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An approach is formulated to the problem of first-order phase transitions. It states that these
transitions are caused by processes of stability loss at the microscopic level. A formal attribute of
the loss of stability is the vanishing of the solution to the system of equations for distribution func-
tions. Calculations for a model equation confirm this hypothesis. It is shown that the phase transi-
tion on the crystallization curve is caused by the instability of the system with respect to small per-
turbations of the distribution function at the first (the deepest) minimum of the thermal potential.
The loss of stability on the liquid-evaporation curve is caused by the decay of the asymptotic behav-
ior of the distribution function, while on the vapor-condensation curve it is again caused by the in-
stability of the first minimum of the thermal potential. Criteria of stability loss are established. The
results are generalized to the case of phase transitions in crystalline materials.

I. INTRODUCTION

As a rule, curves of first-order phase transitions are
found from the conditions of coexistence of phases:

P(n,,®)=P(ng,®), uln,,0)=u(ng,0). (1)

(here P is pressure, u is the chemical potential, n =N /V
is the number density of particles, and @=kT is tem-
perature). Having calculated the dependences P(n) and
w(n) for each of the phases 4 and B using certain ap-
proximations, one can calculate those values of n ,(®)
and ng(®) for which the coexistence conditions (1) are
satisfied. The theory is thus based on comparing the pa-
rameters of different phases. But is such a comparison
possible in nature? Indeed, if n <n 4 (Fig. 1), there are no
nuclei of phase B inside phase A4, so that molecules of
phase A cannot be exposed to the difference between P,
and Py or between p , and pp, and conversely for phase-
B molecules, if n > ng, when phase 4 cannot exist. Cer-
tainly, there can exist heterophase fluctuations inside the
old phase, the structure of which is similar to the struc-
ture of the new phase. However, these virtual nuclei can-
not be used to make a comparison because the chemical
potential and pressure inside such fluctuations differ
significantly from those we have inside the new phase due
to the microscopically small size of the nuclei.
Remember that the coexistence conditions (1) operate
with the volume values of P and u, corresponding to the
macroscopic size of the coexistent phases. At the same
time the macroscopic nuclei cannot arise because this
process requires enormous energy. For this reason, the
comparison procedure of the theory is not adequate to
describe what happens in actual experiments. It is natu-
ral to hypothesize that phase transitions in actual experi-
ments are caused by processes of destabilization which take
place in each phase, regardless of whether it is in contact
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with the other phase or not.

Exactly this concept of stability loss is taken as the
basis for the theory of formation of a new phase.!™ In
this theory it is supposed that when crossing the phase-
equilibrium line (say from point n% to point n}*, Fig. 1)
phase A is initially stable and becomes metastable with
respect to the heterophase fluctuations. As a result, nu-
clei of the new phase form in the system; moreover, this
process occurs without the presence of the stable second
phase. Hence, the process is not directly connected with
the equilibrium conditions (1). These criteria determine
only a boundary between equilibrium (stable) and meta-
stable states. In the theory of formation of the new
phase, the phase-transition curves, as a matter of fact, are
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FIG. 1. The type of pressure isotherms P =P (p) possible in
the phase-transition vicinity.
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identified as the curves on which the spatially uniform
metastable states vanish. Consequently, in a statistical
mechanical analysis of equilibrium systems, phase transi-
tions should be associated with the vanishing of the spa-
tially uniform equilibrium states.

It is well known that calculation of the Gibbs distri-
bution can be reduced to solving an infinite chain
of Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
equations for single-particle distribution functions.
Therefore, the vanishing of stable states ought at the
same time to be described by the vanishing of spatially
uniform BBGKY solutions; in the other case the Van
Hove theorem would be violated. According to this
theorem statistical mechanics does not describe metasta-
ble states after passing to the thermodynamic limit (see
Sec. III of this paper).

In 1951, Fisher put forward a hypothesis* according to
which the BBGKY solutions vanish on the phase equilib-
rium line. However, later on he gave up the idea, and ac-
cepted the traditional conception in accordance with
which statistical-mechanical equations lose their solu-
tions not on the binodal, that is the liquid-vapor coex-
istence curve, but on the spinodal which separates weakly
unstable metastable states and absolutely unstable states.’

The first convincing confirmation of the “loss of the
solution” hypothesis was made by Baxter.® Applying the
Percus-Yevick (PY) equation to the critical point he has
found analytically that at subcritical temperatures and
critical densities the PY solution becomes a complex one
and hence is not well behaved. Thereafter, the curve on
which the real PY solutions vanish has been shown to
have a parabolic form resembling the binodal. However,
more comprehensive investigations showed that npy(®)
actually is located inside the Monte Carlo binodal which
was calculated using the coexistence conditions (1).
Moreover, it turned out that the correlation radius on the
npy(®) curve increases to infinity; this resembles the be-
havior of the spinodal rather than that of the binodal.
That is why the viewpoint is taken that the curve on
which the PY solutions vanish should be identified with
the spinodal.” A less empirical argument however, is that
none of the known approximate equations of the theory
of liquids has the “loss of solution” property at high den-
sities. That is why there is no description of freezing
based on “one-phase” approaches up to now. All this re-
sults in the fact that the concept of the “loss of solution”
is now almost forgotten; the conventional viewpoint is
that only “two-phase” approaches based on the thermo-
dynamic criteria (1) should be used to determine the
phase phenomena. This concept is claimed in the review
of Baus (1987): ‘“Today it is clear that one-phase ap-
proaches cannot locate the two-phase coexistence accu-
rately. The phase transition itself can be located unambi-
guously only by thermodynamic conditions (1) (Ref. 8,
p. 1129). From this viewpoint it follows that both the
Lindemann® and Hansen-Verlet!® rules which allow one
to locate the melting point based only on the considera-
tion of the crystal-phase properties, are empirical ones;
these rules cannot be grounded theoretically. “These
rules are approximate and cannot be used to locate the
true thermodynamic coexistence between a liquid and
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solid; as already stated, such a study does require the
simultaneous consideration of both the liquid and solid”
(Ref. 8, p. 1130).

We cannot agree that the two-phase approach is the
only way to solve the phase-transition problem. The
first-order phase-transition curve is the curve of loss of
stability and at the same time is the coexistence curve.
Therefore, both the one-phase and two-phase approaches
should be considered to be equivalent.

We show that using an approach that is more accurate
than the PY approximate-integral equation,'! we can pre-
dict the evaporation, condensation, and crystallization
phenomena.'?~'7 Furthermore, we obtain a freezing cri-
terion similar to those of Lindenmann and Hansen-
Verlet; this allows us to predict freezing in accordance
with the properties of the distribution function of a single
liquid phase.

We begin with formulating the exact equations for dis-
tribution functions that give a complete description of
matter (Sec. II). Then we consider in Secs. III and IV
two- and one-phase approaches to the phase transitions
as they follow from the exact equations. Subsequent sec-
tions treat the results obtained with the approximate
equation in terms of the one-phase approach. We consid-
er the processes of crystallization (Sec. V), evaporation
(Sec. VI), and condensation (Sec. VII), and we consider
phase diagram of simple liquids (Sec. VIII). In con-
clusion, we briefly discuss the process of crystal melting
(Sec. IX).

II. EQUATIONS FOR DISTRIBUTION FUNCTIONS

It was shown that the BBGKY chain can be
transformed (with no loss of generality) to a system of
two equations'> !¢

O [u—p(®)]=lnp,— [ p,CYd(2), (2a)
v
h12=C(122)+fP3C(123)h23d(3) (2b)
for two unknown distribution functions 9;, and 9,), so
that all higher-order distribution functions 9, G4, are

thereby eliminated from the BBGKY chain. The follow-
ing notations are used in (2):

pi=pr;)=n8;, 9,=9,(r;)=explw;), (3)

9i=80)(r,1;)=9,9,(1+h;)

%0,

o 4)

=G,8,exp

©; =w)(1;), 0;=w;)(r;,r;) are the one-particle and
two-particle thermal potentials, h,-j=h(r,~,r ;) is the total
correlation function, ¢,;=¢(r;;) is the two-particle in-
teraction potential, which depends solely on the distance
separating the particles, r;; = [r,—r j|,

Ci(j”EC(”(I‘,-,rj)

1
2



C-(-Z)_=.C(2)(r,-,rj)

:j—wij+Mi(jz)=hij_7/ij > (6)
are direct correlation functions of first (C'") and second
(C?) order, M'" and M? are the first- and second-order
bridge functionals containing an infinite number of bridge
diagrams, each depending only on the product of total
functions A;;, and finally, uy(®) is a constant in the chem-
ical potential, whose value is determined by internal de-
grees of freedom of molecules. The introduction of three
interrelated functions $,), h, and w(,, is caused only by
convenience considerations. They are all mutually re-
placeable once one of them is known; the other two can
always be calculated.

The preceding equations contain all of the information
that is of interest to us (including that of phase transi-
tions). However, the set of exact equations (2) cannot be
used directly to solve the concrete problem, because this
set includes bridge functionals M'”, whose values are un-
known. Comparison of diagrams contained in function-
als MV and M@ allows to assume that !’

M(”"Z—;‘M(z) . (7)

On the other hand, the functional M'? was suggested to
have the form!!

MP=—10}, . (8)

Careful analysis demonstrates that closure (8) provides
higher accuracy than such familiar approximations as the
HNC and Percus-Yevick approximations.

III. TWO-PHASE APPROACH
TO THE PHASE TRANSITION PROBLEM

Consider now the simplest case of vapor-liquid equilib-
rium. Let a liquid phase occupy the half space Z <0 and
the vapor phase occupy the space Z >0. As Z tends to
t o in (2), we obtain two spatially-homogeneous fluids
placed beyond the transition layer whose thickness 2A is
considered to be finite. As far as inside each of the
phases §(;,=1, set of equations (2) is reduced thus to two
sets of equations of absolutely the same type

O (u—po(@®)=lnn —n [ CV(r ;n,0)d(2), (9a)
h(rp)=CP(r;n,@)+n [ CPri53n,0)h(ry;)d(3) .

(9b)
J

drSF [n]

Fex[n]ZFex[n,]+fU )

where An=n(r)—n,(r). To use this formula it is neces-
sary to know the under-integration functional derivatives,
which are usually determined using different approxima-
tions; this is, in essence, equivalent to finding an approxi-
mate solution of the set of equations (2). In fact, it has
been shown® that

An(e)+ [ dr [ dr [ ar—2)
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In obtaining (9) we have taken into account the fact that
the direct correlation functions C'” decrease very rapidly
as r,, increases. Therefore, at |Z| >>A the contribution
of the next phase to the integral over volume becomes
equal to 0. Now the set of equations (9) can be solved at
liquid and vapor densities n; and n, independently (note
that the value of constant y, is the same both for liquid
and vapor and does not depend on Z). Having found
correlation functions §%, and 9},, with the Ornstein-
Zernike (OZ) equation (9b) one can calculate p, and p,
values using formula (9a) and pressure P, and P, by for-
mula

P=n®—%nzfowr%?—g(z)(r)étﬂrzdr . (10)

In solving (9) at different densities, it is possible to finally
find those values of n,(®) and n;(®) that change the
coexistence conditions (1) into identity. These points are
the phase-equilibrium ones. This method of constructing
the phase-equilibrium curves is an absolutely general one.
Therefore, it can be applied both to liquid-solid and
solid-solid transitions. However, in the latter case we
meet with difficulties arising because inside the solid the
density n(r) is a periodical function of r. Hence n de-
pends on r even at r— o« and, therefore, to determine
two unknown functions $;)(r) and §,)(r},1;) it is neces-
sary to solve the whole set of equations (2) simultaneous-
ly. This is a more difficult task then simply solving the
OZ equation (9b), as in the liquid-vapor transition case.
To avoid these difficulties, the density-functional method
has been proposed.®'® In this method two functions
Gy(r;n,®) and §,)(r),15;n,0), each of them depending
not only on n and ® but also on the coordinates of parti-
cles r; and r,, are replaced by a single function-free ener-
gy F(n,®), which depends now only on n and ®. One
would think that the method yields great advantage be-
cause the dependence on distance r is now removed.
However, the situation is not so simple since the depen-
dence of F on density and temperature is not known
a priori and there is no equation to provide an estimate of
F directly. The conventional indirect approach to this
problem is to expand the excess free energy F,, =F —F,
in a functional Taylor’s series in density n (r) about the
state n,(r) of a reference system in which F,, is supposed
to be known. F, is an ideal-gas term. Integrating the
series gives®

8°Fy[n, +An] A ,
on(0)0m (&) n(r)An(r')+ -, (11)
-
8F(n)/én(r)=p , (12)
8*F(n)/8n(r)én(r')=C¥(r,r'), (13)

where p is the chemical potential, C'? is the second-
order direct-correlation function determined with (6).
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Strictly speaking, both u and C'® can be obtained only
by solving (2). However, if a solution is found, then, as
shown in the following, there is no need to calculate the
free energy: The phase-transition points can be found
directly from the set of equations (2).

IV. ONE-PHASE APPROACH
TO THE PHASE-TRANSITION PROBLEM

Let us take a cylinder of volume V filled up with vapor
and increase the pressure P gradually. As soon as the va-
por density reaches its value n , (Fig. 1), there comes into
existence two changes in the system: either it can change
into a metastable state that is at the same time a spatially
uniform phase or the system separates into two equilibri-
um phases 4 *** becoming heterogeneous with an aver-
age density n%* equal to that of the metastable phase
A**. In actual experiments either of these situations can
happen with its appropriate probability. However, in the
Gibbs statistics only the latter case is possible. This fact
follows from the Van-Hove theorem, according to which
for Gibbs systems the derivative (0P /0n ), is always ei-
ther positive or equal to zero.!® Therefore, the pressure
isotherm P(n) has a continuous form Ay ABB,, as it is
shown in Fig. 1. An understanding of the essentials of
this result is probably best reached on the basis of the
theory of formation of new phase. Indeed, let us divide
the whole volume ¥V occupied by the system into elemen-
tary cells of volume V|, that are much greater than the
size of the critical nucleus of the new phase. In this case
the probability of formation of the critical nucleus in a
given cell does not depend on what is happening in the
neighboring cells. Hence, the probability p, that one nu-
cleus forms throughout the system (this allows the system
to make the transition from the one-phase metastable
state to the two-phase equilibrium state without a barrier)
is proportional to the number of elementary cells
v=V/V,. Hence, the larger a system is the higher the
probability is of the spontaneous transition from the
metastable state to equilibrium state. In the limiting case
of infinite volume ¥V — « at any small oversaturation
(that is at any small probability p,) the probability of
transition p, =vp, is always equal to unity. From this it
follows that metastable states do not exist in infinite sys-
tems at all. Remember now that the Gibbs statistics are
built in the thermodynamic limit

N,V — o0, n=—11\;-=const R (14)
which means that the Egs. (2) are justified only under the
conditions (14). Since there are no metastable states in
those systems that satisfy conditions (14), then those sys-
tems are not described by Egs. (2).

Now the only thing left is to show that the horizontal
part AB on the P(n) isotherm does describe the two-
phase state (that is, spatially inhomogeneous) of a system.
For this it is easier to use the thermodynamic relations
(see Appendix A) which can be obtained from the Gibbs
distribution. Since Egs. (2) follow also from the Gibbs
distribution, then there ought to be reciprocation be-
tween Egs. (2) and thermodynamics. Therefore, if ther-
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modynamics predict that the spatially uniform states van-
ish at densities n , and ny where P, =Py and p ,=pug,
then the same result ought to follow from Egs. (2).
Hence, our goal is to find points where the one-phase
solutions of system (2) vanish. The condition of vanish-
ing of solutions is formulated in an especially simple form
for liquid and gases in which the homogeneity condition
takes the form §(;,=1. In the case of a homogeneous
system, (2a) degenerates from an equation to the
definition of chemical potential, and (2b) reduces to the
OZ equation for a single unknown function §,,. Obvi-
ously, condition §(;,=1 ceases to hold inside the interval
{n,,ng} as there exists a transition layer between two
phases where the density is not constant. Consequently,
phase-transition points (i.e., points of stability loss) in
gases and liquids are the points at which the solution of
the OZ equation vanishes. In the case of crystals, the
solutions are more complicated, see the following. These
statements call for certain elaboration.

First, the OZ equation has numerous solutions, only
one of which satisfies all constraints and thus has a physi-
cal meaning. When we say that a solution vanishes, we
mean that this physically meaningful solution vanishes.

Second, we need to emphasize that the fact that a solu-
tion has vanished does not signify at all that thermo-
dynamic functions of the system vanish simultaneously
with it in the interval {n 4,ng}. As follows from Appen-
dix A, the thermodynamic functions exist but are defined
by additive formulas of type (A2).

Third, the vanishing of a solution as such does not yet
carry any information on the mechanism of the loss of
stability. To identify it, one needs to analyze the behav-
ior of the distribution functions at the points where the
solution vanishes. We show that the mechanism is
different in different types of phase transitions: on the
crystallization curve the system undergoes stability loss
at the point of the first minimum of the thermal potential,
and on the evaporation curve the asymptotic behavior of
distribution function becomes unstable, and so forth.

Fourth, the conditions of phase coexistence (1) is to be
completely satisfied at the points at which the solutions
vanish, which is consistent with the theorem of unique-
ness of solution; there is no need to introduce these con-
ditions into the theory by hand. Of course, this is
justified only in case of a perfect theory operating with
the exact equations (2) for distribution functions. In an
imperfect theory the thermodynamic and “loss of solu-
tion” criteria may differ (see, for example, Sec. VIII and
Table IIT). Nevertheless using the “loss of solution” cri-
terion one can obtain some important results at the mi-
croscopic level.

Finally, let us consider one of the possible causes of the
vanishing of the OZ solution. Substituting (6) into (9b)
gives

y(r)=n [ [h(ry)—y(r;;)h(ry)d(3) . (15)

In the Fourier transforms this equation reduces to the
quadratic equation for A (k)

nh*(k)—ny(k)h(k)—y(k)=0 . (16)
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The solution is as follows:
1

2n

h(k)=——{ny(k)+Vny(k)ny(k)+4]} . (17
If at certain k values the transform A(k) becomes nega-
tive, this means that the 4 (k) value is complex. Hence,
h (r) also becomes complex; this is at variance with the
definition of the distribution function §,,=1+h,, that
requires that &, is real. Therefore, the points where
v (k) becomes equal to zero are the points at which physi-
cal solution of the OZ equation vanish. (Of course the
problem of whether this way in which the solution van-
ishes exists in reality is still open).

V. CRYSTALLIZATION OF LIQUIDS

The vanishing of the solution at the phase-transition
point is a property of the exact OZ equation in which all
the diagrams are taken into account in M‘?. However,
the exact equation cannot be used in real calculations, it
should be closed using any approximation. The approxi-
mate equations of the theory of liquids may not possess
the properties of “vanishing of solutions” at all or they
may possess them partly. Therefore, the validity of the
“one-phase” approach in the first place depends on the
accuracy of the applied approximate equation. There is
only one reliable idea in choosing the approximation:
The more accurately the given equation describes the
“traditional” parameters of a system (pressure, compres-
sibility and so on), the higher the validity of the equations
is to predict the phase-transition lines. That is why we

take for this approximation the formula that follows from
(8)

Lo’ (r)+o(r)=y(r) . (18)

The obtained equation can be solved for o, if we “forget”
for a time that y is in its turn a functional of w. This
gives

o(r)=—1+V1+2y(r) ; (19)

the second solution, corresponding to a minus sign in
front of the square root, must be dropped because it does
not satisfy the condition w—0 as r — . If we denote by
rmin that point on the r axis at which y(r) reaches a
minimum, it is obvious that this point corresponds to the
minimum value o_,;, =wo(r;.). This last quantity is real
only if ¥ i, 2 — 15 if ¥ i, < — 3, the thermal potential be-
comes complex. Therefore, the points of the phase dia-
gram where

Vmin= "3 Omin= "1 (20)

are the points where the real solutions of Eq. (18) vanish;
only these solutions have a physical meaning. According
to the arguments already given, the system must undergo
the loss of stability at just these points. Let us test these
statements.

System of hard spheres. When solving Eq. (18) numeri-
cally we have found that the accuracy of finding density
p*=no? (where o is the diameter of the sphere) at which
the iteration procedure begins to diverge, depends on a
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procedure used. The higher the accuracy of the pro-
cedure used the smaller the difference is between this p
value and that value obtained using criterion (20). A
small excess of p over p, makes the solution of (18) com-
plex only in the small vicinity of r_;,. Hence, it is
difficult to discover this overflow with numerical discrete
methods of finding solutions. Taking into account the
above mentioned we identified p, with that of p, which
corresponds to when the thermal-potential value equals
—1 (Fig. 2). This figure also shows the w(r) dependence
as it follows from the Labik-Malijevsky approximation,
the error of which does not exceed 0.5 percent.® We
have found that p,=1.02. On the other hand, a number
of works based on the density functional methods present
po values that lie within the interval 0.94 <p,<0.99.2!
We cannot judge which of approximations used in the
density functional method is more reliable. Note only
that the upper limit of these values equals 0.99, which is
very close to our value p=1.02. The difference between
both the values is equal to =3% and almost coincides
with the 2% error of the Eq. (18) found in accordance
with its thermodynamic inconsistency.!! The value
po=1.02 is also close to the point of the loss of mechani-
cal stability p=1.011 found in a different way.?? Consid-
er now the Monte Carlo determined value p,=0.94,2%2
which is far from our p,=1.02. We think that this
discrepancy is most likely due to the way of finding p,
used in.2* Indeed, the phase-transitions points were
determined in Ref. 24 in two stages: first by finding the
pressure in the liquid and crystal phases, and then in-
tegrating the thermodynamic identity du=p~ 'dP and
calculating the chemical potential. The phase equilibri-
um point was determined via (1). For integrating in dP,
it was necessary to find the values of P (p) for both phases
in the entire density range from p=0 to the phase-
transition density. However, matter cannot exist in the
crystal phase at densities below the melting-point value;
hence, additional constraints had to be imposed on the
systems so as to make the melting of the crystal at low

-1

FIG. 2. Thermal potential w of a system of hard spheres as a
function of distance R =r /o at the density value p=no’=1.02.
Solid curve, as calculated with (18); crosses, data of Ref. 20.
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densities impossible. We know nothing about errors in-
troduced by these constraints. The chemical potential of
the liquid phase cannot be determined accurately either.
We know that a system of hard spheres with p=0.90
evinces the so-called “‘chaos interval” within which the
ergodicity of the small system used for the numerical
simulation is violated.?> Taking into account all the
above mentioned,”> we are inclined to consider the value
Po=1.00+0.01 to be the most probable value of the
freezing density.

Lennard-Jones (LJ) liquid. Table I lists the values of
density p=no?’ and temperature ® /e (¢ is the energy pa-
rameter of the LJ potential) at which the LJ liquid crys-
tallizes. The second line of the table indicates the Monte
Carlo (MC) data,?® and the third line gives the points at
which the solutions of equations (18) vanish. We see that
(18) and MC simulation give results that very nearly coin-
cide. Table II presents results obtained by density func-
tional methods (second line).”” The agreement with the
points obtained from (18) (third line) is satisfactory being
at the same time slightly worse than that at high temper-
atures.

Unfortunately, we cannot check how accurate the
second prediction of the theory is, that is that o, turns
into —1 on the crystallization curve, because no such
data are reported in the literature. We were able to find
data only for the triple point lying at the very “bottom”
of the crystallization curve?® and thus were in a position
to calculate the w(r) curve. You see that o, at the tri-
ple point is exactly equal to — 1 (Fig. 3).

Now let us try to understand why none of known ap-
proximations, with the exception of (8), describe the pro-
cess of crystallization. Consider the OZ equation written
in the form similar to that of (18),

o—MP[w]=y . (1)

M?P[w] is a functional, which depends on w. It is evi-
dent that in the general case this functional equation
determines real o values only for certain values of . In
accordance with the above mentioned, the points where w
values become complex are the phase-transition points.
In the HNC approximation M =0 and (21) reduces to
o=vy for any real y. In the Labik-Malijevsky approxi-
mation the bridge functional M‘?’=M?(r) and now we
have

o(r)—MP(r)=y(r) . (22)

Hence, (22) can be solved for w(r) for any of y(r). The
PY equation exp[w(r)]—1=y(r) defines complex values
of w=In(1+y) only for ¥y <—1. Such high negative
values of y are achieved at densities that are considerably
greater than the crystallization density.

TABLE 1. Crystallization parameters of the LJ liquid.

O/e 100 10 S 2.74 1.00
Pmc 2.601 1.50 1.279 1.117 0.90
P 2.600 1.53 1.270 1.110 0.82
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TABLE II. Crystallization parameters of the LJ liquid.

®/e 3.2 3.0 2.5 20 1.5 1.0
Pdr 1.226 1.198 1.135 1.069 0.991 0.882
p 1.186 1.153 1.070 0.986 0.903 0.820

VI. EVAPORATION OF A LIQUID

We have demonstrated that the loss of stability during
crystallization is caused by processes that occur in the vi-
cinity of the first minimum of the thermal potential.
Consider now a different mechanism caused by the de-
struction of the asymptotes of the distribution function.
It can be readily shown (see Appendix B) that as r — ,
the OZ equation can be written in the form

9 —rmp [ CODYr+ 0 ==, @)
where Y=rw(r). This equation determines the universal
asymptotic behavior of the thermal potential, which obvi-
ously has the form

Yr)=Ae™ ¥, olr)= Ar ;

A =const , (24)
where a is found from the transcendental equation
1=dap [ “C2(r)HQT) 2y 25)
0 ar

As a rule, the asymptotic behavior cannot be found by
conventional methods of numerical solution of the OZ
equation under constraints (24) and (25), because the pre-
cision of the available procedure is unsatisfactory. At the
same time, the direct function in (25), which according to
(6) and (8), equals C'¥’=h—w—1lw?, decreases fairly
steeply; it can be readily found by substituting into C?

w
0.5
2
i
0 \ PR /1\
1.4 1.5 2.0 R
-0.5p
-1.0

FIG. 3. Thermal potential w as a function of distance R.
Curve 1: triple point of a LJ liquid (by data of Ref. 25). Curve
2: fluid of a hard sphere at the melting point (Ref. 31).
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FIG. 4. General curve on which solution to (18) vanish. C—
critical point, B—triple point; dashed curve—MC data.

the values of w that are found by solving (18). Integrat-
ing then the integral in (25), we can find the value of a
that turns this equation into identity. It is thus found
that no « satisfying (25) exists in the region to the left of
the curve CB in Fig. 4, while the corresponding values of
a are easily found to the right of this curve. Therefore,
from (18) it follows that the stability on the evaporation
curve is broken down owing to the destruction of asymp-
totic behavior (24). On the curve CB, a vanishes [this
corresponds to y(k)—0 at k =0; see (17)], which is cer-
tainly an artifact since this is possible only at the critical
point C, not on the entire curve CB. Actually, this is not
the only indication that the approximation (18) is hardly
satisfactory at low temperatures and high densities. Thus
the pressure of the liquid P becomes negative in the vicin-
ity of the curve CB; the phase-equilibrium curves are dis-
placed relative to the MC data; etc. In this case, howev-
er, this is not really important. The principal feature is
that (18) provides a qualitatively correct description of
evaporation.

VII. VAPOR CONDENSATION

The stability-loss mechanism again changes at the
vapor-condensation AC (Fig. 4). Note that in this case
all numerical-solution methods (we make use of several
here) yield the same values of density “upon vanishing.”
One can, therefore, think that the condensation curve
found by these methods is fairly reliable. Furthermore,
all methods point in an unambiguous way to the same
stability-loss mechanism. The fact is that the zero ap-
proximation that we chose in constructing the iterative
procedure was always the w(p*) value found for the den-
sity p*=p—Ap. The quantity Ap was taken to equal
0.02; that is, it was very low and thus ensured sufficiently
fast convergence of the iterative procedure that was typi-
cally uniform in r. On the condensation curve, however,
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FIG. 5. Divergence of the iterative procedure on the vapor
condensation curve.

iterations began to diverge, and the divergence was
nonuniform in r: the differences A¥'=p* *V—p® (K is
the number of the iteration) first began to increase only
close to the first minimum of the function w(r,;,) while
far from this minimum they continued to converge (Fig.
5). Then the divergence region gradually widened and
finally covered the entire axis r. This type of divergence
indicates that the system loses stability at the first
minimum of thermal potential w_;,. The coordinate of
this minimum, r_;,, on the condensation curve was al-
ways the same (r;, =1.480). The absolute value of w,,;,,
however, depends strongly on temperature. The asymp-
totic behavior of the distribution function on the conden-
sation curve was stable because the values of & in (25) de-
viated appreciably from zero.

VIII. PHASE DIAGRAM OF LJ LIQUID

The complete curve on which the solutions to (18) van-
ish for the LJ liquid is plotted in Fig. 4 in the coordinates
p versus T*=0/e. Obviously, it is qualitatively similar
to the phase-equilibrium curve of real liquids: the vapor-
condensation curve AC that increases with increasing p is
replaced at the critical point C with a falling curve CB of
evaporation of the liquid, while the evaporation curve is
replaced at the point B by an almost vertical line of cry-
stallization, BD. At the same time, the complete quanti-
tative agreement with experimental data has not been
achieved. Thus the MC data®’ give the critical-point
coordinates p,=0.34+0.02, T*=1.3410.02, while (18)
yields p,=0.30+0.02, T=1.30+0.02. For the triple
point, MC data®’ yield py =0.86 (according to Refs. 27
and 29 pp =0.818), Tz =0.67, while (18) gives pp =0.67,

*=0.65. The fit is not as good as one would like to
find. On the other hand, it is sufficiently good for not re-
jecting it as spurious.

We have seen that each of three curves (condensation,
evaporation, and crystallization) is characterized by its
particular mechanism for which the solution vanishes.
How does one pass from one to the other at the critical
and triple points? More or less reliably it can be imag-
ined only in case of the triple point. Two mechanisms are
at work in this case: the system loses the stability both at
the first minimum of the thermal potential and at large
distances. It is possible that the situation is the same at
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the critical point, however, we suggest that this problem
is worthy of further investigation.

We have mentioned on several occasions that phase-
equilibrium curves p(®) determined on the basis of the
equality of pressures and chemical potentials must coin-
cide with the curves found from the condition of stability
loss. However, this is true only in the rigorous theory
based on solving the exact OZ equation (15). Any con-
crete theory is approximate so that the results obtained
via various approximations [e.g., in the framework of the
density functional method and upon the vanishing of
solution of (18)] need not exactly coincide with one
another. For this reason, conditions (1) need not be ex-
actly satisfied in the theory in which the phase-
coexistence curves are found from the condition in which
the solution to the approximate equation (18) vanishes.
Of course, if the approximation used is sufficiently suc-
cessful, the values of P and p found on the phase-
coexistence curve must be nearly the same in the two
phases. Yet another difficulty exists. Any approximate
OZ equation is not completely consistent thermodynami-
cally.®® This means that we arrive at different results de-
pending on the method of calculating P and u. Hence we
can compare only the values of either P, and Py or 4
and pp that are calculated by a given method. Even this
limitation does not give a waterproof guarantee because
the same method may give one error in phase 4 and a
different error in phase B. Nevertheless it may be in-
teresting to compare P and p values thus obtained for
two phases to make a conclusion about the thermo-
dynamic consistency of the theory under consideration.
Table III gives the chemical potentials 4 and pressure P
obtained by formulas (9a) and (10) at points at which the
solutions vanish. When ®/e=1 the conditions (1) are
fulfilled. However, as we already have said, the accuracy
of Eq. (18) falls with the temperature decrease that causes
the pressure to become negative and the conditions (1) to
be violated. At the same time, curve 2 (Fig. 6) obtained
from the coexistence conditions (1) deviate from the
curve in which the solution vanishes. Thus, at low-
temperature Eq. (18) predicts two different curves of
phase coexistence. It is evident that by using different
formulas to calculate p and P we arrive at different
phase-equilibrium curves. Which of them should be con-
sidered as most correct? As a rule, the curve in which
the solutions vanish is identified as spinodal, that is the
curve of mechanical-stability loss, while the curve of
equality of p and P is considered to be binodal, that is the
true phase transition. It is difficult, however, to agree
with this viewpoint since in this case the range inside
curves 1 and 2 should be identified as a metastable range.

TABLE III. Pressure P and chemical potential along line of
vanishing of solution.

Po’/© (L—po)/®
O/t n;/n, Vapor Liquid Vapor Liquid
1.2 2.67 0.0731 0.0738 —297 —3.02
1.1 4.09 0.058 0.026 —3.20 —3.61
1.0 6.50 0.045 —0.034 —3.39 —4.35
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FIG. 6. Liquid-vapor coexistence. (1) Curve of vanishing of
solution to Eq. (18). (2) Curve on which the conditions (1) are
satisfied. (3) MC coexistence curve for a LJ liquid.

However, as we know, the metastable states cannot be de-
scribed in terms of the equilibrium statistical mechanics.
Hence, the BBGKY chain of equations as well as system
(2) has no solution which corresponds to the metastable
states. Of course, application of the approximate equa-
tion (18) instead of the exact OZ equation (15) can cause a
displacement of the phase equilibrium curve on the n-®
plane or involve new types of solution vanishing. Howev-
er, what is certain is that an equilibrium equation cannot
be converted into a kinetic one. On the other hand, the
metastable states are related to their lifetime and there-
fore should be described just by a kinetic equation.

From the above mentioned, it is now evident that the
discrepancy of curves 1 and 2 (Fig. 6) is due to the ordi-
nary thermodynamic inconsistency of the theory. When
calculating p and P (as well as other thermodynamic
function) we introduce not only an error stipulated by the
original approximation of the bridge functional M, but
some additional errors. The letter may be due to different
causes. Indeed, for example, the sign of factor

rdd(r)/dr exp[ —&(r) /O]

in the integral (10) changes to the opposite one at
r =1.130 and as a result the positive and negative parts
of the integral become approximately equal. Hence, the
pressure P calculated by the virial equation results from a
small difference of two large values and may become er-
roneous.”> Therefore, curve 2 obtained with the equali-
ties u;=pu, and P; =P, is less reliable than curve 1 ob-
tained directly from (8). Consequently, in the framework
of the approximation used, the curves in which the solu-
tion vanishes present more reliable information about the
first-order phase transitions. It should be kept in mind,
however, that since the theory is based on approximate
equation, all the results are rather qualitative than quan-
titative. Nevertheless, we feel that a one-phase approach
based on an equation that is more accurate than Eq. (18)
can describe the vapor-liquid coexistence quantitatively.
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IX. MELTING OF CRYSTALS

Equations (2) are an exact equivalent of the Gibbs dis-
tribution, hence, these equations must describe not only
liquid and gases but crystals as well. The one-particle
distribution function, however, is not constant in crystals,
being a periodic function of the coordinate ». Therefore,
in the case of crystals we cannot consider just one OZ
equation. The complete system of Egs. (2) must be solved
simultaneously (unfortunately, we cannot do it yet). Cor-
respondingly, the stability loss of the crystal must be
determined from the condition in which the solution to
the total system of Egs. (2) vanishes. Only an analysis of
this solution can reliably establish details of how this
happens. Nevertheless, we feel justified already to hy-
pothesize that one of the mechanisms for which the solu-
tion vanishes is again caused by the impossibility of solv-
ing Eq. (2a) in real variables for the o function [in the
case of crystals, (2b) is formally written exactly as the OZ
Eq. (15)]. If this hypothesis is valid, the solution to (2)
must vanish on the melting curve at w_;,= —1. We were
able to find in the literature only the MC data’! on the
two-particle distribution function of a system of hard
spheres for the density close to that of the melting point.
The corresponding curve is also plotted in Fig. 3. We see
that for all practical purposes w,,;, is equal to —1, thus
confirming the suggested hypothesis.

APPENDIX A

Although the statement that the system is a two-phase
system if P /9p=0 is repeated in nearly every textbook,
we never saw it proved in the literature. Let us fill this
void.

Integrating dF = — pdV, we obtain

F(n)=F(n,)—P(V—-VY%),

where V4 =N/n,, V=N /ng are the volumes of the
system in the states A and B, respectively. Setting
V =V}, we obtain

P=[F(n)—F(ng)l/(Ve—V%) .

Substituting this expression into F(n) and converting to
the free-energy density ¢ =F (n)/V, we obtain

b4~ dp n dp—ngd,
= n+
ny—ng ng—hpg

é(n) (A1)
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We introduce a parameter v via the expression
n =vn 4+(1—v)ng, where n is matter density averaged
over the whole system. Now (A1) can be rewritten in the
form

d(n)=vd ,+(1—v)pp . (A2)

To clarify the physical meaning of the parameter v, we
derive this formula in a different manner. Assume that
the system consists of two phases, that is, of two homo-
geneous subsystems occupying volumes ¥V, and ¥V and
composed of N, and N particles, respectively. Since
V=V, 4+Vgand N =N ,+ Ny, the average density is

Likewise, we can derive an expression for the free-energy
density. Comparing it with (A2), we find that v=V,/V
is the fraction of the total volume ¥V occupied by the
phase A.

APPENDIX B

Write the OZ equation in the form

(N —MD(n=2"2 [ “cDxdx [T Ry dy .
r 0 —x|

|r
(B1)

After multiplying (B1) by » and differentiating it with
respect to r, we obtain

%{r[w(r)-l-M‘z’(r)]}

=21-rpf0wC(2)(x)h(r +x)(r +x)x dx
—2mp [ /C¥x)xh (r —x)(r —x)dx
—2mp [ T CP(x)xh (r —x)(x —r)dx .

(B2)

Since M?' and C'? are rapidly decreasing functions of r,
then as r — o, (B2) reduces to (22) because in this case
h —w and the integral from r to « approaches zero.
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