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A semiclassical analysis, as well as symmetry considerations, are used to explain and extend pub-
lished quantum-cluster results for the ground state of a hole in a quantum antiferromagnet (AF).
For the ground state with a wave vector in the face center of the reduced Brillouin zone, the spins
twist into a dipolar configuration around the hole to optimize the hopping term, but remain copla-
nar. More complicated three-dimensional spin textures with staggered topological charge can be
constructed by superimposing dipole states corresponding to distinct points in the Brillouin zone
and different planes of spin twist. An effective Hamiltonian for the hole that generalizes the non-

linear sigma model is derived. The essential new term that is responsible for the textures described
is a coupling between spin currents for the holes and background spins. The presence of the local
antiferromagnetic correlations dictates a spinor representation of the vacancy. This description
provides the foundation for the study of the phases of a quantum AF at low vacancy density.

I. INTRODUCTION

The prescient suggestion of Anderson as to the ex-
istence and importance of the copper moments in the
high-T, superconductors focused attention on the prop-
erties of the two-dimensional (2D) Hubbard model. ' Ex-
periments soon followed that showed, for at least one
class of compounds, local moments that persisted from
the insulating to the superconducting phase. '

This article, together with Ref. 4, amplify and extend
Ref. 5 and are devoted to the properties of one hole in. a
quantum antiferromagnet as described by the model,

H = t g (c„+—, c„+H. c. ) +Jg s„+,s„,
r, a, o r, a

where cr is the electron annihilation operator con-
strained to single occupancy. s= —,c vc is the spin. The
sums are over all sites r on one sublattice of a 2D square
lattice and a=+x, +y are the nearest neighbors. Various
arguments have been advanced as to why (1.1) is a
reasonable model for the Cu-0 planes. ' Reference 4
was devoted to a numerical study of an 18-site cluster de-
scribed by (1.1). In this article we derive and explain
those aspects of the one-hole problem that are present as
long wavelengths and formalize our understanding in
terms of an effective Hamiltonian. When one hole is

properly understood, the various new phases that we '
and others" have proposed for the normal state of (1.1)
at low hole density follow readily. An effective Hamil-
tonian is useful in this regard since it clarifies the sym-
metries and, even if treated on a mean-field level, allows
one to parametrize various strong-coupling corrections to
the short-distance properties of (1.1).

Our principal points are the following. Holes carry
with them transverse, dipole distortion (i.e., a twist) in

the Neel order-parameter field; therefore, all three angles
of SU(2} are needed to describe the spins. The spins twist
to minimize the hole's kinetic energy just as in the
Nagaoka problem' with the essential difference being
where in the Brillouin zone the ground state occurs. In
the effective Hamiltonian the spin twist originates as a
coupling between spin currents. A spin configuration
with topological charge, which in the far field is described
by a skyrmion, can be created by superimposing two di-

pole states. Holes must be represented by a spinor wave
function whose spin represents both physical angular
momentum and a sublattice pseudospin. There is com-
plete continuity in the long-wavelength properties of (1.1)
from t /J « I up to t /J ~ O(10) when Nagaoka polarons
form. Lastly, a semiclassical Born-Oppenheimer analysis
is useful and appropriate at long wavelengths.

In Sec. II we summarize relevant facts about the low-

lying states of (1.1} with no holes and then recapitulate
the numerical results of Ref. 4. The dipole moment is ex-
hibited using simple semiclassical or Born-Oppenheimer
variational wave functions in both the small- and large-
t/J limits in Sec. III. These results are reformulated in
terms of a "gauge-invariant" phenomenological Hamil-
tonian in Sec. IV. Both a CP spinor description with
respect to the local order parameter and a vector spin
representation are presented. Finally, in Sec. V we use
just quantum mechanics and symmetries to explore the
relation between the hole ground states with and without
an infinitesimal symmetry-breaking field in order to clari-
fy the quantum meaning of the dipole moment.

II. BACKGROUND PREI.IMINARIES

A. Heisenberg and nonlinear o model

A variety of theoretical techniques have been used to
show that the spin- —,

' antiferromagnetic (AF) Heisenberg
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model is Neel ordered in two dimensions on a square lat-
tice. ' ' Given sufficient Neel order, it is highly plausi-
ble' that the appropriate continuum theory for scales
larger than the lattice is the NLo. model,

HNL =
—,
' f d r[y 'm +p(B,Q) ], (2.1a)

where

[m (x),m~(x')]=i@ ~ rm~( x)5( x—x'),
(2.1b)

[ ( ), Q~( ')]=' ~rQ»( )&( — '),
and the commutator of Q with itself is zero. (When em-

ploying the summation convention on products in physi-
cal space a =x,y, whereas lattice sums run over
a =+x,+y. )

The unit vector, 0, gives the direction of the staggered
magnetization order parameter and the conjugate vari-
able is the magnetization density m. Equation (2.1) still
contains quantum fluctuations which further renormalize
the "bare" values of the magnetic susceptibility g and the
stiffness p, which are the only dimensional constants in
the theory. The ratio of their renormalized values is the
spin-wave velocity, c =p„/y~. To evaluate y„and p„
quantitatively and in a controlled manner for spin —,

' and

a square lattice, it is necessary to work directly from the
microscopic Hamiltonian (1.1). ' ' Both pz and the c
are within 20% of their semiclassical values. If we recall
the moderate reduction in the magnitude of the order pa-
rameter from its Neel value, —,', due to quantum fluctua-

tions, then all these numbers suggest that S =
—,
' in two di-

mensions is indeed large.
In other terms, if we were to represent the 2D quantum

ground state as a 3D classical partition function, then the
latter would be well into the order regime and have a
short correlation length. Once this correlation length
was exceeded, the remaining renormalization of p and y
could be calculated from nonlinear spin-wave theory, i.e.,
(2.1). It will occasionally clarify approximations to real-
ize that the validity of (2. 1) can be pushed further to-
wards lattice scales by imagining a next-nearest-neighbor
ferromagnetic exchange added to (1.1).

Clearly (2.1) is rotationally invariant so that the total
spin Jmdx is conserved. A less obvious constant of the
motion is m(x) Q(x), which, in fact, commutes with all
operators in the theory, and can therefore be eliminated
directly. Its physical interpretation is as a generator of
rotations about Q. Clearly when the sole "coordinate"-
like variable is a unit vector, rotations about it are physi-
cally meaningless.

Another important quantity in the following will be the
current J, for the conserved magnetization m; which
suppressing a constant p is

(2.2)

for comparable parameters, is a subtlety of the thermo-
dynamic limit and not the representation. The dichoto-
my disappears if either a staggered field, vanishing with
the volume, is applied to the quantum model or an aver-
age over the uniform mode is done in the classical case.
A more extensive discussion of the quantum case is left
for Sec. V.

B. Numerical results

Determining the exact ground state of (1.1) for an 18-
site cluster and one hole is, presently, the most convinc-
ing route to finding the band energy and spin distortion
around the hole. We work for t/J&4 where finite-size
effects are not too serious, and we found, in addition, that
nothing qualitative changes as t /J decreases even if it be-
comes much less than one. A good understanding of the
energy has been obtained by a variety of analytic methods
(cf. Ref. 4), sometimes only rigorously justified for
t/J ((1. Here, too, we will frequently exploit the small-
t/J limit to make the physics of the spin distortion inost
transparent and then do more ponderous calculations in
the physically relevant limit.

It is important to realize that the exact strongly cou-
pled ground state of (1.1) for one hole may be put into
Bloch form because the underlying Hamiltonian is
translationally invariant. Specifically,

0k rf e 4'k (»
r, I crj

(2.3)

Corresponding to (2.4) is the energy dispersion E(k) and
a Brillouin zone which, in the presence of AF order,
is reduced to the diamond defined by (~,0), (0,n),
(
—~,0), (0, —m) (Fig. 1).

kx

where r is the hole location, which is summed over the
entire lattice, and [a ] denote a complete set of spin
eigenstates at all sites pAr. The amplitude P obeys, of
course,

The equation of motion for m is just ibm/dt = —pB,J, .
The presence of Neel order makes any topological

correction to (2.1) unlikely. The other ostensible
difference between (2. 1) and the finite-lattice Hamiltoni-
an, namely that the lattice ground state is a singlet
while the thermodynamic ground state of (2.1) is ordered

FIG. 1. The reduced Brillouin zone appropriate for an AF
ordered system. The constant energy surfaces near the ground
state {+m/2, +m. /2) are shown as semiellipses. Note that by us-

ing the reciprocal-lattice vector (m. , m. ) the correct count of states
includes only two complete ellipses.
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with c; )0 and c2 )c3. The second terms favor the zone
face over the zone center while the last term places the
energy minimum at (+m/2, +n./2) rather than at the
zone corners (m, 0), etc. Near the minimum energy, the
mass perpendicular to the face is lighter than the parallel
mass.

The symmetry of the bond spin currents s„Xs,+, al-

lows one to deduce the structure of the spin distortion
even though its far-field behavior is not directly accessible
in the small cluster study. In the continuum limit (as we
shall argue below), the spin distortion defines the dipole
moment Pb according to

QXB,Q=(5,
&
—2r, r& )

T
(2.5)

The k dependence of the dipole moments has the same
symmetry as sink, as it must, and so vanishes at the zone
corners and center. Finally, ferromagnetic polarons,
which occur in our simulations for large t/J as a finite-
size eÃect, change the ground state to k=0 and its spin
from —,

' to —", (i.e., the maximal value).

C. Operator definition of dipole moment

We remarked in Refs. 4 and 5 and will amplify below
that the dipolar distortion in the spin field around the
hole resembles the incompressible flow of super6uid for a
roton state in He. This suggests that we examine the
equation of motion for the local spin

c,~c,=i—t g (c„zc —H. c. ) i2Js„X—g s, +-, .
a a

(2.6)

The site occupied by the hole has a spin of zero. This
should not be confused with the total spin of the many-
particle ground state of (1.1) for one hole which is —,'.

The current corresponding to (2.6) is

j,( )=1it(c„rc„+,—H. c. )+i2fs„Xs„+, . (2.7)

Clearly the first term in (2.7) is only nonzero when either
i or i+a is occupied by a vacancy while the second is
only nonzero in the complementary cases. The expecta-
tion value of j, in any translationally invariant one-hole
eigenstate of H must be along k by symmetry and in-
dependent of r. A more interesting quantity is, of course,

I, (&)= g (Icp c tpj, (r) )I

The other quantum number characterizing the quan-
tum cluster is the total spin which is always the minimum

possible, i.e., —,', so long as finite-size effects play no role.
The square of the order parameter is not greatly reduced
by the hole but its direction fluctuates, and the associated
subtleties of interpretation are deferred to Sec. V when
they were not already discussed in Ref. 4.

The energy E(k) is conveniently parametrized by

E(k)= —c, +c2(cosk„+cosk )
—c3(sin k„+sin k )

(2.4)

which measures the current relative to the hole(t, . . . ) here denotes an anticommutator}.
Using (2.5) we can identify the dipole moment from the

Fourier transform of I„
P, = lim

k~o
k, kb

I&(k)
k

P„,=i(c„rc„+,—H. c. ) . (2.8)

Note that (2.8) is defined on a bond and hence carries a
spatial vector index. It has not proved possible to derive
the effective Hamiltonian of Sec. IV merely by regroup-
ing the lattice operators manifest in the theory and
directly taking a continuum limit as ANeck did for
(2.1). The bare Hamiltonian is too bare and certain
fluctuation effects have to be explicitly calculated.

III. SEMICLASSICAL

A. Justification

We remarked in the previous section that the Heisen-
berg model is ordered and if one were to imagine in-
tegrating out the smallest scales one would rapidly reach
a scale where the nonlinear 0 model was quantitatively
applicable and all subsequent renormalizations were cal-
culable from (2.1). The influence of the hole can extend
into this region since there is a broken continuous sym-
metry and Q will decay algebraically while the magneti-
zation and whatever perturbation the hole makes to the
magnitude of the order parameter decay exponentially.

In this regime a semiclassical calculation which factors
in (2.3} into the product of spinors is eminently reason-
able. More precisely, provided only that there is Neel or-
der, suSciently far from the hole there will, in general, be
a Q(r) satisfying,

V Q=O, (3.1)

irrespective of quantum fluctuations. In the continuum,
semiclassical limit, the hole merely furnishes the bound-
ary conditions to be imposed on (3.1) for small r and thus
determines the symmetry of the state. (The same point
was made in the previous subsection using the spin
current. )

The limit should exist since, if we take the lattice diver-
gence of I„use the equation of motion (2.6) and the com-
mutator with 0 to transfer the time derivative, one ob-
tains,

r

g (Cp ~cp ~ },C„7C„
dt

I

This should decay exponentially for large r since the hole
density should couple only to the magnitude of the spin
order parameter, not its direction.

More naively, since the dipole moment of the hole is
manifest in the far-Geld spin current, it makes sense to
identify the first term in (2.7) as the source of this current
and hence as an operator expression for the dipole mo-
ment of the hole, viz. ,
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Spins distort around the hole to facilitate the hopping
and thereby optimize the kinetic energy. With an intelli-
gent superposition of one-particle spin states the symme-
try of the hole's immediate environment can be calculat-
ed variationally for small t/J from the expectation value
of the hopping term in (1.1). Isotropic exchange is now
essential, i.e., Eq. (3.1), and stabilizes the twist induced by
the hopping. The energy gain due to the twist is 0(t /J)
after minimization with respect to the spin field and in
accordance with Ref. 4.

To work in the physical t/J )) 1 limit we first have to
calculate the scrambling of the spins by the multiple hops
the hole makes to minimize its kinetic energy the spin
dynamics does not play a role here and in Sec. III D we
work within a Born-Oppenheimer approximation (the
hopping is faster than the spin exchange) still treating the
spins semiclassically.

For a plausible variational function a spin twist
emerges again, now expressed in a form analogous to that
emerging in the effective Hami1tonian of Sec. IV. It is ex-
plicitly shown that multiple hops do not diminish the
magnitude of the twist, i.e., dipole moment, in accord
with the numerical results.

B. Analytical results for t &(J

A
W o Zo TPcr

w~ =ear(zv 2pv } ~

(3.2)

where multiplication by the antisymmetric matrix
(e,2= —e2, =1}followed by complex conjugation imple-
ments time reversal. The spinors z,p are defined only
within the AF reduced Brillouin zone so that there is no
overcounting of the number of degrees of freedom in
(3.2). The w's are normalized to one, and we work to first

We now proceed to evaluate the hopping variationally
in the semiclassical approximation by factorizing (() in
(2.3) into the product of spinors. Thus, we introduce a
slowly varying spinor field z (r), zz=1 (the Schwinger
spin boson) corresponding to the local direction of the
staggered magnetization Q. The rapid alternation of
spins from sublattice 3 to 8 is accounted for by the
time-reversal operator acting on zr for one of the sublat-
tices. Finally, we want to allow for a small canting com-
mon to both sublattices which we parametrize by the spi-
nor field p (r), Re(pz) =0. Thus, the actual spins on the
two sublattices are given by spinors w "' defined as

Hl~&o/'l&= Ilx/'o l&-Icos/l&

FIG. 2. Calculation of the matrix element (AI(HIB)), for
a hop along +x. Only the nearest neighbors of the hole
are shown distorted and in a manner appropriate to
k-(n. /2, +m/2). Corresponding sites are displaced vertically.
The phases shown on the I A ) states are relative to the corre-
sponding IB ) states which appear on the line above.

order in p, pp «1, and also neglect Bp. One then finds,
as desired,

s"' =+zrz+ ,'(zrp —+prz)

and by definition

m= —,'(s"+s )=—,'(zrp+prz),

0 2(SA SB)

(3.3a)

(3.3b}

The identification of m and 0 can be verified by taking z
and p as Bose operators and checking the commutators
(2.1b) as we do in Sec. IV, Eq. (4.12).

To evaluate the hopping, all spinors will depend upon
their distance from the hole, p, and to keep track of the
up-down dependence it is necessary to split the lattice
sum (2.3) into r E A and r &B. One therefore has

Ik) y (2N
—1)l/2 y i g A,

( )I I I )
r E A, I o I p@0

+ lt, (2N-')'"

X g e'""ff w ' ' '(p)Ir, [cr] ), (3.4)
r EB, I a I pAO

where a( A /B, p) selects w" or w depending on the sub-
lattice occupied by the hole and p (N is the number of lat-
tice sites and p is the distance measured from the hole}.

Figure 2 illustrates the computation of the hopping
matrix element. Due to the displacement of the hole, the
inner product between spinors at p=+a is drawn from
opposite sublattices and therefore would be zero in the
undistorted semiclassical ground state. The inner prod-
uct for the remaining lattice sites involves spins from the
same sublattice but whose position relative to the hole
differs by a (cf. Fig. 2). In the continuum limit, the re-
sults is a pure phase 6, of order I, /J

ib,
e '= P z(r —a)z(r)=exp zd, zd r

r&O, a

The hopping matrix element then reads

2Re(( AIH„, IB) )= 2t Re $„$8pe„„{2isin—(k a+6,, )z„(—a)z„(a)

+cos(k.a+6, )[p„(—a)z„(a)—z„(—a)p„(a)] I (3.5)
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Notice that the coupling is solely to Q for k -(m/2, vr/2)
[N.B., Q=zrz from (3.3)] while for k near the zone
center and corners the magnetization appearing in the
second term becomes important. The former term is the
product of two factors odd under a ~—a while the latter
involves even factors.

To proceed further with the minimization, we will
drop b, [which is O(t/J)], and assume (and justify in
Sec. III C) that it suffices to take m parallel to z and Q
predominantly in the (x,y) plane. We may then
parametrize

e'~ cos(8/2)
iy/2

e '~~ sin(e/2)

FIG. 3. Schematic of one of the two possible dipolar spin
configurations around a hole for t/J ((1 according to the semi-
classical treatment of Sec. III B for k =(m/2, m. /2). The Neel
order parameter is along x at infinity.

e i5/2cos(9/2)

E
sin( 8/2 )

(3.6)
It is revealing to reexpress the order-parameter field by

calculating the current (2.2), for (3.6)—(3.8).

where e«1 sets the scale of the magnetization and 8 is
close to n/2 Equa. tion (3.6) explicitly makes m„„=0 in
(3.3b) and Re(pz)-O((8 —n/2) }. [The norm of w in
(3.2) is 1+e cos(5 —P)/2, i.e., one plus something second
order in small quantities which may be neglected in the
minimization. ]

After substituting into (3.5) one observes that P(a) is
small. g„=pe = I/v'2 without lose of generality, and p
may be omitted from the term involving p in (3.5) since it
only occurs as the argument of a cosine. The third angle
in the SU(2} parametrization of Q, y in (3.6) is an overall
factor within the curly brackets of (3.5) and therefore is
locked to the relative phase of g„,gii. The final result
for the hopping is

Ek = t g ([(()(a)——P( —a)]sin(ka)

QXa.Q=za. y=z(5, &
—2r rb)pb/r2. (3.9)

Its dipolar distribution should be reminiscent of the po-
tential flow field in a roton state of superfluid helium,
with the conserved quantity now being the magnetization
rather than the density. The analogy is further rein-
forced by the observation that both the roton and the va-
cancy in an AF have minimum energy for k%0.

The meaning of the dipole moment in (3.9) and particu-
larly its spin dependence can be further clarified by com-
puting the expectation value of the dipole operator, (2.8),
in the semiclassical ground state. Since we are interested
only in k -(m/2, +m/2) we ignore the uniform magneti-
zation and find

+ejcos[5(a)/2]

+cos[5( —a)/2]}cos(ka)) . (3.7)

The twists implied by (3.7) are balanced by an exchange
term which, with these approximations and in the contin-
uum limit, becomes

H,„=,' f [y —'m +p(VP) ],
where m =2ecos(5) [cf. (3.3b)], and g '-p- J.

Minimizing, with r the distance from the hole in lattice
units,

P(r)= p r/r, r ~ 1, .

m =O(t/J)cos(k r), ~r~
—1,

(3.8)

where the vector p, =0 (t /J)sink, . The magnetization is
always exponentially localized around the hole. It is uni-
form for k -0 as expected for Nagaoka's ferropolarons
and quadrapolar for k at zone corners. The order-
parameter distortions are long ranged and of dipolar
symmetry determined by k. They vanish only at the zone
center and corners where one can no longer define a vec-
tor p, . The actual spin arrangement around the hole is
shown in Fig. 3. Note that there are actually two distinct
possible states corresponding to multiplying P in (3.8) by
+ l.

2t
~ Po,.) =—1m[(2gg ge )[e„~„(a)r„„z„(—a)e'"'

—(a~ —a)]} . (3.10)

The vector within square brackets, when evaluated from
(3.6)—(3.8), becomes

plus terms of O(P+, ) which is small, as is (y, —y, ).
The vector is therefore, for reasons of symmetry, perpen-
dicular to 0 at infinity and its direction is controlled by
e'r and the other phase factors in (3.10}. At the energy
minimum its direction is z as expected from (3.9). Its
magnitude is O(t/J) once one divides (2.6) by J to agree
with (3.9). The volume factor disappears if we normalize
to the probability of finding the hole at the origin.

It is also appropriate to note here that if we imagine
the hole in a rotationally invariant state, such as would
be created by a localizing impurity, then seemingly more
complicated spin configurations than dipoles can be
created by superimposing states from the two ine-
guivalent valleys at (n/2, +m/2). Specifica. lly, we take
0=z at infinity and superimpose the dipole states with 0
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+ t o

FIG. 4. The average spin field obtained by superimposing a
dipole with k-(m/2, ~/2) and 0 in the x,z plane with a
k -(m/2, —m. /2) dipole and 0 in the y, z plane. At infinity 0 is
parallel to z.

in the x,z plane for one valley and with Q in the y, z plane
for the other valley. The wave function is no longer
strictly semiclassical since it is the sum of such wave
functions, and in Fig. 4 we plot the average spin vectors
on the four sites surrounding the hole or equivalently the
correlation function «n(0)s(r)), where n is the density
operator for a hole. This will suffice to determine the
symmetries of the state which is p-like when rotated
around the hole.

There is a further degeneracy in Fig. 4 which is related
to the sense in which the spins must be rotated around z
in order to bring into coincidence the spins on two sites
related by a given m/2 spatial rotation. The sign of the
topological charge measures this handedness, i.e.,

I =J0 (t)„QX t) Q),

where we use the average spin to evaluate 0 adjacent to
the hole. Of course, I" does not change if we rotate all

spins by the same amount. Far from the hole, a semiclas-
sical description should again apply and we have to recal-
culate Q from (3.1) with the boundary condition suggest-
ed by Fig. 4. One finds, with our conventions, the skyr-
mion solution

+ .~ x +lp'
z 2+$2 & x r

The scale size A, should be adjusted such that near the
hole the spin deviation is 0 (t/J) in the small t and there-
fore the total topological charge in the far field is
0(t /J ). Whether a hole bound to an impurity actu-
ally has a finite orbital angular momentum in the ground
state requires an explicit calculation. We can only claim
here that skyrmion solutions are not unexpected when di-
poles are already present and from the form of the
current-current coupling in Sec. IV, skyrmions favor a
finite angular-momentum state for the holes. Note that if
the topological charge is computed from three nearby
spins drawn from the same sublattice, it will reverse sign
with the sublattices.

C. Numerical minimization

We have also directly minimized the expectation value
of the energy in (2.4) taking f„=Ptt =1/'t/2 as allowed
by symmetry, but making no assumption what so ever
about the spinors w "' . This serves as a check that the
various assumptions about the symmetry of the solutions

-2.2

~ -2 8 ™28
28 0.0 2.8

2.8 0.0 2 8

~ 2 8 ~ 2 8 ~

-2 2

~ 2 2 ~ 0.0 Q 0.0 ~ 2.2 ~

"2,3

~ -3 8 ~ -I.2 ~

0.0 -I 2

I 2 0.0 -3.8

I 2 ~ 3.8 ~
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~ 2. 3 ~ 00 0 00 ~ -23 ~

(2.0, -I 3)

~ (3.I,- I.O) ~ (I.I, -I.O) ~

(-3.1,- I.O) 0.0 ( I.I, - I.O)

~(-2.0,63)~ 0.0 Q 0.0 ~ (2.0,- I.3) ~

(- I I,-I 0) 0.0 (3,I,-I.O)

~ (-I.I,—I .0) ~ (-3.I;I,O)~

(-2.0,-I.3)

(b3

(
7l' 7P

)2 f2 (7P 7F
)5 '5

( 0.28,0.0,—0.96) (0.0,0.38, —0.93) (-0 I7, 0.3I,—0.94)

«-0.28, 0.0,-0.96) (-0.28,0.0,-0.96)
~ p o

(0.0,0.38,-0.93) (0.0,-0.38,- 0.93)
~ p ~

(-O.I7t 0-3I e 0 94) ( O. I7t 0.31e 0 94)
~ p ~

«0.28 s 0.0e -0.96 ) (0.0,-0.38,-0.93 ) (-O.I 7, -0.31,-0.94)

(m, 0) ( ——
3s ( — —

35'5

FIG. 5. Spin configuration around a hole on the A sublattice for the semiclassical variational wave function minimized numerical-
ly for the values of k shown and J=t. Lattice points are shown as circles the hole occupies the central site in all cases. In (b) we
show the nonzero components [y, x, and {x,y), respectively] of the bond spin currents, s, Xs, +, . Signs are chosen to make the
currents in the second two cases invariant when reflected across the direction of k in physical space.
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as a function of k are indeed correct. Also, we now find a
quadrapolar distortion in Q as well as m at k =(n, 0)
which will, of course, dominate far from the hole.

We chose directions such that Q=(0,0,1) far from the
hole (spin up on A down on B). In addition, we calculate
the total magnetization for

~
A ) and ~B ) separately (i.e.,

hole on the A sublattice or on B) and always find a com-
ponent along z which is negative and order 1 for

~
A ) and

equal but opposite for ~B ). This merely represents the
loss of one spin due to the hole. The uniform canting we
observe for k strictly inside the Brillouin zone is the same
for both

~
A ) and ~B ) and in the x direction because of

the various free phase factors we have assumed. To ob-
tain a sensible approximation to the correct quantum
ground state, we have to superimpose ~

A ) and IIB ) and
then rotate and average all spins around x. The net mag-
netization is then along x and contains a contribution
from the canting as well as from the separate pieces along
kz due to the superposition. We could replace x with
any other direction perpendicular to 0 at infinity by in-
cluding an additional relative phase between

~
A ) and

~B ), i.e., by taking P„/P~ =e'~. Further discussion of
the relation between the classical and quantum solutions
is deferred to Sec. V.

Figures 5(a) and 5(b) permit one to verify the sym-
metries noted above (which are independent of t /J). The
bond spin currents s, X s,. +„are a particularly useful way

to display the gradients of Q as was done in Ref. 4.
One unphysical feature of these results is that the ener-

gies near k=0 are lower than at (m, 0), though (n /2, n /2)
remains the ground state. This can be understood if one
remembers that the energy splitting between k=0 and
the zone boundary is mostly due to spin fiuctuations,
more precisely, two hops followed by a spin exchange,
and thus absent in a semiclassical wave function.

D. Large t/J

In this limit we follow Brinkman and Rice and
represent the ground-state wave function of the hole as a

"string, " a sequence of hops through a frozen spin back-
ground. This is reasonable because the hopping is more
rapid than the spin dynamics (yet t is not so large as to
favor the formation of a ferropolaron). ' The hops
scramble the spins in the AF background and the cost in
exchange energy is J/, where / is the number of hops.
The kinetic-energy gain is of order t/—I implying a
mean I (—t /J)'~ and the energy is

E,= 2~—3t +2.7J'"t '" . (3.11)

Note that both terms are much larger than the energy
scales described by the cr model, i.e., J times gradients.
The core region where the hopping suppresses the magni-
tude of the order parameter is exponentially localized.

We will show that a trial wave function incorporating
the "string" dynamics gives rise to a twist in the spin
background, expressed semiclassically, that does not de-
crease with t /J in accordance with the numerical simula-
tions (Ref. 4). This argument is not rigorous since the ab-
solute energy is not accurate to 0(J) and zero-point
motion of the spins is neglected. We expect, however,
quantum fluctuations merely to renormalize the magni-
tude of the twist in qualitatively the same way they
reduce the magnitude of the order parameter or any oth-
er long-range spin distortion. Our goal in this section is
merely to make plausible that large t and multiple hops
are not per se inimical to a dipolar twist.

It is both calculationally convenient and physically in-
structive to work in this section with a vector representa-
tion for the spins rather than a spinor one. This antici-
pates the effective Hamiltonian in Sec. IV and yields an
expression manifestly rotationally invariant in spin space
in contrast to (3.7)—(3.9).

In accordance with (2.3) we make the string wave func-
tion (the quantity within large parentheses below),
translationally invariant and furthermore allow for a
slowly varying amplitude y which will facilitate the inter-
pretation of various matrix elements. We therefore define
a trial function

N
—g e'""y (v, r) c (r)+yi g c,(r +a')c~ (r)c (r)

+y2 g gc .(r+a'+a')c ., (r+a')c, (r+a')c (r)c (r)+ . ~R ),
a'& —a' a

(3.12)

where v is a spin label for the hole and c are the usual Fermion operators constrained to single occupancy. They act on
a product of single-particle spin states described by a smoothly varying rotation matrix, R., acting on the Neel state. In
particular, the spin density matrix is

2(R ~ct (r)c .(r)~R ) =5 +f .s(r) (3.13)

with s =1 normalization. The successive products in (3.12) are build up by acting with the hopping and y, +, equals
3 '~ /2 for normalization, times an appropriate Airy function which varies with I on a scale -(J/t)'~ (Ref. 31). Note
that it is the admixture of various length / "strings" that brings the ground-state energy down on an energy scale of or-
der t.

In the matrix element (, P~EI, ~f), the terms we need are of the form y&*y&, and we follow Brinkman and Rice in as-

suming that the two sums over the intermediate bond vectors a, a', . . . , in the bra and ket simply collapse; that is, the
hole retraces its path. Then each term in /, the number of hops, has a common factor containing the spin and k depen-
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dence, while the sum over 1 is essentially the norm and therefore of order 1:

(Q~Ek ~g) ——Re g g e '" ~g (v, r +a)g (v, r)(R ~c (r +a)c .(r +a)c, (r)c (r) ~R ) +
A
a

(3.14)

The matrix element in (3.14) can be rewritten with the
aid of (3.13) in terms of s(r) and s(r+a) and yields, to
within numerical factors,

(Q~Ek ~1()- R—e g g e '"'g(v, r+a)ry(v, r)
r a

X s(r)+s(r +a)

+—s(r +a) X s(r)
2

(3.15)

To proceed further we use the fact that g is slowly vary-
ing on a small scale and identify m and Q as in (3.3b).
We assume slow varying fields: m —BQ. Then (ignoring
Bg for the moment),

(P~Ett ~P) ——ggfg (cosk„+cosk )m

+ g sink, QXB,Q
a =x,y

(3.16)

The similarity of (3.16) to (3.7)—(3.9) should be evident,
namely the spin coupling is predominantly to m in the vi-
cinity of k-0 and to the spin current near (n. /2, m/2).
[The quadrupole behavior of m near (n.,0) has been lost
again in the continuum limit. ] The spin dependence of y
can be used to build a wave function with the total spin
either parallel or perpendicular to the order parameter in
accordance with our discussion in the Introduction and
Sec. V.

The object multiplying QXB,Q in (3.16) should be a
spin current since it multiplies another spin current [cf.
(3.9)] to yield an energy. It should be interpreted as a
current for the hole built from the phase velocity sin(k, ),
as we discuss further in Sec. IV. An additional term
analogous to a group velocity (i.e., it vanishes in the
ground state) emerges when we retain gradients of y. For
k —(m /2, rt/2) the relevant, i.e., nonzero, terms in

( tP~EI, ~ tP) are those in which the bra, ket, and additional
hopping retrace to within two sites rather than one as in
(3.14). One finds a contribution,

(P~E„~y) — . +it y e '""+"(a+a')'
a, a

X(B„pry—H. c. )(Q X BbQ)

+ 0 ~ ~

where b =x,y and is summed. The current-current form
of the hopping-induced twist should now be evident.

IV. EFFECTIVE HAMILTONIAN

In this section we systematize and extend the descrip-
tion of the ground state of one hole to include the interac-
tion of the hole with an imposed slowly varying Neel or-
der parameter and magnetization. In applications, or in
the presence of a low density of holes, n, the "imposed"
0 and m fields will obey the Xl.o model and reflect the
presence of other particles. Our effective Hamiltonian
will apply for wave numbers k & kF -n ' where it gen-
eralizes and extends the nonlinear 0. model to include
holes. Spin degrees of freedom k ~ kF are integrated out
and generate the correct one particle dispersion e(k).
The dipole moment is also determined by the hole quasi-
particle on short scales, i.e., locally. We will work in the
small-t/J limit, which should not restrict the applicabili-
ty of the effective Hamiltonian, since the most significant
new terin was derived for t/J )) 1 in the previous subsec-
tion and no qualitative change in the one-hole ground
state was found as a function of t/J. In addition, when
properly understood, all terms follow from symmetry and
all the complexities of the local spin structure around the
hole for t /J )&1 are incorporated into coefficients.

One question of symmetry which the explicit calcula-
tions of Sec. III elucidated was the necessity of carrying a
sublattice index for the hole creation operator. This may
have appeared to be merely a convenience but is required
to correctly account for the two degenerate ground states
of a hole in a small cluster and the manner in which they
superimpose. In the presence of local AF order the pres-
ence of a hole means the absence of a spin parallel or an-
tiparallel to Q(r). Irrespective of where the excess mag-
netization resides, it is imperative to describe the holes by
a spinor in order to write the current-current coupling,
which is the source of the dipolar distortion, in a basis-
free manner.

To facilitate the derivation let us formally separate the
spin and charge degrees of freedom by factorizing the
electron operator constrained to single occupancy

c (r)=g(r)w (r), (4.1)

where g(r) creates a fermionic vacancy on site r and
w (r) annihilates a Schwinger spin boson (ww=l for
spin- —,'). Next we separate the spin field w (r) into a
slowly varying semiclassical background and spin-wave
fluctuations about it. This can be accomplished by intro-
ducing a SU(2) rotation matrix R relating the local semi-
classical spin orientation to a fixed basis Neel state and
then expressing the deviations away from the local Neel
state in terms of Bose operators a„,b„:
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w„(r) =R „(r)
1 —

—,'a ~a,

a„

b„
wB(r) =R B(r)

2

(4.2)

R „=
1 1

1 1
Z2 P2 Z1+ P]

2K 2K

1 1

1 1
'Z2

2 P2 Z1 P]
2)~ 2K

(4.3)

We will parametrize the rotation matrix R in essential-
ly the same way as in the semiclassical calculation of Sec.
III 8, namely with two slowly varying orthogonal spinors
z and p obeying zz= 1 and Re(zp) =0. The local order
parameter and magnetization are Q =zrz and
m= )(prz—+zap). Note that the Re(zp)=0 constraint
corresponds to I.Q=O. When we restore the quantum
dynamics to the long-wavelength fields, p and z will be
canonically conjugate and express the NLo Hamiltonian
in CP' variables. We therefore write

where it is the magnitude of the staggered moment. The
quantity a. will play no substantive role in the following
but serves to formally adsorb the reduction in the local
moment due to quantum Iluctuations (recall that now 0
and m refer only to long wavelengths}. It occurs in R but
not m since R must be expressible as the exponential of
the real angular momentum or spin along a certain direc-
tion (cf. Ref. 5). The sign of p in (4.3) must change from
A to 8 since the magnetization density is uniform from
sublattice to sublattice [cf. (3.3b)].

The hopping term in (1.1) becomes

H), — t g g, +„g„"w„"w„+„+H.c.
rEA, p

)t) „+„g„"[(at+b„+„)i A„(a—„b„+„)—] t g—g „+„tt)„"[f„(r)+h(r)][1——2)(a„a„+b„+„b„+„)]

t g —f,+„P„"[f„'(r)+h '(r)]a tb„+„+H.c.
rC A, p,

with the slow fields

(4.4)

i A& ——z()&z,

f„=—e g ()z„,
h =it e~g~p~,

(4.5)

(4.6)

arising from the gradient expansion of R „(r)R B(r +p, ). (In this section only, we denote the lattice vector a =x,y in
scalar products and a =+x, +y in lattice sums by )M to avoid confusion with operator a. ) We assume both p and Bz to
be small (in accordance with the XLo Hamiltonian} and keep only the leading order.

The exchange part of the Hamiltonian has the form

H,„=J g )f„+h~ +J g [a„a„+b„+„b,+„+a„b„+„+b„+„a„2iA„(a„b„+„—b„+„a„)]-
rE A, p r6 A, p

+J g [(a„a„+b„+„b„+„)~f„+h(+a„b„+„(f„'+h')+b„+„a„(f„+h)] .
rE A, p

e +(i I2))t(r)w
t

yA, B( ) +(il2)y(r)yAB( ), (4.7)

which arises from the redundancy of the factorized repre-
sentation Eq. (4.1) and leaves the physical electron opera-
tor invariant. This gauge symmetry can never be broken
although at times it is convenient to carry non-gauge-
invariant quantities at intermediate steps of a calculation.

The original Hamiltonian and thus (Eqs. (4.4) —(4.6) ad-
mit a local gauge symmetry corresponding to rotations
about the local lattice spin, sA z, direction,

The induced transformation of the a, b, z,p fields is

z e t,i l2)yz e (i /2)y
7 P 7

a ~e'+a, b ~e '~b,
(4.8)

A„~A„+—,)(}~. (4.9)

which leaves the two physical continuum vectors Q andI invariant. The assumed continuity of the z,p fields
reduces the gauge transformation to that described by a
slowly varying y, and A „acts as a gauge field:
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Finally,

f„~e '«f„, h ~e '«h . (4.10)

Although the gauge invariance is more apparent in the
continuum limit, (4.6} is an expansion up to third order in
slow gradients or magnetization and it is properly gauge
invariant to the same order. In particular, note that the
transformation of a„b„+„involves a B~ and so is gauge
invariant when combined with A „.

The exchange Hamiltonian (4.6) describes spin waves
in a slowly varying background field and is essentially
equivalent to Polyakov's formulation of the renormaliza-
tion group for fixed-length spins. Instead of doing the
integration over small scales iteratively, it is sufficient for
our purposes to do it in one step by standard Holstein-
Primakoff spin-wave theory. The NLo model with re-
normalized susceptibility and stiffness constant emerges
in the following equivalent forms:

Hatt. =4Jpg(lhl'+-, 'If„l') (4.1 la}

=4Jp g [x (pp —pzzp)

+ ,'(8„+—iA„)z(B„—i A„)z] (4.11b)

=4J g [y 'm +p(B„Q) ] (4.11c)

[z„p ]=5,—z„z

[P p]=z P, +p z
(4.12)

The constraints zz = 1 and pz +zp =0 are explicitly
preserved by (4.12). One should also be able to verify
from (4.12) that the conventional Lagrangian path in-
tegral is obtained from the quantum Hamiltonian. Vari-
ous commutation relations induced by (4.12}for the com-
posite operators in (4.5) are collected in Appendix B.

The three terms in the hopping Hamiltonian, (4.4), de-
scribe the coupling of hole motion to the spin fluctuations
the interaction of the hopping with the slow gradients,
and finally a Auctuation correction to the same that we
will ignore. Integrating out the spin fluctuations gives
rise to a self-energy, diagonal in the sublattice index,
whose co=0 part is just the band energy E(k) discussed in
Sec. IIB and it will be incorporated into the effective
Hamiltonian as a term e(k)g k Pt, . In the small-t /J limit

with ~, p, g calculated in spin-wave theory.
It is not surprising in view of the gauge freedom

(4.7)—(4.10) that a covariant derivative appears in (4.11b),
and higher-order gradients should take the form
of F B, where a,p=0, 1,2 (0 being time) and
F tt—=8 A&

—BBA . It may be reassuring to certain
readers that the classical p, z Hamiltonian can be convert-
ed into the classical Lagrangian, l

(d +i A )z l, by
the usual manipulations provided one imposes on

p, Re(zp) =0 (Appendix A).
As anticipated in the introduction to this section, the

standard a-model commutation relation (2.2b) in m, Q
variables can be reproduced within the spinor formula-
tion by taking as nonzero solely the commutators

a Hartree-Fock calculation suffices and the numencal
coellicients in (2.4) were calculated in Ref. 4. For
t/J )) 1 a more careful self-consistent calculation of the
self-energy is required.

The elimination of the Auctuations can be done
neglecting the slow fields since the coupling of a, b to
f„,h leads to corrections of order 0 (8 ) and the coupling
to A„can be correctly deduced a posteriori simply by re-
placing k„—+k„+A„[where +( —) refers to A (8), re-

spectively] as required by the gauge symmetry (note that
vacancies on opposite sublattices have opposite
"pseudo"-charge).

The direct coupling of the vacancy fermion to the
background fiel, Ht, ", can be further rewritten if we re-
call that f„ is odd in p and h even. We also have to
provisionally define a lattice difference operator

f„+„——g, to act on the fermion fields since they
are not slowly varying until we expand around the
minimum energy wave vectors (+n./2, +m. /2). One then
has with

(=1—
—,'(ata„& ,'(b„—bt—&,

Hair
h gt g 1—( „+„g,"(f„+h)+H.c.

f,P

—40t g ,'(~„0',0,"—f„+0,"~„P',f„)
f,P

+(g g"h+g "P h)

gt g [(i—A„%K„4+H. c. ) +44M 4], (4.13)

where

0 if„—0M:—
~ 0, K„—=

/J P 0

and we defined a spinor

(4.14)

yB
(4.15)

The definition of the sublattice spinor here is dictated by
our earlier choice of g+ as a vacancy creation operator
and future convenience [cf. (4.17) and above].

In order to pass to the continuum limit we introduce a
valley index U =—1,2 which enumerates the energy minima
at k'=(n. /2, +n/2) The tw.o ot.her degenerate energy
states are joined to these valleys through a shift by (m,n). .
[cf. Fig. 1]. The lattice derivative b,„which is odd in p
then separates into a piece proportional to the dipole mo-
ment of the valley in question, sin(k")/&2=n" plus a
slow gradient which we will make gauge invariant by
defining it to be D„=B„—i A„z, . The coupling to the
magnetization is actually zero to this order, as we found
in Sec. III B, since to make A„odd, the sum in (4.13} is
really over g",g displaced by p which vanishes at
(n/2, +sr/2). We will nevertheless continue to carry
this term so that the effective Hamiltonian is not invalid
at other points of the Brillouin zone.

At this stage of the calculation we have basically fac-
tored out the symmetry under sublattice interchange
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P, U P, U

+g2 g (iD„+"E„4"+H. c. )+g3 g 4 "M%",
P) U f, U

(4.16)

where s„(D„}is the operator valued 2X2 matrix, diago-
nal in sublattices, obtained from the band energy e„(k) by
expanding about k =k„. Because certain higher-order
terms have been included, Hz is explicitly gauge invari-
ant under 4~6+ with 6 =exp[ —( i /2 )yr'] under
which D„~D„, K „~6K„6 ', M ~GMG ', and
R ~RG '. [The transformation of R follows from (4.3)
and will be used below. ]

The phenomenological couplings g, z are O(gt} for
t/J «1 while in the opposite limit we expect values of
0 (J); g3 should be much smaller or zero. The exchange
J also sets the scale of the one-particle band width and
effective mass because of the reduction of the spectral
weight of the quasiparticle by the incoherent stringlike
excitations.

The spinor 4' in (4.16), by virtue of the definitions (4.1)
and (4.2}, is referred to an "intrinsic" basis fixed by the
local Q direction. It is very useful for purposes of inter-
pretation, though not necessarily for explicit calculations,
to refer 4 to a fixed uniform "lab" reference frame.
This can be done by defininp 4=R4. Noting that
RK „Rt =—,'(0 X8„Q) r, RMR =a. 'm r and3s

RD„R = d„+R d R + i A „RHR

=a ——'(Qxa Q) 7,P 2 P (4.17)

one arrives at the effective Hamiltonian (with a factor of
—,
' absorbed into g, 2 and ~ ' into g3 ),

HP= ya "„—'a„-,QXa„Q.." e
P~ U

+g, g(n„'4%4")~ (QXB„Q)
r', U

+g gi(8„4%4"—4KB„+') (QXB„Q)
f;U

+g3 +4m@ m . (4.18)

The second and third terms in (4.18) are just the
dipole-current and current-current coupling terms found
in Sec. III. They clearly cannot be written unless the
holes are described by a spinor. Since these same terms
are responsible for the appearance of the dipole moment
of the hole, the small cluster diagonalizations indirectly
point to a spinor description for the holes. This
pseudospin may be related to a real spin, i.e., an angular

(g„~Ps,Pn~ —f„) and k~k+(m, n) . and restrict
our attention to an elliptical region in k space about
(n. /2, +n/2). Equation (4.13) is properly invariant since
the f„term behaves like sink„while the h term is zero.

We finally have the effective continuum hopping Ham-
iltonian analogous to (4.11}

Hf, = g%' 'c.,(D„)%"+g, g n„"(4"K „4'+H.c. )

momentum in the presence of Neel order as we do quite
generally in the next section.

Recall that in the original microscopic variables, the
particle spin current in the g, 2 terms in (4.18) is con-
structed from 84, i.e., the phase velocity and not the
group velocity. This "current" therefore need not vanish
in the ground state, where, in fact, it reduces to the di-
pole moment, but it also does not correspond to the
transport of particles. If, by contrast, one varies the
s„(k) term with respect to k, the usual group velocity
would be obtained, which is zero in the ground state.

The gauge symmetry as represented by (4.8}—(4.10) be-
comes redundant for (4.18) since 4~(RG ')(6%)=4
and Q~Q.

Our effective Hamiltonian first appeared in Ref. 5 with
the current-current coupling and dipole moment em-
phasized and the gauge aspects implicit. Parallel work by
Wiegman emphasized the gauge aspects of the problem
originating with the next-nearest-neighbor hopping term,
s(k). Wen has also derived an effective Hamiltonian
similar to Wiegman's but he explicitly discards the
current coupling which appears to us to be responsible
for significant new physics.

V. EXACT RESULTS FOR FINITE SYSTEMS

A. Quantum mechanics of the order parameter

In this subsection we make precise the intuitive idea
that the quantum ground state can be represented as a
broken-symmetry state averaged over the direction of Q.
Such a connection is essential if we are to use semiclassi-
cal ideas to understand the quantum problem. The situa-
tion is very analogous to superfluid He if the Heisenberg
ground state is likened to a superfluid wave function with
a fixed number of particles. The phase is then undefined,
which, unnecessarily, complicates any calculation involv-

ing superfluid flow.
Understanding the quantum mechanics of the uniform

mode is also important for interpreting numerical simula-
tions of small clusters. It would be exceedingly awkward
to apply a small staggered field to define the order param-
eter, so, as a result, certain interesting matrix elements
vanish by symmetry while others are nonzero precisely
because there is no order parameter. Among important
issues that can be simply resolved by understanding the
quantum mechanics of the order parameter are the scal-
ing of the singlet-triplet gap or the symmetry-breaking
field with system size, and the relation of the one-hole
eigenfunctions in the extended versus reduced Brillouin
zones. Finally, in reference to the previous two sections,
the additional angle necessary to orient the dipole mo-
ment, its relation to the relative phase between sublat-
tices, and the conjugate relation between the dipole
operator and the component of magnetization along Q all
emerge naturally again here.

B. Undoped Heisenberg model

To define the wave function of the uniform mode it is
useful to consider the minimum energy state with given
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values of the total spin S and its z component S, which

both commute with H. These states are readily accessible
numerically since it is simple to control S, and the Lieb-
Mattis theorem then implies that S assumes the
minimum value possible consistent with S,. However,
the commutators (2. lb) imply that the order parameter
and total spin are conjugate variables completely analo-
gous to the unit vector defining the configuration of a
symmetrical top and its angular momentum� . Hence,
both cannot be simultaneously specified. To extract the
wave function of Q in a given many-body ~S,S, ) state we

follow the Lee-Yang construction for superfluid He and
consider the one spin-density matrix for two widely
separated spins. This factors into the square magnitude
of the order parameter times the spherical harmonic

Yzs ( Q ) and its complex conjugate.
Z

Several results follow immediately from the expression
for the spin dependence of the total energy for an even
lattice of N sites in the presence of a uniform field 0, ' ' '

E (S,S, ) —E(0,0)= gHS, +—S(S+ I )/(2yN) (5.1 )

The lowest-energy state of given S is Ys& ( Q ) while im-

plies that 0 is in the xy plane, more precisely
( Q, ) =0 ( 1 /S). This is the quantum version of the
wel 1-known result that an antiferromagnet adjusts to
a uniform field by canting. In order to define the
order parameter with an accuracy 1/A, i.e.,
(Q)=[1—O(A )Jz, (Q, +Q )-Q(A '), the uncer-
tainty relation ( Q, ) ( m~ ) ~ ( Q, ) (derived from the
corresponding commutator in analogy to the order-
parameter number commutator in He), require that total
spin states up to S—A ' have to be superimposed. '

The energy cost is -A /N which implies a staggered field
of order -A/N to achieve this degree of alignment.

Lastly, we mention that the estimates above and those
to follow could be obtained from a model for the AF con-
sisting of two equal and large spins representing two ful ly
polarized sublattices coupled together into a singlet.

C. Heisenberg model with a vacancy

For one-hole and sufficiently small hopping the Lieb-
Mattis theorem implies that the ground state is S =

—,
' (on

an even-size lattice). Numerically this persists until t be-
comes large enough to favor the formation of a ferropo 1a-
ron. When there is no imposed staggered field and a
small nonzero t, ( Q ) =0 in the ground state even though
forrnal ly the Wigner-Eckart theorem allows a vector
operator to have a nonzero expectation value in a spin- —,

'

state. For a finite system, there is a nonzero matrix ele-
ment connecting the states with the hole on the A and 8
sublattice. Therefore, both will be equally populated.
Then the symmetry, true even for the ordered state, with
respect to a shift by one lattice site followed by a time re-
versal of the spins implies ( Q ) =0 in the ground state.
The periodicity allows us to define the ground state as a
function of k, which lives in the full Bril louin zone

7T kz & 7T '7T' ky & 'll and which is twofo 1d degen-

crate because of spin. (In what follows, we will also make
reference to the ground states for higher total spin. )

In contrast, imagine that we impose an order parame-
ter Q, on the system which can be done in two ways (up,
down) with respect to the sublattice structure which we
regard as tied to the lattice not the spin. The total spin is
no longer a good quantum number, and once S,=k —,

' is

specified, the hole resides preferentially on one sublattice,
i.e., if 0,, is up on A then the hole for S,= —

—,
' is also

predominantly on A . This result is obvious perturbative-
1y when J~ &J, and once 0, is defined there is no symme-
try operation whic™ akes A and 8 equivalent, without,
at the same time, reversing al 1 the spins. A spin-wave
calculation has also been done for t=0 which shows
that some of the "missing" spin is localized around the
hole and therefore assigning the total spin is equivalent to
establishing a preference for one sublattice over the oth-
er. This preference should decrease smoothly as t /J in-
creases and a "string" state is formed which tends to es-
tablish uniform weight on the two sublattice. The nu-
merical simulations of Ref. 4 actually show this effect.

To understand the relation between the broken-
symmetry states in the reduced Bril louin zone and the ex-
act eigenstates, consider adding a zone-boundary rnag-
non. The following lemma is useful.

If
~

—,', +—,', k ) is the spin —,', S,=+—,
' ground state then

the state (S„—Sg ) ~ —,', +—,', k ) (where S„3=g„.„as„
and a =x,y, z ) is a mixture of spin —,

' and —'„has a crystal
momentum, k + ( m, n. ) and an energy expectation value
within 0 ( 1 /N) of the ground state.

Even though the demonstration is trivial, this lemma is
a succinct statement of what is true and it is used below.
The spin quantum numbers follow from the Wigner-
Eckart theorem. The momentum shifts by ( n, m ) since
the symmetry under the sublattice interchange reverses,
and the energy estimate follows from Eq. (5.1).

To construct the broken-symmetry eigenstates from
those of the isotropic Hamiltonian, apply a staggered
field at least of order 1/N along z, i.e., add h, (S„' —Sz )

to H. This will mix in first order the ground state,
, k ), of H with ~S, —,', k + (m, ~) ) for S =—'„—,', and k in

the reduced Brillouin zone. Appropriate linear combina-
tions al 1 with S,=—,

' correspond to 0, up or down and
thus the hole predominantly on A or 8. Conversely, if
we project from the exact ground state those basis states
with the hole on a given sublattice, ( Q, ) will be nonzero
and, in accordance with our remarks several paragraphs
above, decreasing as t /J increases. This accords with the
numerica1 resu1ts in Ref. 4. The total count of states is
correct since we took a doubly degenerate ( S, =+—,

'
) state

in the extended zone and constructed four nearly degen-
erate states in the reduced zone (S,=+—,', Q, =+ 1 ).

To construct an 0, equal to nearly its thermodynamic
value would require yet higher total spin state as in (5.1 )

and below. Thus, the broken-symmetry states are not
simply constructed by "folding back" the extended zone
states since higher spin states have to be mixed in. Their
energy splitting is of order 1/N and the additional spin is
predominately in the x,y directions (N.B., S,=+—,

'
) (i.e. ,

perpendicular to Q ), and spread over the entire lattice as
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we argued in Sec. VA. The energy gap due to the ex-
istence of an order parameter and the doubling of the
unit cell vanishes in the thermodynamic limit.

To combine the broken-symmetry states into plausible
isotropic eigenstates it is most convenient to work with 0
in the x direction and then average around z. By super-
imposing the S =+—,

' states before averaging, one makes
the weights on A, B equal and puts the net spin along z.
The properly weighted average over Q (described more
precisely in the next section) assures that the total spin is
—,'. The quantum spin- —,

' eigenstates with k outside of the
reduced zone may be constructed by adding to the state a
zone-boundary magnon with spin 1 and k =(n, n) and
projecting back onto S =

—,'.
It is not, strictly speaking, meaningful to ask whether

the ground state is better described by the total magneti-
zation parallel to 0 as would be correct for J, & J~ or
perpendicular to Q as appropriate for J, &Jj . The iso-
tropic ground state is a mixture of both but the energy
differences among all these states for J,=Jj are 0 (1/N)

It is perhaps useful to contrast our problem with po-
lyacetylene which is a dimerized system with only Ising
symmetry. When solitons or domain walls are intro-
duced, the dimerization is formally lifted to an infinite
system and the bands should be drawn in an extended
zone. However, there remains a virtual, order 1 gap at
the reduced zone edge which contains just the carrier
states localized on the solitons. In our case the symmetry
is continuous, and our analogue of a domain wall is a
spin-1 momentum (n., m) zone-boundary magnon that is
spread out over the entire system.

—(Iz, k, A )+lz, k,B)),1

2
(5.3)

where the additional label denotes the sublattice of the
hole. Under time reversal and reAection in a lattice site
we merely replace z in (5.3) by Tz = i—r z and leave A, B
invariant while under translations, S,, of the entire sys-

tem by a we have

S,lz, k, A ) =e'"'I Tz, k, B ) . (5.4)

where dR =(d cos8dt|)dy/8n. ) is an integral over
SU(2) in the parametrization z =e'r~ [cos(8/
2)e'~~, sin(8/2)e '~~ ] and a simple variable change
from z to Tz was made in the second term in the second
line. The additional renormalization factor Z, (1 takes
account of the tendency of the hole to average over the
two sublattices as t/J increases.

An immediate consequence is that if we project the
hole onto A then Q, has a nonzero expectation value,
i.e.,

2&,S„„Q,&=IZ„Z,I'f dRIz. l'(lz, I' —Iz I')

The analogue of Eq. (5.2) for the two possible spin —,'

states (o =k) has the form

I —,', o/2) =Z„Z,f dRz lz, k &

ZAZf f dR (z lz, k, A ) + Tz I Tz, k, B ) ),
2

(5.5}

=olz„z, I'/3, (5.6)

D. Dipole moment

In Sec. V A we observed that a wave function Ys s (Q)
could be defined from the one-particle density matrix for
a Heisenberg ground state with quantum numbers SS„so
that we can write schematically

lss, ) =z„f Y, (Q)IQ)+ Il(;„,.„„,„,& . (5.2)

To see that (5.2) is equivalent to our earlier remark the
Lee-Yang definition of the order parameter, imagine us-

ing a coherent-state basis for the spin on each site. Then
(5.2) says that the quantum state where we take the stag-
gered component of this spin and average over Yz z has a

nonzero amplitude, Z& (1, in the thermodynamic limit.
The spin correlations calculated in the remaining in-
coherent piece, which will be henceforth ignored, decay
algebraically with distance.

In this section we generalize (5.2) to allow for a single
hole and thereby reproduce several relations that
emerged analytically in Sec. IV by using just freshman
quantum mechanics. Specifically, we will see that the di-
pole moment is like a generalized "coordinate" on par
with 0, which fixes the angle of rotation about 0 and is
related to the phase between the sublattices.

For one hole, let us replace IQ) by a ket labeled by a
spinor z and a Bloch vector k (in the reduced zone}
which we further decompose as

while the averages of Q„are always zero by symmetry.
Therefore, with both the sublattice for the hole and S,
specified, there appears a nonzero component of 0, ex-
tending throughout the system. It only exists, so to
speak, in the hole's reference frame, i.e., if we omitted the
5„„in (5.6) the expectation value of Q, alone would be
zero. The numerical simulations in Ref. 4 used the full
translational symmetry of the isotropic ground state to
reduce all basis states to those with the hole on a fixed
site. A component of average staggered magnetization
accordingly appeared with magnitude close to —,

' for
r/J « 1 since, for the 18-site cluster studied,

'2

is very close to 1. Even though, in principal, (5.6)
should only apply we11 away from the hole, we also found
numerically that (Q ), a=1,2,3, were all equal for arbi-
trary t /J. This follows from the Wigner-Eckhart
theorem and the total spin of the ground state, —,', and

nothing else.
It is apparent from the second line in (5.5) that because

of Tz =oz (o.=+1), y appears as the relative angle
between sublattices. It is manifestly part of the SU(2) pa-
rametrization, on the same footing as 8 and P which fix

0, and is therefore conjugate to the magnetization.
There is clearly no dipole quantum number that can be
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X{Re(z, —z z ), Im(z i
—z i ), —2 Re(z

ized

) }, (5.7)

where S, was defined in (5.4). The spin part of (5.7)
equals Tr(rR r„R +

) using the definitions of Sec. IV (with

p =0}and just represents in the "laboratory" reference
frame one of two possible vectors perpendicular to ~,
(i.e., Q), in the local reference system. Accordingly it
satisfies

P Q=O

and has magnitude one. It therefore precisely establishes
a direction perpendicular to Q. We then have,

cr/Z„Z, f'
(-,'cr/P,

/ ,'cr )-=
'

(sink, )z . (5 &)

(It should not be a surprise that there exist new ordered
states in the presence of holes in which the order parame-
ter is a triad of vectors, i.e., P has a nonzero expectation
value along with Q. )

As expected, only the z component is nonzero since
~

—,', o ) is an eigenstate of S„and the dipole moinent takes
its sign from o. By time reversal (and cf. Fig. 3), in
enumerating states, the two values of the dipole moment
for a given k serve as a surrogate for S, , The z com-
ponent of P, as an operator is proportional to sine sin5
and the reader should note the resemblance with the first
term on the right-hand side of (3.5) which generated the
dipole moment in the semiclassical approximation. In
that calculation, we assumed equal amplitudes for the
hole to be on A or 8 and thereby put 0 in the xy plane so
as to implicitly put the net spin in z.

Within the basis states ~z, k } an operator for the total
spin can be defined in terms of derivatives with respect to
z and z . One can then verify, in accordance with Secs.
III and IV, that both P, and Q transform as vectors un-

der spin rotation. We are unable to go further along the
lines of Sec. IV and reproduce the spin current relative to
the hole since we have only retained here the uniform
mode.
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APPENDIX A: cr MODEL LAGRANGIAN

In this section we derive the usual NLo. Lagrangian in
two ways: directly from (4.11b) by a Legendre transform,
and then by reparametrizing the microscopic spin La-

assigned along with the spin. However, we can define an
operator in the z basis with dipole symmetry whose ex-
pectation value in the state

~ —,', o } is nonzero, namely

P, =T'(S-,—S -, )

grangian by introducing sublattices and the relation (3.2).
In both cases we will only have to examine the kinetic or
p-independent part of the Hamiltonian or Lagrangian.
Note the differing meanings of p. In (4.11b) we declare it
to be, modulo a constraint, the momentum conjugate to
z, and therefore will arrive at the commutation relations
(4.12). When employing (3.2), however, to rewrite the mi-
croscopic Lagrangian for w"', both p and z label the
configuration space and are to be integrated over.

To implement a Legendre transform on (4.11b) we
must keep the velocity i},z, i},z variables manifestly on the
manifold, zz= 1. Hence, we write from (4.11b)

L =B,zTp +pTB,z —pTp— (Al)

where T =5, zz, —and p and p are to be varied in-

dependently. The final result may be written

L =/[(&, +&&, )z[ —p[(B, +iA, )z[ (A2)

and a gauge field i A, =zB,z defined in analogy with (4.5).
It will be observed that (Al) involves p only in the

combination Tp =g. Hence, one is led to introduce com-
mutators,

and all others zero. These relations are compatible with
(4.12) if one uses the constraint pz+zp=O which, again,
is saying that only the component of p "normal" to z is a
physical operator.

The preceding manipulations implicitly involved the
long-wavelength Lagrangian and an arbitrary numerical
coefficient was suppressed in (Al). We now write the
temporal part of the Lagrangian for the lattice spins
whose coemcient is determined by the spin quantum
number S as

L =Si g 8, ww wB, w +— (A3)

+(B,zp —pi},z)]+

The alternating term can be evaluated in the continuum
limit by grouping terms into disjoint plaquettes and ex-
panding to yield —,'Sf i}„A,dx dy. This term only con-
tributes for "singular" spin configuration corresponding
to the appearance or disappearance of Skyrmions as
demonstrated by Haldane.

To (A3) we have to adjoin the potential energy which is
just (4.11b) in the continuum limit. Note that p and z to-
gether label the configuration space, the only difference
between them is that the energy is quadratic in p which
can then be integrated out. Thus,

L =iSQ(r), zp —pi},z) —
—,
' f gp Tp

2+S g BtzTB(z +

which is equivalent to (A2).

which becomes, upon using (3.2) and doing various in-
tegrals by parts,

L =Si g [(—1)"(B,zz —zi},z + —,'i},pp
—

—,'pB,p)
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APPENDIX B: COMMUTATORS
OF COMPOSITE OPERATORS

f, and A, are not unconstrained. The constraints derive
from the definitions (4.5}and have the form

Having verified the commutators (Appendix A) for the
microscopic fields z and p it is instructive to consider
the induced algebra of the composite fields f„,h, and A „
which can be derived in the long-wavelength limit. Using
the definition Eq. (4), one finds the commutators

and

e,i, d, Ab =if,bf, fb

e,b(t), 2—i A, )fb =0,

(B2)

(B3)

[f,(r), h(r'}]=(t), 2—iA, )5(r —r'),

[h (r),h(r')]=0,

[A, (r), h(r')]=if, (r)5(r r') . —
(B1)

and can be obtained most conveniently via matrix identi-
ties

and

Some care has to be exercised in this derivation because
the expressions for A, (r) and f, (r) in terms of funda-
mental operator z involve spatial derivatives. The prob-
lem is circumvented by interpreting these fields in the
sense of the distributions, i.e., assuming that they always
appear in spatial integrals along with some smooth func-
tion decaying at infinity. [These commutators together
with the Hamiltonian of Eq. (4.11a) leading immediately
to the "spin-wave" excitation spectrum. ]

It is important to realize that the composite operators

5ee'+vv'= 25av~o'v' i av'~e'v

+ —,5 ~ e, —
—,5 „.e, ,

respectively.
Equation (82) determines the fiux associated with the

gauge field A, in terms of the gauge-invariant combina-
tion of "twist" operators f„while Eq. (B3) imposes the
gauge-invariant transversality condition on the twist
field.

P. W. Anderson, Science 235, 1196 (1987).
~R. J. Birgeneau et al. , Phys. Rev. B 38, 6614 (1988); R. J. Bir-

geneau et al. , ibid. 39, 2868 (1989).
3G. Shirane et al. , Phys. Rev. Lett. 63, 330 (1989).
4V. Elser, D. Huse, B. I. Shraiman, and E. D. Siggia, Phys. Rev.

8 41, 6715 (1990).
~B. I. Shraiman and E. D. Siggia, Phys. Rev. Lett. 61, 467

(1988}.
F. C. Zhang and T. M. Rice, Phys. Rev. 8 37, 3759 (1988).

7V. J. Emergy and G. Reiter, Phys. Rev. B 38, 4547 (1988).
D. Frenkel, R. Gooding, B. Shraiman, and E. Siggia, Phys.

Rev. 8 41, 350 (1990).
B. I. Shraiman and E. D. Siggia, Phys. Rev. Lett. 62, 1564

(1989).
B. I. Shraiman and E. D. Siggia, Proceedings of the Trieste
Conference on Strongly Correlated Electron Systems, 1989,
edited by Yu Lu (World-Scientific, Singapore, in press).

"C.Kane, P. Lee, T. Ng, B. Chakraborty, and N. Read (unpub-
lished).

' Y. Nagaoka, Phys. Rev. 147, 392 (1966).
' J. D. Reger and A. P. Young, Phys. Rev. B 37, 5978 (1988).
' M. Gross, E. Sanchez-Velasco, and E. D. Siggia, Phys. Rev. B

39, 2484 (1989).
N. Trivedi and D. Ceperley, Phys. Rev. 8 40, 2737 (1989); J.
Carlson, ibEd. 40, 846 (1989).

' D. A. Huse and V. Elser, Phys. Rev. Lett. 60, 2531 (1988); D.
A. Huse, Phys. Rev. 8 37, 2380 (1988).
S. Chakravarty, D. Nelson, and B. Halperin, Phys. Rev. Lett.
60, 1057 (1988).

'SF. D. M. Haldane, Phys. Lett. 93A, 464 (1983).
' M. Gross, E. Sanchez-Velasco, and E. D. Siggia, Phys. Rev. 8

40, 11 328 (1990).
~oR. Singh, Phys. Rev. 8 39, 9760 (1989).

G. Gomez-Santos, J. D. Joannopoulos, and J. W. Negele,
Phys. Rev. B 39, 4435 (1989}.
A measure of this correlation length is shown in Ref. 14.

X. G. Wen and A. Zee, Phys. Rev. Lett. 61, 1025 (1988);F. D.
M. Haldane, ibE'd. 61, 1029 (1988); E. Fradkin and M. Stone,
Phys. Rev. B 38, 7215 {1988).

~4E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (N.Y.) 16, 407
(1961).
M. Fisher and V. Privman, Phys. Rev. B 32, 447 (1985).
I. Aftieck, Nucl. Phys. 8 257, 397 (1985).
It is of some formal interest to calculate the commutators of P
with the operators of the NLo model. One finds for spin —,

'

[P„„sf+s„~„]=2i e»P&. ,
'

[P,„sP—ss .j =0,

[P,,„s,—s„,]= 2i5 (c„—.c„. +H c ), .

[P„...Ps. ]=2ie»(sr+,' .) .

Clearly the first commutator says that P rotates as a vector in
spin space, while the second anticommutator implies that P
and 0 are perpendicular, a point to be made from a different
perspective in Sec. V. The last two commutators should be
zero in the large-S limit (or for long wavelength for spin ~ ),
since, in analogy with the o model derivation P, like
s, —s, +„has to be divided by S to have a sensible limit (Ref.
26).

28W. F. Brinkman and T. M. Rice, Phys. Rev. 8 2, 1324 (1970);
L. Bulaevskii, E. Nagaev, and D. Khomskii, Z. Eksp. Teor.
Fiz. 54, 1562 (1968) [Sov. Phys. —JETP 27, 836 (1968)].

29A. A. Belavin and A. M. Polyakov, Pis'ma Zh. Eksp. Teor.
Fiz. 22, 503 (1975) [JETP Lett. 22, 245 (1975)].
R. Bhatt and K. Rabe (private communication).
B. I. Shraiman and E. D. Siggia, Phys. Rev. Lett. 60, 740
(1988}.
A. M. Polyakov, Gauge Fields and St~ings (Harwood, New
York, 1987).



2500 BORIS I. SHRAIMAN AND ERIC D. SIGGIA 42

T. Oguchi, Phys. Rev. 117, 117 (1960).
C. L. Kane, P. A. Lee, and N. Read, Phys. Rev. B 39, 2653
(1989).
P. Wiegman, Phys. Rev. Lett. 60, 821 (1988).
X. Q. Wen, Phys. Rev. B 39, 7223 (1989).
See also, S. Brazovskii (unpublished).

3sIn Ref. 5 above Eq. (5), a factor of —,
' was omitted from the

transformation equation for Lr „and an i from the analogous
equation for M.
Although irrelevant to the question of gauge invariance as we

have defined it, it is interesting to note that onlyA
i

A A
Q „=i8„—A „Q-v+ —Q XB„Q.r is invariant under

rx Q v /2 ~ —rx Q.r/20 ~e
~C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).

D. S. Fisher, Phys. Rev. B 39, 11 783 (1989).
42D. Scalapino (private communication).

A. J. Heager, S. Kivelson, J. R. Schrieffer, and W. P. Su, Rev.
Mod. Phys. 60, 781 (1988).

44F. D. M. Haldane, Phys. Rev. Lett. 61, 1029 (1988).


