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Atomic vibrations in a self-consistent-field atom-in-jellinm model of condensed matter
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The electronic structure of many of the elemental solids is fairly well represented by a single atom
embedded in a degenerate electron gas. This is particularly true for bulk properties such as the
equation of state of highly compressed matter. Because the atom-in-jellium model is spherically
symmetric, it is simpler than band-structure models. %'e study what happens when the nucleus is

moved ofF center in the atomic cell to form a nonspherical system. This forms the basis of an Ein-
stein model of atomic vibrations. The model is used to calculate Einstein temperatures and
Gruneisen constants of simple solids by self-consistent-field electronic-structure methods.

I. INTRODUCTION

With the advent of modern computers, excellent calcu-
lations of zero-temperature equations of state of many
simple solids have been made using self-consistent-field
(SCF) methods. ' Errors in estimates of the solid densi-
ties at zero pressure are usually not more than a few per-
cent. Since SCF band-structure computations are rather
complex, less has been done than might be desired in ex-
tending these calculations to complex crystals, to high-Z
elements (where relativity plays an important role), and
to nonzero temperatures. About ten years ago an atom-
in-jellium model was devised to make some progress
with high-temperature equations of state and to study
high-Z materials under compression. The results were
quite encouraging: there was only a modest loss of accu-
racy as compared to band-structure calculations, and the
simplicity and ease of the calculations made it possible to
compute thermal contributions to equations of state for
materials containing either low- or high-Z atoms. One
thing was missing though; at low temperatures atomic vi-
brations dominate the specific heat and the model con-
tains only the electronic excitation contribution. This pa-
per addresses the problem of atomic vibrations within the
atom-in-jellium model.

II. THE ATOM-IN-JELLIUM MODEL

The simplest qualitative model of a metal is the uni-
form degenerate electron gas. Coulomb interactions are
assumed, but these are largely canceled by a uniform pos-
itive charge background which exactly neutralizes the
electron gas. This construct is called a jellium. Either
many-body quantum mechanics or self-consistent-field
methods can be applied in studying the properties of the
jellium.

A more useful model of solids is a periodic array of nu-
clei with a neutralizing bath of electrons. Ordinarily
self-consistent-field methods are used to describe the elec-
tron states. This model has been very successful in

describing many properties of solids including cohesive
energy and zero-temperature equations of state. We refer
to it as the band structure model. The self-consistent-
field procedure most commonly used in band-structure
calculations is the local density approximation devised by
Kohn and Sham. We use it in our calculations along
with the 0unnarson-Lundquist expression for the
exchange-correlation energy density.

A third model lying somewhere between these two is
the atom-in jellium —a single atom embedded in a jelli-
um. It has much of the simplicity of an isolated atom but
captures much of the physics of the band-structure mod-
el. In particular it also does a pretty good job of describ-
ing cohesion and the behavior of solids under compres-
sion. Its simplicity has made it attractive for calculations
of heavy atoms where the Dirac equation should be used
and for high-temperature equations of state.

The atom-in-jellium model is depicted in Fig. 1. An
infinite positive charge distribution has a cavity at the
center of which is a single nucleus. There are sufficient
electrons to neutralize both the nucleus and the sur-
rounding positive charge. An additional constraint is im-
posed: The atomic cavity contains enough electrons to
neutralize the nucleus, and the region outside is also elec-
trically neutral. Again the electrons are governed by
quantum mechanics. In our case a set of SCF one-
electron Dirac equations are used.

Finally, we come to the main point of this paper: the
Einstein oscillator model of atomic vibrations. ' Imagine
now that the nucleus at the center of the atomic sphere is
moved off center by a small amount x. The energy of the
system is changed by the amount Ez =

—,'Kx, and the nu-

cleus "feels" a restoring force F2= —Ex. E is the
Hooke's law constant. The change in energy E2 will be
calculated from a perturbation treatment of the electron-
ic structure equations (the SCF one-electron Dirac equa-
tions mentioned in the preceding paragraph). F2 is then
used as the potential term in the Schrodinger equation for
nuclear motion. This Schrodinger equation is that of a
harmonic oscillator. It is well known that the Einstein
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dk
p (oo )= 2nk =kF'l(3rr )=p,
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where kF is the Fermi wave number.
To simplify the model somewhat a "muffin-tin" charge

density" is also defined:
CO
C

I
CO

lO

O
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and

p(r)=p (r), r (R

p(r)= f p (x)dx f dx, r)R .
x&R x&R

(4a)

(4b)

FIG. l. A schematic charge distribution for the atom-in-
jellium model: A, a point nucleus at the center of a spherical
cavity; B, a constant positive charge density outside the cavity
which represents surrounding ions; C, a spherically symmetric
electronic charge density inside the cavity. D, a volume aver-
aged electronic charge density outside the cavity. 8 is the ra-
dius of the cavity (or atomic sphere) which is electrically neu-
tral. The outside region is also neutral.

oscillator frequency, cu, can be defined by E =Mao,
where M is the nuclear mass. The Einstein temperature,
Sz, is defined by k~8~ =%co where k~ is the Boltzmann
constant.

We now want to alter the picture drawn in the preced-
ing paragraph slightly. When the nucleus is moved off
center as described, the perturbation resulting is rather
singular, and there is some chance of mathematical
difficulty either analytic or numerical. Instead suppose
that the nucleus is fixed and the positive charge outside
the atomic cavity is rigidly displaced by the amount x.
This is completely equivalent. The perturbation now
takes the form of a dipole layer on the surface of the
atomic sphere. E2 will be calculated for that perturba-
tion.

III. THE MATHEMATICAL DESCRIPTION

The energy functional whose minimum constitutes the
solution of the problem will now be specified. The poten-
tial energy part of it depends on the charge densities.
The positive charge density is

p+(r) =Z5(r)+ cr(r },
where 0(r)=p 8(r —R) and 8(r —R) is the Heaviside
unit-step function. The positive charge background of
the jellium has a cavity of radius R; otherwise it is con-
stant. The negative charge density is

p (r)=g, n, ~g, (r)~.

Outside the atomic sphere the Friedel oscillations and ex-
ponential tails of the bound states in p (r) are averaged
out in p(r), and we are left with a constant which is

p (oo).
The atom-in-jellium system must be electrically neu-

tral. We impose local neutrality by requiring

f p(r)dr=Z .
r&R

This is a constraint on the system and is introduced into
the energy functional with a Lagrange multiplier. Equa-
tion (5) is satisfied either by adjusting the cell radius R or
the Fermi energy EF.

The kinetic-energy part of the energy functional is

K= g n, fg;[ca p+mc (P 1)]g,—dr

and the potential-energy part is

V= —fZe [p(r) o(r)]/r d—r

+ —,
' e pr —o. r

X [p(r') cr(r')] j~r——r' drdr'

+ fp(r)s„[p(r)]dr .

The potential energy is written as a functional of the
muffin-tin charge density, Eq. (4), but depends through
Eq. (2) on the orbital functions, lt, (r ). V contains
Coulomb terms and an exchange-correlation energy as
well.

The total energy of the system, E =E+ V, is mini-
mized subject to orbital normalization constraints and
the electrical neutrality requirement in the usual fashion:
we write

J[g, ;R]=K+V—vf pdr —gA. , f ~g;~ dr (8)
r&R

1

and demand that

and

There are bound and continuum parts to p (r). The oc-
cupation factors, n, , are (in the zero-temperature case)
one or zero for one-electron states with energy less than
or greater than the Fermi energy. The value of p (r) at
very large radius is

BJ
aR

From Eq. (9) the one-electron equations follow:

[ca.p+mc (f3 1}+U(r)—e, ]g, (r)=—0,

(10)
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where e; =A, , In, are the energy eigenvalues and the po-
tential function is

g„(E)=g f i/~(r)i dr .
J r&R

(19)

for r &R and

u(r)=v„, [p(~ )] (12b)

u(r) = Ze—Ir+ f e p(r')/ir —r'idr'+ v„,(p(r)) —v
r'&R

(12a)

Equations (17)—(19) are consistent with results of Ander-
son and McMillan. '

When the positive charge background of the jellium is
moved off' center, the energy functional E =E + V
remains the same except that the charge density o of the
jellium becomes

for r )R. v„,(p) is the exchange-correlation potential o(r}=p6(ir—xi —R ), (20)

u„,(p) = s„,(p) .
which for small displacements x is

o(r)=p[6(r —R) xy—5(r —R)+ —,'x (1—
p, )5(r —R)/r

v derives from Eq. (10) and is

v=
I p(R }s„,[(p(R)]—p( ~ )e,„,[p( ~ )]

+u„,[p( ~ )][p( ~ ) —p(R)]I /p(R) . (14)

+ ,'x p 5'(r—R)+—]

=o (r)+xo'(r)+x o (r)+ (21)

Both bound and continuum solutions to the one-
electron equations, (11),exist; both contribute to the elec-
tron charge density. The bound orbitals decay exponen-
tially outside the atomic sphere and are normalized to
unity:

f lg, (r)I'«=1 . (15)

For the continuum orbitals, a convenient normalization
1s

f pkJ(r)$1, J (r)dr=, 5(k —k')5JJ, ,
r&co

(16)

where J and J' are angular momentum quantum numbers
and k and k' are Fermi wave numbers. Outside the
atomic sphere the potential function is constant, and
there are analytic forms for the orbital functions. Inside
the atomic sphere numerical integration of the Dirac
equation determines the orbital functions. In the contin-
uum, we use a special interpolation procedure which is
described in the Appendix. It is accurate, fast, and well
adapted to dealing with resonances which occur frequent-
1y.

We want to use the atom-in jellium model to obtain in-
formation about atoms in condensed matter —that is
atoms surrounded by other atoms. As explained in Ref. 5
we have tried various ways of extracting information
from our model which will approximately separate the
contributions of the atom and the surrounding jellium.
We found empirically that the best scheme was simply to
truncate expectation values for relevant physical quanti-
ties at the atomic sphere boundary. Thus the atomic ki-
netic energy is

(h —e;)P;(r)=0,
where

h =ca p+mc (P—1)+u(r)

and

(22)

(23)

u(r)=—Ze 2 [p(r') —o(r')] d,e
r ir —r'(

+v„,[p(r)] —v6(R r) . — (24)

But now o(r) contains a small nonspherical part and, in
consequence, so does p(r). Just as o was separated into
terms independent of x, linear in x, and quadratic in x, so
the same is done with p(r} and u(r}. This permits us to
do the same for the orbital functions and the one-electron
energies:

P;(r)=P, (r)+xP,'(r)+x2$2(r)+ .

E,;=6,;+XE,;+X E,;+ ' ''
(25)

(26)

where p, is the cosine of the angle between r and x and 5
and 5' are the Dirac delta function and its derivative.
Since the change in F. to second order in x will be calcu-
lated, there is a chance that oz and other second-order
terms wi11 be needed.

In shifting the positive charge background off center,
we have chosen not to do the same with the neutrality
constraint, Eq. (5).

As in the original spherically symmetric case, a func-
tional J is formed from the total energy expression and
the constraints, and the functional is varied to find its
minimum. A set of one-electron equations is obtained.

E„=gn; f g; (r)[ca p+mc. (P 1.)]g, (r)dr;—(17)
r&R

The one-electron equations then can be separated into a
series of perturbation equations,

and the potential-energy contribution is

V„=—f Ze p(r)/r dr
r&R

+ ,' f f—e p(r)p(r')/ir —r'idr dr'
r, r'&R

The density of states in the continuum is

(18)

(h —e )g =0
(hO 0)ql (

1 1)yO

(27)

(28)

and so on. It turns out that g, is not needed so we can
stop at this point. In the above h is the same as h in Eq.
(24) except that
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Ze', [p (r') —o (r')] d,e dr
r fr —r'

I

+v„,(p ) —v8(R r—) (29}

is substituted for v (r). In the first-order equation above

dE 5E do.
dr

dx 5cr dx
I

do Ze"
2 [p(r') —o(r')] d,

dx r fr —r'I
(35}

p'(r') —cr '(r')]v'(r)= fe, dr'+p'(r)
ap'

(30)
This is the Feynman-Hellman theorem for our case. We
want a perturbation expansion of this result. On the left
of this expression we have

The relation between p and the orbital functions is, as be-
fore,

p(r)= g lg;(r)f'
n,

= y Iq', +xq,'

and

E =E,+xE, +x'E, +

dE =E]+2xE2+
dX

(36}

= g Ip, (r) I
+x g [g; (r)p,'(r)+c. c.]+

=p (r)+xp'(r)+

and on the right side we have

d(7 =o'+2xcr +
dx

and

(38)

p (r) and v (r) are spherically symmetric and are the
charge density of the unperturbed atom in jellium. p'(r)
and v'(r) have the same cos6 angular behavior as o'.
They require the solutions, P,'(r), of the first-order per-
turbation equations. This is accomplished by an iterative
Green-function technique described in Ref. 13—15.

In addition to the above, we need an expression for the
change in energy. An easy way to get the required ex-
pression is through the Feynman-Hellman theorem. It
has been verified by Slater that the Feynman-Hellman
theorem applies to self-consistent field models, but we
will repeat the proof here in the context of our atom-in-
jellium model. The energy functional E depends on the
displacement x both through o. and the orbital functions

g, . Thus the derivative of E with respect to x is

dE 5E dod'5E 5%i OE'
dr+ + dr.

dx 5cr dx, . 5q'. 5x o g, 5x

Ze'
p [p(r') —o (r')]

Ir —r'I

= v,'+xv, '+ (39)

Ze 2 [p (r') —o (r')]
r fr —r'I

and v,'(r) is the part deriving from o'(r) and p'(r):

fr —r'
f

Using these definitions we find

E, =f cr'(r)v, (r)dr

and

(40)

(41)

(42)

v, is the spherically symmetric part of the Coulomb po-
tential,

(32) 2Ez = —f [cr'(r)v, '(r)+2cr (r)v, (r)]dr . (43)

The Feynman-Hellman theorem depends on showing that
the second term on the right is zero. Since 5J/5$,*=0
one has

Because cr'(r ) and o (r ) vanish except at r =R and be-
cause v, (r) and dv, (r)ldr are both zero at r =R, E, is
zero and E2 reduces to

5E =[a;+v8(R r)]P, . — (33) E2 = —,
' fo'(r)v, '(r)dr —. (44)

Thus the second term is

5$,* 5$,g f [e, +v6(R r)] g, +Q," —dr
5X ' 6X

f fq, (r) I'dr+ " f v6(R r)p(r)dr —.
dX dx

(34)

Because the normalization integrals of the orbital func-
tions are constants independent of x and the charge neu-
trality constraint is also independent of x, these terms are
all zero.

This leaves

We thus have the change in energy associated with small
displacements. It requires the solution of only the first-
order perturbation equations. This fortunate cir-
cumstance is seen to depend on having built electrical
neutrality into our model.

In order to obtain equation of state information about
condensed matter from our single atom-in-jellium model
it was necessary to introduce a somewhat arbitrary sepa-
ration of the energy into a part associated with the atom
and a part belonging with the jellium. This was made
easier through the introduction of a muffin-tin form for
the charge density in the jellium outside of the atomic
sphere.

We face a similar problem in the case of the perturbed
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atom-in-jellium model. After some experimentation we

have fixed on a similar solution: The perturbed charge
density, p'(r), is replaced by its volume average outside
the atomic sphere. Since p'(r) is proportional to cose,
its average in the outer region is just zero. A further re-
sult is that the perturbation to the potential, v '(r },is also
zero outside the atomic sphere. This simplifies the solu-
tion of the equations for g,'(r).

The arguments for applying the muSn-tin average to
p'(r) are the following: (1) it very much simplifies the
computational problems when one can avoid using nu-
merical methods in the outer region; and (2) the behavior
of p'(r), v'(r), and g,'(r} in the outer region will not
resemble what happens in real condensed matter where
the outer region contains other atoms and not a jellium.

We have completed the description of our atom-in-
jellium model of atomic vibrations. In the following sec-
tion we will apply it to a variety of elemental solids and
will calculate Debye temperatures and Gruneisen con-
stants.

given by Landolt-Bornstein. ' All elements where either
inoments or high-temperature Debye temperatures are
listed in Ref. 19 are included in our table with the excep-
tion of three lanthanides, where our self-consistent field
program has convergence problems, and three elements
(As, Sb, and Bi) which do not have close-packed struc-
tures. All the data we have taken from Ref. 19 are based
on fitting Born —von Karrnan models to phonon data
from neutron scattering. In addition we include two ele-
ments (Ti and Zr) for which careful analyses of the high-
temperatures calorimetric data are available.

The differences between our calculations and the
experiment-based Debye temperatures are, on average,
about 15 percent of the Debye temperature. We regard
this as satisfactory for a single frequency model. Doing
better will require more realistic phonon densities of
states which means going beyond the atom-in-jellium
model.

In Fig. 2, Debye temperatures for the 31, 4d, and 5d
transition metals and some other elements in the same

IV. COMPARISON OF CALCULATIONS
AND EXPERIMENTAL DATA

Is the Einstein oscillator model capable of giving useful
estimates of heat capacities associated with lattice vibra-
tions? Our aim in developing this model is to use it in the
calculation of equations of state of highly compressed
matter where detailed measurements are impossible and a
theoretical model is needed. We believe self-consistent
field electronic structure models become better at high
densities, but we are forced to confront our model with
experimental data obtained at normal density since high
density data is not available.

Before proceeding with a comparison of our calcula-
tions and data based on experiments, a word should be
said about other theoretical models. There are two we
want to mention. The first is the extension of the elec-
tronic structure calculations developed here to distor-
tions of a crystal lattice by phonons. This has been done
in a few cases using the pseudopotential method with the
expected excellent results. ' ' A second approach is to
relate sound velocities in a crystal to the bulk modulus
and then use the Debye model to predict the Debye tem-
perature and Gruneisen constant. Moruzzi and Janak'
use this approach and their very good band-structure cal-
culations of bulk moduli to determine the vibrational
properties of 14 simple metals.

Our model directly calculates an Einstein oscillator fre-
quency, vz (actually an energy proportional to vz). This
implies a delta function density of states which will re-

place the actual density of phonon states. A comparison
of this frequency with moments of the true density of
states provides a basis of comparison. Fortunately a
compendium of these moments and other related data is
available. ' Use of the second moment seems best for two
reasons: as stated above that is the quantity we actually
calculate; and the second moment is directly connected
with the deviation of the heat capacity from the Dulong
and Petite high-temperature limit. Table I give a com-
parison of the ab initio Einstein model with the data

Element Z

Second moment

Vp eg)
(THz) (K)

High T Calculated
014 Qw

(K) (K)

Li
Na
Mg
Al
K
Ca
Sc
Tl
V
Cr
Fe
Co
Ni
Cu
Zn
Rb
Sr
Y
Zr
Nb
Mo
Ru
Pd
Ag
Cd
In
Hf
Ta

pt
Au
Pb
Th

3
11
12
13
19
20
21
22
23
24
26
27
28
29
30
37
38
39
40
41
42
44
46
47
48
49
72
73

79
82
90

8.31
3.47
6.67
8.48
2.13

7.32
7.22
9.55
8.77

8.01
6.60

1.33

5.32
5.84
7.79

6.02
4.45

4.71
6.40
4.94
3.85
1.95
2.99

399
167
320
407
102

351
347
458
421

384
317

255
280
374

289
214

226
307
237
185
94

144

397

320
405
100
220
316

418
375
384
318
240

63
-150

209

285
370
404

215
170
136
200

310

183

143

491
192
393
535
127
250
368
440
486
482
349
338
335
314
260
79

161
253
315
364
371
321
227
195
165
142
235
277
289
193
155
79

209

TABLE I. Root-mean-square phonon frequencies, Debye
temperatures (high-T limit) and calculated Debye temperatures
for thirty-three close-packed elements. Data from Ref. 19 ex-
cept for Ti and Zr which come from Ref. 20.
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V aa
Cv B)T

(4&)

which in the Debye and Einstein models is

rows of the periodic table are shown. It would be in-
teresting if one could correlate the trends shown in Fig. 2
with some feature in the electronic structure (e.g., volume
per atom or number of d electrons per atom), but we have
not been able to do so.

All of the calculated Debye temperatures in Table I
and Fig. 2 were computed with atomic sphere radii corre-
sponding to normal density metals. Calculations at other
densities lead to a Debye temperature as a function of
molar volume, OD( V). Of particular interest is the
Griineisen coefficient,

0 logO" D

i3 log V

8 log8
BlogV

(46)

The thermodynamic definition of the Gruneisen parame-
ter [Eq. (45)] is equal to

y =a~BT V/Cv, (47)

where a~ is the volumetric thermal expansion coefficient,
BT is the isothermal bulk modulus, and C~ is the con-
stant volume heat capacity. These are all measurable
quantities and therefore a comparison is possible between
Eq. (47) (measured y) and Eq. (46) (calculated y). Equa-
tion (46) should really be augmented by an electronic ex-
citation term. At room temperature electronic excitation
correction is fairly small and will be neglected here, but
we note that the atom-in-jellium model can be used to
compute it.

In Fig. 3 we present our calculations of the lattice
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p
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FIG. 2. Transition metal Debye temperatures as calculated
by the atom-in-jellium model (C) ) and derived from experimen-
tal data (0) (Refs. 19 and 20).
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FIG. 3. Transition metal Gruneisen coefficients as calculated
by the atom-in-jellium model (c) and derived from thermo-
dynamic data (~) (Ref. 21).
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Gruneisen constants and experimental ones based on data
tabulated in a compilation by Smithells. ' Agreement is

poorer than in the case of Debye temperatures. Possibly
some of the disagreement is due to the difFiculty of mak-
ing good measurements; some is probably due to anhar-
monic effects in lattice vibrations at room temperatures;
the remainder of the discrepancy must be related to the

shortcomings of a single atom model. In making com-
parison of experimental and calculated Debye tempera-
tures, it was possible to avoid the problem of anharmonic
effects by using phonon data based on neutron scattering.
For the Gruneisen parameter we are forced to use ther-
modynamic data that includes anharmonic effects, contri-
butions from imperfections and impurities in crystals,
and electronic excitations.
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APPENDIX

is needed. The expansion of Eq. (A2) leads to

I;~=f P,'Psdr=+I; C (E),
J

which can be solved,

C)(E)=g(I '));I;F,

(A5)

(A6)

when the quantities I,E have been obtained. A reference
function itio at energy EQAE, , must also be obtained as a
numerical solution of the Schrodinger equation and also
through an expansion in terms of the basis functions:

quired for good accuracy. Instead we have chosen to use
smaller energy intervals between our basis functions and
to deal with the resulting nonorthogonality.

As a practical matter we have found that two basis
functions are sum. cient for an energy interval of a few
volts. Three energy intervals and four equally spaced
basis functions will yield very good accuracy at normal
solid densities. In the next paragraphs an interpolation
scheme is outlined for regular solutions of the
Schrodinger equation; the case of the Dirac equation
(used in our calculations) is only slightly different.

Positive-energy solutions P; of the Schrodinger equa-
tion at energies E, are obtained numerically to form our
basis. The overlap matrix

I,, =f p;pldr (A4)

Atom-in-jellium models require both bound and con-
tinuum orbital functions. The bound-state orbital func-
tions are few in number and present no problems that are
not found in atomic self-consistent-field calculations.
Continuum functions are less familiar and obvious pitfalls
exist such as resonances where the amplitude of an orbit-
al function changes rapidly in a small energy interval. To
deal with this problem, Wigner's R-matrix method has
been modified and adapted to our needs.

The problem is this: We have a one-electron Hamil-
tonian with a short-range potential (spherically sym-
metric everywhere and zero or constant outside the atom-
ic sphere),

QC

Its overlap integrals with the basis functions are
R

I0 = 0, r= C,*I,,
l

which can be inverted to give

C =QIo, (I '),; .
J

Next Green's theorem is used to give

(A7)

(AS)

(A9)

HpE=EpF . (A 1)
~„=f "[(HP;)*P P;(HP )]d—r=(E; E)I; (A1—0)

We want to find the continuum functions pz in terms of a
discrete set of basis functions,

a,* i3if 'p pe
r=R"*

(A 1 1)

Pz=+C;(E)0; . (A2)

HP; =E, (A3)

where the basis functions are determined numerically by
solving the Hamiltonian equation at the basis function
energies,

and thus W;z and hence I;z will be known when Pz and
BQE/iver are known at r =R. Green's theorem may also
be applied to itio and Pz, and, with the use of Eq. (A7), the
overlap integral Ioz becomes

R . ~Os
I0F =

0 ~dr= E E0

Wigner's method requires that the P s satisfy a boundary
condition at the atomic sphere radius and thereby
specifies a complete orthogonal discrete set of functions
in terms of which Pz can be expanded. The problem
with this is that in general no single basis function P,
closely resembles the required continuum function Pz
and therefore a large number of basis functions will be re-

=gC;*f Q,"iti~dr=+C;*
1 l

The relation

8' 8'-
OF. ~ ~ iE

0 i

(A12)

(A13)
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can be solved for the logarithmic derivative

ay, (R)
LE = p, (R) =NE/D, , (A14}

where

84',
*

NE QCi BR
l

and

ay;
(E E)— — (E E)—

l aR
(A15a)

D~= g C P;(R)l(E; E) —Po(—R)l(E; E) .— (A15b)

The normalization of PE is given by its large r behav-
ior:

Pz(r) =[j~(kr)cos5(E)

—n~(kr)sin5(E)]Y~ (0), r&R . (A16)

R
EE E E (A17)

Now Eqs. (A6), (A10)~ (All), (A14), and (A16) contain all
the relations necessary to evaluate the expansion
coefficients C;(E) The d. evelopment given above has
been implemented in a computer program which uses the
Dirac equation rather than the Schrodinger equation.

The approximation scheme for regular continuum
functions will now be tested by using it to calculate the
phase shift 5(E}and the partial density of states,

HPz=EWE

PE= gd;«)4;

HtP; =E,P, ,

J;, = f P,*g.dr,

JE=f p,*p,dr=+J, d(E),
O

dj(E) =g(J ')J J;g,
J

4o=g& 0,
"

l

R
Jo = f go/dr=gg;*J;J,

l

O' =QJo, (J ')J
J

1
1

1

12
11

co 1

90

70

30—
20—
10—

(Al')

(A2')

(A3')

(A4')

(A5')

(A6')

(A7')

(AS' )

(A9')

f pE(r) dr

xj000

in the 3d 3/2 channel for normal density copper
(R =2.67ao). Outside the atomic sphere there is a con-
stant exchange-correlation potential, U„=—0.3191 har-
trees; the Fermi energy is at EF=+0.0326 hartrees; and
the four basis functions are at E; = —0.3191, —0. 1913,
—0.0634, and +0.0645 hartrees. In each energy interval
we use the two basis functions at the interval end points,
and one of the basis functions outside the interval serves
as a reference function. Results for the energy interval
containing resonance are shown in Figs. 4(a) and 4(b).
The phase shift shown in Fig. 4(b} is that obtained by nu-
merically integrating the Dirac equation at 50 energies in
that interval and the error is the difference between phase
shifts computed by the modified R-matrix method and
numerical ones. The error is clearly very small. In Fig.
4(a), the partial density of states is displayed. Again the
error is very small. It is worth emphasizing that the basis
functions are both well away from the resonance.

Our next task is to develop a similar scheme for inter-
polating the irregular solutions of the Schrodinger equa-
tion which are needed in the construction of the Green
function. Our development is based on integrals which
are bilinear in the regular and irregular functions. The
first nine equations of the preceding section are repeated
with no other change:

3.
2.8
2.6
2.4
2.2
2.0

40 16
~ 1.6

1.4
1.2
1.

I I I I I I

-0.18 -0.1 6 -0.14 -0.12 -0.10 -0.08

I
'

l

0.6
0.4
0.2

0
-0.18 -0.16 -0.14

Error xj000

I I

-0.12 -0.10 -0.08

E (Hartrees)

FIG. 4. (a) Partial density of states and (b) phase shift for
copper in the 313/2 channel near the 31 resonance.
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The overlap matrix J;., unlike I,-, is not symmetric. It is
worth noting that J;. and I;, as used in our calculations,
are ill-conditioned matrices, and some care is needed in
determining the matrix elements. The basic energies E;,
the basic functions P, , and the reference functions Po are
the same as for the expansion of Pz, the expansion
coefficients of Po are, however, different though only
slightly so.

The analogs of Eqs. (A10) and (Al 1) are
R

X@=f [(HP; )'gz P; (—Hg.z)]dr=(E, E)—Jz
(A 10')

and hence

E —E ~'E —E "E—E ~'E —E

=XoFv(E) (A20)

Now the preceding equations give us definite values for
X~@ and X,z, so the expansion coefficients d, (E) can be
determined using Eqs. (A6') and (A13').

A test of the interpolated irregular function will corn-
plete this development. In analogy to the case of regular
functions we examine

i ~ E
"r}r ' Br

R
JEE E E (A21}

where

8

+iE +iE (A 1 1')

using both numerical solutions of the Dirac equation and
interpolated functions. Again we look at the 3d3/2 reso-
nance as we suspect this energy region will be the most
difficult to handle. The numerical values of JEE and the
errors,

R 0X;E &;E &;E
J;E=

E; —E E; —E
We require the large r form of gE to be

gz(r)=[jI(kr)sin5(E)+n&(kr)cos5(E)]Y& (0), r «R

(A 16')
so that the Green function, Gz(r, r'), constructed from

Pz and gE has the proper outgoing-wave boundary con-
ditions. [The phase shift 5(E) in Eq. (A16') is the same as
that in Eq. (A16)]. With Eq. (A16') and the known values
of P; and BP, /dr at r=R, X,z is obtained directly.

To determine X;E we examine the overlap integral in-

volving the reference function and Pz ..

X0E
JOE NoPEdr

0

JFF (interpolated) JzF—(numerical) . (A22)

are shown in Fig. 5. The errors are an order of magni-
tude larger than in the case of the regular functions but
still are quite small.

The interpolation scheme outlined in this appendix is
rather different from usual interpolation methods and has
its pitfalls as well as its advantages. The main advantages
are accuracy and the ability to deal with resonances. The
main pitfalls seem to be associated with the fact that the
matrices I;, and J, are ill-conditioned. If the basis func-
tion energies E; are too close together these matrices be-
come more ill-conditioned and trouble will result. A way
out of this difficulty may be to use a single basis function
rather than two as in all of our calculations. This has not

=g«' f, 0 VEdr=X«'
1

This equation may be rewritten in the form

XOE XiE XOE
0 0 R

Eo E,.
' Eo —EEo E— —

(A 12')

RX,E

E, —E
(A13')

The right side,
RX0E XER

E E. ' E E—'—0 1

(A17')

BP;(r) Bgo(r) =1r' 'Yl (0), r~0 .
Br Br

(A18)

contains known boundary values of Po, P;, and Pz only.
The left side of (A13') depends, in part, on the values of
Po and P; near r =0. We may choose them to be

P, (r)=go(r}=r'Y, (r),

70
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q0
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~ -10
cl 20
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-80

x100

I 1 I t I ) I i I i I

-0.18 -0.16 -0.14 -0.12 -0.10 -0.08
F. (Hartrees}

This results in

X;E—X0E
0 0 (A19)

FIG. 5. Overlap integral for regular and irregular functions
in the 3d3/p channel near the copper 3d resonance,
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been tried. %e have found that using Green's theorem to
evaluate the off-diagonal elements of I; and J,. is a bad
practice; the off-diagonal elements should be evaluated by
the same numerical integration methods used for the di-

agonal elements. This will give better accuracy to the
off-diagonal elements and probably also results in a can-
cellation of errors when the inverses of Ij'and J,

&
are

computed.
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