
path is zero, so that all of the g; can be chosen to be real.

(b) "Flux" phase. ' All fluxes are integer multiples of
~, so that neither parity nor time-reversal invariance is
broken. [Under either time reversal or parity, the flux

through each closed path is negated, mod(2m. ); only in-

teger multiples of m. are invariant under this operation. ]
(c) "Chiral" phase. Parity and time-reversal invari-

ance are broken, i.e., some fluxes are not integer multiples
of m.

For Heisenberg models of the form (1), on all lattices
which have been considered thus far, box and spin-Peierls
phases have been found which are (a) degenerate and (b)

appear to be the global minima of the mean-field Hamil-
tonian (3). In the following section we elevate this empir-
ical observation to a theorem, by showing that for net-
works which are dimerizeable with respect to the largest

spin-spin coupling J,„(a) spin-Peierls states are indeed
global minima of the mean-field energy (4), and (b) all
translationally invariant choices of g have energies which
are greater than or equal to the energy of the spin-
Peierls —box phases in the infinite-N limit. A more
descriptive definition of box states is obtained, and these
state are seen to be among the degenerate ground states
(along with spin-Peierls states) in this limit.

IV. THE LARGE-N GROUND STATE

Lemma. The average of the lowest L/2 eigenvalues
IE„II~EXI of a traceless Hermitian L XL matrix y;,
satisfies the inequality

' 1/2

(6)

Equality is attained only when all c.„are identical, i.e.,
when y is proportional to the identity matrix.

Proof. Applying the Schwartz inequality (i.e., vari-
ances are positive) to each half of the spectrum yields the
two inequalities

and

(E„)~~ (e2&~ (7a)

Let J,„be the largest of the antiferromagnetic cou-
plings I J,i I. Consider the following "spin-Peierls" state
on a network which is dimerizeable with respect to J,„.
Let each site i have a nonzero g;& with one and only one
site j for which J, =J,„. Assign the same (positive)
value y to all the corresponding matrix elements y; . We
note that while such a pairing of all sites ("dimerization")
is possible for many familiar lattices and networks when
the spin-spin couplings J; respect the symmetries of the
network, this is not the generic case. "Dimerizeability"
as defined above is a property of the network and the
couplings on it, so that a network may be dimerizeable
with respect to some couplings and not dimerizeable with
respect to others. (See Fig. 2.)

Considered as a variational state, such a dimerized
configuration provides an upper bound on the exact
ground-state energy. Since each site is coupled to one
and only one other site, the diagonalization of y;. reduces
to the diagonalization of L /2 independent, identical
two-site Hamiltonians. The spectrum of y is then easily
seen to consist of L/2 states of energy —y and L/2
states of energy +y. The mean-field energy (4) is

NL y NL
Jmax

which attains its minimum value of NLJ, „/&—when g
is equal to J,„/2. We now show that (a) this is the exact
ground-state energy of (1) in the fermionic large-N limit,
so that these spin-Peierls states are among the ground
states of this model, and (b) except in special situations,
translationally invariant states have higher energy.

As a preliminary exercise, we first bound the fermionic
contribution to (4) by proving the following result.
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& E„)l(, ~
& E'. ) (, . (7b)

&e. )~2 ~
& e.')~ .

Adding (7a) and (7b') and dividing by two yields

(7b')

&e„)g~ &s'„), (9)

where the average on the right-hand side is over the en-
tire spectrum of X (both X and Q). Again availing our-
selves of the invariance of trace with respect to choice of
basis, we see that

&e'. ) =
~

Tr(x')=
q ggx;, x„=~ g lx;, l'.1 2 1 2

i j (ij)
(10)

Substituting (10) into (9) and taking the square root of
both sides (using the fact that & e„)& is less than or equal
to zero) establishes the required bound (6). The bound is
saturated when (7a) and (7b) become equalities, i.e., when

g is proportional to the identity matrix.

Using the Lemma to bound the second term in the
mean-field energy (4), we obtain a lower bound for the en-

ergy of a given y configuration,

lx,) I'
EMF(x) —N g

(i j) ij

1/2

The equality (7a) is achieved when all E, for ~ belonging
to X are equal; similarly, (7b) becomes an equality when
all c, for ~ belonging to S' are equal.

The tracelessness of x;, (along with the invariance of
the trace under choice of basis) implies that

&e.)g= —&e.) g,
so that inequality (7b) can be rewritten as

demonstrated that the same quantity is a variational
upper bound whenever the network is dimerizeable.
Therefore the large-N ground-state energy is then pre-
cisely equal to —XLJ,„/8. The spin-Peierls states de-

scribed at the beginning of this section are therefore al-

ways among the exact large-N ground states of the SU(N)
Heisenberg model.

V. FURTHER REMARKS

Until this point we have not ruled out the possibility
that states other than the simple dimerized states may
also be (degenerate) ground states of (1) on dimerizeable
networks. Any state which is part of this degenerate
manifold, however, must possess a gap and have disper-
sionless bands. For if a state is to be a ground state of (1),
it must saturate the bound used in the Lemma, which re-
quires that g be proportional to the identity matrix. The
single-particle energies E, are then simply +c.. We there-
fore seek matrices X; such that (X ); =gkX, kXki van-

ishes whenever i' and (X );; =pi lX; l
is independent

of i.
The matrix g describes two consecutive hops accord-

ing to X;, . Double hops come in three classes (Fig. 3).
(a) Hop from site A to site B and then back to site A.

These processes contribute to the diagonal matrix ele-
ments (X )„„.

(b) Double hop from site A to site C via the unique in-
termediate site B (For. example, hopping two lattice
spacings in the same direction on a Bravais lattice. ) These
processes always lead to a nonzero oft'-diagonal matrix
element (X ) „C.

(c) Double hop from site 3 to site D via two diff'erent

intermediate sites, B and B . These contributions to
(x )„n can cancel if

Minimizing this bound over all g configurations then pro-
vides a lower bound for the large-N energy of (2). We ex-
tremize the right-hand side of (11) by setting its deriva-
tive with respect to lx; l equal to zero for each pair of
sites (i,j ), which yields the conditions

+AB+BD + AB'~B'D

which implies

l27 ABgBDgDB'gB' A I +DB'XB' A I
~

(14)

(15)

'~

and/or

y"=0

(12a)

(12b)

According to (15), the off-diagonal contributions of these
two paths can cancel only if the flux through the quadri-
lateral ABDB' A is an odd multiple of m. Here are some
examples:

(13)

The left-hand side of (12a) is a fixed number independent
of (i,j ) so that for a given extremum of the bound (11),
this equation can only hold for a particular numerical
value of J, , which we call J, . For pairs of sites (i,j ) such
that J,, is not equal to J, , (12b) must hold. Thus

N LJ* L LJ2 NLJ
EMF(X)—

J~ 8 2 8 8

B'

A

D

B

0

C

0

Since all extrema of (11) satisfy (12a) for some J, , a gen-
eral lower bound for EMF is obtained with the largest J, ,
i.e., J,„. Therefore —XLJ,„/8 is a loner bound for the
large-X energy of an arbitrary configuration of g, . The
simple spin-Peierls states described above, however,

FIG. 3. Three types of "double hop" are possible on a square
lattice with nearest-neighbor interactions: (a) A~B~A, (b)
A ~B~C, (c) A ~B~D+ A~B'~D. See text for details.
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FIG. 4. "Box" phase on a square lattice with nearest-

neighbor interactions. Bold lines without arrows indicate

y„XO; bold lines with arrows indicate g„=ye', where g is

real. The product of y„around each box is negative, indicating
a flux of m..

FIG. 5. A "flux" phase on a three-dimensional cubic lattice
with nearest-neighbor interactions. On bold links, y„=—y.
On thin links, g„=g. The product of the hopping matrix ele-

ments around each plaquette is —y which is negative, indicat-

ing a flux of m.

(1) Consider a hypercubic lattice (in arbitrary dimen-
sion) with equal nearest-neighbor spin-spin couplings.
Arrange g; such that isolated hypercubes include every
lattice site, and the flux through all faces of the hyper-
cubes is m. . Then no pairs of sites are connected by type
(b) double hops, and every type (c) double hop is canceled
due to the n flux. These are generalizations of the box
phase discovered by Dombre and Kotliar. '3

Configurations with interspersed dimers and boxes also
yield degenerate ground states. These considerations ap-
ply more generally to other lattices: Any cluster of sites
and bonds which gives no net contribution from types (b)
and (c) double hops yields a ground state (see Fig. 4).

(2) Flux states on hypercubic lattices with equal
nearest-neighbor J;, can be constructed in any dimen-
sion' (Fig. 5}. In the limit of infinite dimension these
states become degenerate with spin-Peierls and box
states. To construct these higher-dimensional flux states,
set all nearest-neighbor ly,j l equal and arrange fluxes to
be n. through each square. It is easy to show that the ei-
genvalues of y are given by

e„=+2lyl icos'(k x,
' '" .

flavor, respectively. In the limit of infinite dimension, the
flux state becomes degenerate with the spin-Peierls and
box states discussed above. (Note that our procedure
corresponds to taking the N~ ~ limit before the d~ ~
limit. )

(3} Finally, consider the network formed by the edges
of an icosahedron, with equal nearest-neighbor couplings.
Arrange y so that lg;Jl is the same for all nearest-
neighbor pairs (i,j), and so that the flux through every
triangular face of the icosahedron is n/2. Types (b) and
(c) double hops are thereby eliminated, and the resulting
chiral state (as well as its time reverse obtained with
fluxes —m/2 through each triangle) belong to the degen-
erate ground-state manifold of the system. In addition,
the icosahedron supports generalized box phases analo-
gous to (1). Preliminary studies' of the spin- —,

' nearest-
neighbor Heisenberg model on an icosahedral network,
however, do not display the nearly degenerate low-lying
states which would be expected if the infinite-N results
were to continue to the case N =2.
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