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Hopping conductivity of the interacting honeycomb lattice gas
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The hopping conductivity of the honeycomb lattice gas with nearest-neighbor repulsion is calcu-
lated by a stationary-Row formalism. The necessary static correlation functions are evaluated in the
Bethe-Peierls approximation. The dynamic correlations are considered in the first nontrivial ap-

proximation. The correlation function is obtained for several temperatures.

I. INTRODUCTION

The lattice gas has been intensively used as a model for
charge and mass transport in condensed matter. The
past two decades have witnessed a growing interest in

highly defective solids such as superionic conductors and
metal hydrides (see Refs. 1 and 2, and references therein).
The modeling of these materials must take into account
interactions between the diffusing particles which are
available in high concentrations. Transport in several
types of interacting lattice gases has been studied through
various approaches, such as the path-probability
method, ' the rate equation formalism " and Monte
Carlo simulations' ' (see also Refs. 16 and 17, and
references therein). Some exact results were obtained
only for one-dimensional systems. The theoretical in-
vestigation of two- and three-dimensional lattices in-
volves approximations, as in the case of equilibrium prop-
erties.

In a previous work' we studied the infinite nearest-
neighbor repulsion in the square lattice gas. One would
like to weaken the strength of the interaction but this
would lead to tedious calculations in the case of the
square lattice, which involved long enough formulas even
for the somewhat simple case of the extended-hard-core
repulsion.

We found that the formulas are no longer too complex
in the case of the honeycomb lattice, which has the obvi-
ous advantage of having the smallest coordination num-
ber of all high-dimensional lattices, namely Z, =3. In the
present paper we calculate the hopping conductivity on
the honeycomb lattice, for particles that interact only at
nearest-neighbor distance. Instead of varying the
strength of the interaction we shall let the temperature
take several values. The case of the extended-hard-core is
obtained at zero temperature, while the noninteracting
gas is found for T~ 00.

The honeycomb lattice gas with nearest-neighbor
repulsion has already been studied in connection with P
and P" aluminas, in a series of papers which started with
the work of Sato and Kikuchi. Their model and the
path-probability method have since been improved. The
most recent work on the subject is that of Collin and co-
workers' ' where an extensive discussion is made, tak-
ing into account three-dimensional effects.

The thermal equilibrium properties of our model are
determined by the same Hamiltonian as the one used by
Sato and Kikuchi and others. Concerning the transport
properties, it is known that the jump rates must satisfy
detailed balance in order to ensure evolution towards
equilibrium, but they are not uniquely specified by this
condition. Thus, for a given system with a given Hamil-
tonian, they remain somewhat arbitrary (see extensive
discussion in Refs. 7 and 17). We have favored the type
of rates chosen by Kehr, Binder, and co-workers, ' be-
cause, unlike those used by Sato and Kikuchi, these in-

clude the extended-hard-core interaction as a limit case.
In Sec. II the Bethe-Peierls approximation (BPA) is

used to study the static correlation functions of the mod-
el. The vacancy availability factor is calculated and com-
pared with the Monte Carlo results of Murch and
Thorn. '2 A phase diagram in the concentration-
temperature plane is also derived within the BPA and
compared to previous results.

The conductivity and its correlation factor are calcu-
lated in Sec. III with a steady-state approach from
Richards. ' The results are summarized and discussed in
Sec. IV.

II. STATIC CORRELATIONS

N N

&( tn, I, )=e g n, +—,'cP g n, n, (2.1)

where e is the energy of one site, 8)0 is the interaction
energy and the second sum is restricted to the NN sites.

At equilibrium, with no external fields, translational in-
variance holds and the mean value of n, in the grand-
canonical ensemble is equal to the concentration of parti-
cles:

(n )0=—Tr(n e ~' " ')=c =1
0 Z

(2.2)

We consider a system of N identical particles on a
honeycomb lattice with N equivalent sites. There is a
nearest-neighbor (NN) repulsion between particles. The
system is described by the set of occupation numbers

I n, I, , n, taking the value 0 or 1 if the site i is empty or
occupied, respectively. The Hamiltonian of the problem
is given by
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= g exp —p g(s —p)n,——,

'Pion,

n,
n, V

(2.3)

is the grand-canonical partition function.
In order to evaluate the static correlation functions, we

shall use the Bethe-Peierls approximation (BPA), which
seems to be the best tool for this purpose (counting out
computer simulations), as was discussed by Frobose and
Jackie' for the extended-hard-core square lattice gas.

In the BPA the lattice is replaced by a small cluster of
adjoining sites. We consider that in Fig. 1. The central
site has the "bulk" chemical potential p, whi1e the other
sites have chemical potentials of a priori different values
|M ] p2 p3 in order to account for the inAuence of the lat-
tice sites outside the cluster. The respective fugacities are

z = exp[ —p(s —p, )],
z, = exp[ —P(s —p;)], i =1,2, 3 .

(2.4)

Considering c as a parameter the z's are determined by
Eq. (2.2):

c =&n, ),=&n, ),=&n, ),=&n„), . (2.5)

Taking the fugacity rather than the chemical potential as
an independent variable, the temperature appears only in
conjunction with the repulsion strength, 8. Therefore we
introduce the reduced temperature by

T' =(p/)

Making the following notations:

(2.6)

1E= exp T* (2.7)

Zo=(z2+1) +z3(z2E+1)

Z, =(z2E+1)[(z2+1)+zi(z~E +1)],
Z2=(z2E+1) +z3(z2E +1)

(2.8)

the grand-canonical partition function of the cluster is

where the subscript 0 indicates an equilibrium average
and

Z= Tr(e ~' " ')

Equations (2.10) are solved numerically for different
values of E E [0, 1]. For E =0 the trivial case of infinite
temperature or, equivalently, the noninteracting lattice
gas is found, Eqs. (2.10) becoming exactly soluble. For
E = 1 we get the case of zero temperature or the
extended-hard-core interaction. The values T*=0.3,
T'=0.5, T'=1.0 are also considered. The results for
the fugacity z are presented in Fig. 2.

We are in the position to compute any correlator
which involves sites situated not farther apart than those
in our SPA cluster. For illustration, we give in Fig. 3 the
values obtained for the vacancy availability factor,
defined as the probability of finding a given empty site
near a given occupied one:

&no(1 —n&))o &noni)o=1— (2.11)
e c

V=

The results for V are in good agreement with the Monte
Carlo values obtained by Murch and Thorn' (the devia-
tion from computer experiments being less than 1% for
all concentrations and temperatures considered), which
shows the reliability of the BPA.

The accuracy of the BPA can also be judged by exam-
ining the results on the separation line between the disor-
dered and the ordered phases of the system. At low tem-
peratures and concentrations around 0.5, the system is
found in an ordered state in which one of the two sublat-
tices made up of next-nearest-neighbour sites is preferen-
tially occupied. ' For c =0.5 the transition tempera-
ture is exactly known, T*=0.380. A phase diagram ob-
tained within the cluster variation approximation (CVA)
was given by Sato and Kikuchi.

The onset of order, as well as static properties of the
ordered state may be derived by a modified BPA in which
the number of equations is roughly twice that of the
disordered case. ' We have calculated the critical con-
centrations for several temperatures as follows. A cluster
in which the two sublattices are symmetrically represent-
ed was chosen as in Fig. 4. Excepting the two centra1
sites that have identical fugacity z, peripheral sites have
different fugacities z, „Az;s, i = 1,4, if they belong to sub-

lattice A or B, respectively. The grand-canonical parti-

Z, i
= (z + 1)Zo+ 3z, (zE + 1)ZoZ,

+3z, (zE +1)Z,Zi+z, (zE +1)Z . ~(2.9)
5

&2

C = Z2 8 lnZ, ]

BZ2

z3 BlnZ, ]
C =

3 az3

Equations (2.5) become

0 lnZ, )
C =Z

Bz

zl BlnZ,
&

C =
3 BZI

(2.10)

FIG. 1. The cluster representing the lattice in the Bethe-
Peierls approximation. The values of the chemical potential are
indicated.
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FIG. 4. The cluster used for deriving the phase diagram in
the Bethe-Peierls approximation. The different values of the
fugacities corresponding to the two sublattices A and 8 are in-
dicated.
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(i,j)(i +1,j)p5H

2
(3.1)

We now make use of a steady-state approach developed
by Richards ' to evaluate the conductivity of our model.
The lattice of N sites is periodically repeated to cover the
whole plane so that a stationary flow is possible without
sources of particles. The sites are labeled (i,j ) with i and j
corresponding to the x and y axis, respectively (see Fig.
6). The particles, having the electrical charge e, can jump
to a NN vacant site with a jurnp rate that depends
(symmetrically) on the occupancy of the NN's of both the
initial and the final site. Thus, the jump rate from site
(i,j ) to site (i + 1,j) will be:

FIG. 5. The separation line between order and disorder in
the concentration-temperature plane, derived within the Bethe-
Peierls approximation (solid line). The exact critical tempera-
ture T*=0.38 for c =0.5 is indicated. The dashed curve
represents the same line obtained in Ref. 3 by the cluster varia-
tion approximation.

where 50 is the di6'erence in energy between the
configurations before and after the jump and 8' is the
jump rate when the interaction is zero.

This choice, which is that made by Kehr, Binder, and
their group' coincides for E = 1 with the one that is nat-
urally made in the case of the extended-hard-core mod-
el 15, 1s

The explicit dependence of the jump rate on the occu-
pation numbers, with the notations in Fig. l, is given by

W)o= Wn)(1 no) 1+—tanh (n~+n~ n2 n3)— —

+ tanhp8 —2tanh [n4n&(1 n2 n3) n2n3—(—1 —n4 n&)]—— (3.2)

The infinite interaction limit gives

W)o ~ Wn)(1 no)(1 n2)(1—n3)( 1 n~—)(1 n—5) . — —
T ~0

(3.3)

In Eq. (3.3) the factors (1 no)(1 n—4)(1 n—~) are-
superfluous because n, =1 leads to n0=n4=n5=0, so
that we have

E

W)o~ . ,=Wn, (1—n, )(1 n, ) . — (3.4)

In the presence of an electric field C=6e„, the
difference in energy between two NN sites in the (1,+—,')

FIG. 6. The jump of a particle from site (ij) to site (i +1j).
The axes and the direction of the field are indicated.
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directions is e CI where

a&3
2

(3.5)
~ X (( W( ) ( +i ) & ( W( ) ( —i ') &) (3.9)

velocity of the particle in the field direction in the steady
state. The velocity is given by'

a being the NN distance. In order to satisfy detailed bal-
ance, the rates for jumps in the above-mentioned direc-
tions are modified symmetrically as follows:

(3.6)

Equation (3.9) involves stationary-flow correlation func-
tions which have two useful symmetry properties: they
are invariant under translation and under reflection to-
wards the field direction. For illustration, we have

with

e I

2kT

(npni ) =(npnz) =(n, n4)

(3.7) This simplifies Eq. (3.9) as follows:

(3.10)

(3.1 1)
Equation (3.6) is written only up to first order in 8 which
is suScient for the calculation of conductivity. In the fol-
lowing, we will systematically discard higher-order terms.

The charge current density is given by

or, explicitly,

U =V~ +Uqofq

where

(3.12)

CeV

NQ 0 (3.8) u„=261N( Wip )p (3.13)

where 0=3v'3a /4 is the area per site and u is the mean
I

and

u„„= IWN tan—h ( ( n i n 3 ) ) —tanhPcP ( ( n p n
&

n 3 ) )
2

—2 tanhpiji —2tanh
2

((npnzn3n4))+((n&nzn3n4&)+2(&n np, znn4n~)) (3.14)

The equilibrium average appears in Eq. (3.13) due to the
5 prefactor.

In Eq. (3.14) we have introduced the notation
((f(n))) for a new type of steady-state correlator,
namely the difference between (f (n) ) and its reflection
towards the y axis. These symmetrized correlators will

be simply called "dynamic. " We illustrate them with the
first one in the right-hand side of Eq. (3.14), which plays
an important role in this paper. It is denoted by g and it
is given by + ((5.5,5,5„» , (3.19)

The higher-order correlators may be expressed in
terms of lower-order ones. This is most easily done at
T' =0. If 5; denotes the deviation of n; from its equilib-
rium mean value e, a correlator of, say, four particles, can
be written as

((n, nbn, nd))=c g((n;nj))+c g ((5;5j5k))

g=((n, n3) ) =(n, n3) —(nzn3)

From the obvious relation

(3.15)
where we have omitted the vanishing ( (5; ) ), and the
obvious relation

(nin3 ) = (n, n3 )p+O(5) (3.16) «.,', »=&(5,5, » (3.20)

it follows that (=0 ( b ).
A trivial approximation for the conductivity is ob-

tained by neglecting all dynamic correlators, i.e.,

was used. In the first approximation, only one dynamical
correlator of 5's is retained, namely g which is of order
two in 5:

(3.17) g=« n. n, » = « 5,5, ) & . (3.21)
This leads to the infinite-frequency conductivity:

J~
CT Qo

ceu„ei Nze 1

0 2kTb, OkT

The dynamic correlators that make the dc conductivity
cr lower than o „are all included in u„,„, Eq. (3.14). We
shall evaluate v„„, in the first nontrivial approximation,
following the same recipe as in Ref. 18.

All other products of 5's will be neglected, so that
higher-order correlators of n's will be expressed in terms
of g by Eq. (3.19).

While the expansion in powers of fluctuations Eq.
(3.19) leads to good results in the case of the extended-
hard-core' it is not suitable for finite repulsion, a fact
which is easily seen in the following example. Let us ap-
ply Eq. (3.19) to ( (npn in3 ) ):
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((non, n3) ) =c(((non, ) )+ ((non3) )+ ((n, n3) ) )

+ « s,t,s, »
=c(&n, n, » , (3.22)

where ((n on, ) ) and ((non3) ) are zero by symmetry
and ( (5o5,53) ) is neglected, as mentioned before. Equa-
tion (3.22) is incorrect because ((n, n3) ), which con-
tains no NN sites, has a finite value in the limit T'~0
while ((nonin3) ) should vanish. In the general case,
the formula for the decomposition of a higher-order
correlator which involves NN sites must be modified to
include the interaction explicitly, so that all terms of the
expansion vanish for infinite repulsion. Therefore the
coeScient of a lower-order correlator with no NN sites
must be zero at T' =0. A possible modification, which in
fact will be adopted here, is to include an E factor when-
ever a NN bond is broken by decoupling. For illustra-
tion, we have

((non, n3) ) =cE ((n, n3) ) . (3.23)

Apart from fulfilling the above-mentioned conditions,
this handling of nonequilibrium correlators is supported
by some equilibrium-state arguments. First, a factor E
associated with the bond to be broken is present in all
terms of the formula that gives the higher-order correla-
tion function, while it is no longer present in the formula
for the lower-order one. Also, the approximation works
well in the case of the one-dimensional lattice for which
exact static results are available. In addition, the numeri-
cal results obtained by BPA are also a good test for this
type of approximation.

By expressing all higher-order correlators in terms of g
as in Eq. (3.23), we get the approximate formula

14

FIG. 7. Jumps contributing to the decrease of & n
&

n 3 ), .

equation obtained is too long to be given here. We shall

only describe the calculations that are straightforward
and similar to the treatment of the formula for U, Eq.
(3.11). The terms with a b, factor are evaluated in the

equilibrium ensemble within the BPA and the dynamic
correlators are again expressed in terms of g. We get a

self-consistent equation for g, which leads to

2b, go

6—2 tanh(Pd" /2)+ 3 B— (3.27)

where go is a long sum of equilibrium correlators up to
the fifth order and

A =c(7E +5E —5 —12E +6E c) tanh p~
2

U„„= IWNQ(, —

where

Q =tanh cE tanhpcP—
2

(3.24) (3.28)

8 =c[E +c(3E +E 2) c(6E +—E —9E 5E)— —

—c (8E +10E )] tanhpcP —2tanh
2

+2E c (1 2E+2E c) ta—nhp8 —2tanh
2

(3.25)

We are left with the task of evaluating g. For this pur-
pose, we write down the rate equation describing the evo-
lution of (n, n3), . The jumps that contribute to its de-
crease are given in Fig. 7. The reverse jumps will in-
crease ( n, n 3 ), and we get

d ( n i it 3 ) ( W3Qn i ) ( W3sn i ) ( W39n i )
dt

—( W, ()n3 ) —( W, 4n3 ) —( W, ~n3)+ .

(3.26)

where the ellipsis represents terms for reverse jumps.
A similar equation is written for ( n 3 n 3 ), and the

difference between the two relations is taken, in the sta-
tionary How state when both left-hand sides vanish. The

The conductivity correlation factor is given by

= ' =1+"-'"=1—
0' U U ( W]o)o 25

(3.29)

The results for f are shown in Fig. 8. It is seen that for
low temperature f vanishes at some concentration below
the critical one. Perhaps by pushing the degree of ap-
proximation further, namely by retaining more than one
dynamic correlator, the value of f would be finite at the
critical concentration, as the one obtained by Murch and
Thorn. ' However, the comparison is not adequate be-
cause of the different choice of jump rates. At high tern-
peratures the disordered phase is stable at all concentra-
tions. Therefore, the conductivity is known to be invari-
ant under the change of particles into vacancies, namely
of c into 1 —c. This is why only the interval 0~c 0.5
was investigated.
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FIG. 8. The correlation factor of the conductivity vs concentration for several values of the reduced temperature.

IV. SUMMARY AND CONCLUSIONS

We have studied the honeycomb lattice gas with
nearest-neighbor repulsion with the purpose of calculat-
ing the correlation factor of the conductivity, defined as
the ratio between the dc and the infinite-frequency con-
ductivities. Both static and dynamic correlation func-
tions, i.e., averages of products of occupation numbers,
were involved in the calculation.

The static properties of the model (which had previous-
ly been studied by Monte Carlo as well as theoretical ap-
proaches) were considered within the BPA. The results
were compared with previous ones. The BPA is in good
agreement with Monte Carlo regarding the vacancy avai-
lability factor which is of order 2 in the occupation num-
bers. The separation line between the disordered and the
ordered phases in the concentration-temperature plane
also indicated the accuracy of the BPA.

The dynamic correlators were treated in the first non-
trivial approximation, in a way similar to Ref. 18. Thus,
all higher-order correlation functions in the steady state
were expressed in terms of the most important one,

namely g, Eq. (3.15). In this way, a self-consistent equa-
tion for g was obtained. The correlation factor of the
conductivity was expressed in terms of static correlators
and thus calculated numerically in the SPA. The results
are different from previous computer experiments be-
cause of the different choice made for the jump rates.
However, some qualitative aspects are the same. The
correlation factor is a symmetric function of concentra-
tion around the value 0.5 for high temperatures when the
equilibrium state is disordered at all concentrations. At
low temperature it vanishes when the concentration ap-
proaches the critical values at which a phase transition to
an ordered state occurs. The advantage of our jump rates
is the possibility of investigating the extended-hard-core
interaction, or, equivalently, the zero-temperature case as
a limit of the general model.
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