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Onset of chaos in Josephson junctions with intermediate damping
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By use of the analytical solution of the Stewart-McCumber equation including quadratic damping
and dc bias, the Melnikov method has been extended to the parameter regions of intermediate

damping and dc bias for the Josephson junctions with quadratic damping and with linear damping
and cosP term. The comparison between the thresholds predicted by the Melnikov method and that
derived from numerical simulation has been studied. In addition, the validity conditions for the
Melnikov threshold are also discussed.

I. INTRODUCTION

The existence of chaos in a Josephson junction driven
by rf-biased current has been verified through the theory,
simulation, and experiment. The extensive study on
chaos in this system is partly due to the fact that when
we treat the Josephson junction within the Stewart-
McCumber model, the equation of motion is one of the
simplest to exhibit chaos and describes a significant phys-
ical system. In terms of dimensionless parameters, the
equation of motion for the phase diff'erence P in a
current-driven Josephson junction is given by

d P/dr +a(1+5cosg)dg/d~+sinP=po+p, sin(Qr),

d /Id r +sing =0 . (2)

According to the Melnikov method, the necessary condi-
tion for the onset of chaos is p, & p„h with the threshold
value p„h defined as

p„h= +pc — (1+5/3) cosh(nQ/2) .
4a

(3)

The threshold given by the Melnikov method is expect-
ed' to be accurate only in the parameter regions where
the perturbed equation represents a nearly conservative
system. This implies that the maximum energy change
caused by the dissipation or the current source within
one excursion of the heteroclinic orbit is much smaller
than the total energy of the unperturbed system. For
6=0, these conditions can be written as'

a&& —,', po&(1/~, and 0&1 . (4)

where a = (R/2eI, R C)'~ is the damping constant,
pc=In/I, is the normalized dc bias, p, =I i /I, is the nor-
malized rf amplitude, Q=co(AC/2eI, )'~ is the normal-
ized rf frequency, and r=t(2eI, /h'C)'~ is the normal-
ized time. The minimum rf amplitude required to pro-
duce chaos has been previously investigated' in terms
of the Melnikov method. In those works the unperturbed
equation was usually chosen to be conservative, i.e.,

d P /d r +a(1 +5cosg )d P /d r+ sing =po, (6)

no analytical solution can be found to calculate the Mel-
nikov function of Eq. (1).

Instead of solving Eq. (6) we are using a solvable equa-
tion

d P/dd+y dg/dred//dr+sing=pc, (7)

as the unperturbed system of Eq. (1). The only difference
between Eq. (6) and Eq. (7) is the damping term. Howev-
er, we can treat this difference as a perturbation as long
as it is small enough. Equation (7) is also based on the
Steward-McCumber model with the normal resistance
depending on voltage, R =const/V. A lot of interest
has recently been attracted to this system because it pro-
vides a better agreement with experimentally measured
I-V curves than the linear damping at high temperature
and a simple model to display the nonlinear behavior in
the Josephson junction. Therefore, in Sec. II we are go-
ing to discuss the application of the Melnikov method to
the Josephenson junction with quadratic damping includ-
ing both small and intermediate damping cases. In Sec.
III we will use Eq. (7) as the unperturbed system to dis-
cuss the onset of chaos in the Josephson junction with
linear dainping and the cosP terin. As a comparison, the
onset of chaos in Josephson junctions will also be studied
by numerical simulation. Section IV contains the can-
clusion and discussion.

For the rf amplitude p, , Kautz and Macfarlane' argued
that it is not possible to obtain a simple expression for the
energy supplied by the rf source therefore they assumed a
condition similar to that for the dc bias, i.e.,

p, «1/~ .

In this work we are discussing the problem of the onset
of chaos in a Josephson junction with an intermediate
damping constant, which means that a is of the order of
unity. Thus the condition a&& —, is no longer satisfied
and treating the damping term in Eq. (1) as a perturba-
tion is not proper. However, if the damping term and the
corresponding dc bias are included into the unperturbed
equation, which is
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II. THE JOSEPHSON JUNCTION
WITH QUADRATIC DAMPING

Ed = ppgd g =4K/ (15)

In order to elucidate the following discussion, we

briefly review the Melnikov method. Consider a system
described by an ordinary differential equation of the form

d xldt =ho(x)+ eh, (x, t), (8)

where x& denoted the homoclinic orbit or heteroclinic or-
bit of the unperturbed system, x Xy is defined as the
outer product of x and y, and D„denotes the partial
derivative with respect to x. If M(to} has a simple zero
and is independent of e, the local stable and unstable
manifolds intersect transversally. The presence of such
transversal intersections implies that the Poincare map
has the so-called Smale-horseshoe chaos.

The equation of the current-driven Josephson junction
with quadratic damping can be written as

d P/dr +y ~dP/dred//dr+sing=po+pisin(Qr) .

(10)

The unperturbed system may be chosen in two
different ways:

(i) The conseruatiue system In this .case, the unper-
turbed equation is chosen to be Eq. (2) which has the
heteroclinic orbit

P»(r —ro) =+2tan '[sinh(r —ro)],

y» (r ro) =+2se—ch(r —~o },
and the energy integral,

E» =
zy» + 1 —cosp» =2 . (12)

Here y =d /Id' a—nd the subscript h represents the
heteroclinic orbit. From this unperturbed heteroclinic
orbit, the Melnikov function of Eq. (10) can be obtained
as

M (ro) =+2m po+2mp, sech(m Q/2)sin(Q~o) —4n y, (13)

and the necessary condition for the onset of chaos is

p, & p„&, with p„z defined as

where eh, is the perturbation. If the unperturbed equa-
tion of Eq. (8) has an analytical solution, the Melnikov
function can be calculated according to the definition

M(to}=f ho["»(t to)]Xh, [x»(t —to), t]
t —to

Xexp —f tr[D„ho[x»(s)])ds dt,
0

(9)

and the maximum energy supplied by the dc source is

Edc pod z =2~po . (16}

The requirement of Ed and Ed, being smaller than the
total energy of the unperturbed system Eq. (12) gives

y « and po« 1/n .1
(17)2'

For the rf source, instead of using Eq. (5) which seems
too strict for large 0, we suggest another condition which
is frequency dependent:

m/20
' —1

p, «p„= drcos(Qr)sech(r)—m /20
(18)

The reason for such a choice is given below: the energy
supplied (or extracted) by the rf source during any time
interval [a,b] along the heteroclinic orbit can be written
as

b
~E«~ = 2pi f sech(r)sin[Q(r+ro)]dr

a
(19)

We already know that sech(r) is symmetric about r=0
and monotonic on each side. It is positive definite and
has the maximum value 1 at ~=0 Thus .if we choose
~o=+(2n +1)n./2Q (here n is an arbitrary integer) and
integrate over the interval ( —m. /2Q, n /2Q) within which
the sin[Q(r+ro}] is positive or negative definite, we have
the maximum value E„„for ~E«~, i.e.,

)E«~ & E,t = ~2p, ~ f sech(r)cos(Qr)dr . (20)—
m /20

Requiring E««E», we arrive at Eq. (18). It is easy to
see that if Q approaches zero, the inequality (18}returns
to Eq. (5), but for finite Q it is less restrictive since p„ in-
creases monotonically with Q (see also Fig. 2).

(ii) The dissipative system. The unperturbed system of
Eq. (10) may also be chosen to be Eq. (7) which is obvi-
ously a dissipative system. When po takes the value

p, =2y/(4y +1)', we have the heteroclinic orbit for
Eq. (7) (Ref. 7)

P»(r —ro)=4tan '[exp[b(r —ro)/2]) —P—~,
y»(r ro) =bsech—[b (r—~o)/2],

(21)

where b =(2p, /y)' and tanP=2y. For Eq. (7) the Mel-
nikov function of Eq. (10) and the necessary condition for
the onset of chaos have been previously obtained. The
Melnikov function is

M (ro) = (po
—p, )sin(2n y ) /y+ pib [Ficos(Q~o)

+F~sin(Q~o)], (22)
p&,&= ~+po+2y ~cosh(n Q/2) . (14)

where
For convenience, we call it conservative threshold. This
threshold is expected to be accurate only in the parame-
ter region where Eq. (10) represents a nearly conservative
system. In other words, the energy Auctuation should be
very small. Within one excursion of the heteroclinic or-
bit, the maximum change of energy due to the dissipation
ls

F, =f sech(br/2)sin(Qr)

X exp[4ytan '[sinh(br/2)] ]dr,
F2 = f sech(br/2)cos(Qr)

Xexp [4ytan '[sinh(br/2) ] ]1~ .

(23}

(24)
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FIG. 3. Quadratic damping: onset of chaos for 0=0.6 and

po
—p, = —0.1. The notation here is the same as that in Fig. 2.

we fix 0=0.6, hpo= po
—p, = —0. 1. It is easy to see that

the dissipative and conservative thresholds diverge from
one another with the damping constant y. Meanwhile
the numerical threshold approaches the dissipative
threshold and the two curves seem to coincide for large
y. This implies that the dissipative threshold can be used
as the criterion for chaos of Eq. (10) in the parameter re-
gion where the damping constant is greater than

y, =0.32 and the dc bias is around the critical value p, .
However, for y&y&, the conservative threshold is a
better predictor. But there is still a noticeable discrepan-
cy between the Melnikov prediction and the numerical
result. %'e should also point out that the two Melnikov
thresholds almost join together when y is below 1/2m as
we already mentioned previously.

(25) and Eq. (14) are shown on the p&-Il plane with
y=0. 7 and (po

—p, )= —0. 1. The validity condition Eq.
(32) is also plotted in Fig. 2. To make a comparison, the
chaotic behavior of Eq. (10) has been investigated numer-
ically. In our numerical simulations, the lower boundary
of the chaos threshold is determined by following the suc-
cessive bifurcation of the trajectories (see Sec. III for de-
tails) and by recording the first appearance of a positive
Liapunov exponent with increasing the rf amplitude p&.
From Fig. 2 it is evident that the numerical threshold of
p& is above and very close to the dissipative threshold
especially for 0.3 & 0 &0.8; there the rf bias is below p„.
We also noticed that the conservative threshold cannot
be used to predict the chaos since it is too high to com-
pare with the result of numerical simulation. Therefore it
has been verified that the Melnikov method based on the
dissipative unperturbed system can give a good estima-
tion of the chaos criterion for a Josephson junction with
intermediate damping.

In Fig. 3, the comparison is shown in y-p, plane where

III. JOSKPHSON JUNCTIONS
WITH LINEAR DAMPING AND cosP TERM

In this section we discuss the onset of chaos of a
Josephson junction with linear damping and a cosp term
[see Eq. ( I)]. The cosP term, which represents the
current through the junction due to interference between
the quasiparticles and Cooper pairs, is often neglected
when studying the nonlinear dynamic behavior of the
junction within the Stewart-McCumber model. Howev-
er, the cosP term actually has played an important role in
explaining the experimental results of a Josephson junc-
tion radiated by microwave in the famous work of Peder-
sen, Finnegan, and Lan genberg. Generally, current
flowing through the Josephson junction contains a cosp
term.

It is essential to know the heteroclinic orbit of an un-

perturbed system for the application of the Melnikov
method. In the case of intermediate damping, we choose
Eq. (7) as the unperturbed system and its heteroclinic or-
bit has already been given by Eq. (21). Comparing Eq. (1)
with Eq. (7), we can write the perturbation in Eq. (1) as
follows:

y ~
d P/d r

~
d P/d r a( 1+5cosg—)d P /d ~+ (po p, ) +p, sin Q—r . (34)

Here the free parameter y can be chosen in such a way as to "kill" the secular term in the perturbation, which means
that the average of Eq. (34) on the heteroclinic orbit Eq. (7) is set to be zero, i.e.,

f dr[yyz(r) —a(1+5cosg )yz(r)+(po p, )]yz(r)=2—mpo 8a(1+5/3+—I+4y )/+I+4y =0 . (35)

Equation (35) is a third-order polynomial equation of z = I/+I+4y . It has a real and positive solution for y only if
po/a ~ 8/3n. ~5~, which is

1/2
1 1y= — —1

z =2 &r cos 8+3 4m

3
(36)

3mp, &/5[

8a

Then the Melnikov function of Eq. (1) can be obtained from Eq. (9)
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M(ro) =f yz(r) I yyz(r) —a[1+5cosgz(r)]yz(r)+(po —p, )+p, sin[Q(r —ro)]]expI4ytan '[sinh(br/2)]]dg

=Csinh(2my) —Dcosh(2m y)+p, b [F,cos(Q~o)+Fzsin(Qro}], (37)

where F, and Fz are previously defined by Eqs. (23) and (24), and

C =(po —p, )/y+b /2(4y +1),
D =ba5[(12—64y )cosP+64ysinP]/[(16y +1)(16y +9)]+4ba/(16y +1) .

The necessary condition for the function M(ro) in Eq. (37}to be zero is p, & p&,z, where the chaos threshold pi, h is

p„„=~Csinh(2my) Dc—osh(2my ) ~/b(F', +Fbi)'~z .

(38)

(39)

(40)

As in Sec. II, we refer the expression in Eq. (40) and
Eq. (3), respectively, as the dissipative and conservative
thresholds. In order to make a comparison between
those two thresholds, we have also investigated the onset

I

of chaos numerically by following the successive bifurca-
tion of the trajectory and calculating the Liapunov ex-
ponent. In Figs. 4 and 5, the typical ways to chaos
through period doubling from the phase-locked rotation-
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FIG. 4. Linear damping with the cosP term: rotational orbit for 0=0.6, a= 1.00425, 5= —0.8, and p0=0. 823733. (a) Period1
orbit for p, =0.12; (b) period 2 orbit for p& =0.18; (c) period 4 orbit for p& =0.185; (d) and (e) chaotic orbits for p, =0.195 and p& =0.2.
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al and oscillational trajectories are shown in phase space
respectively for A=0. 6, a=1.004, and p0=0. 8237. To
avoid the transient behavior, we started to take points
after throwing away about 1000 cycles of T=2m/Q.
Each trajectory is composed of 2000 points with the time
interval hv. =i + ~

7' between two adjacent points being
set equal to 1. Also, we take mod2m of P. In Fig. 4 the
initial point is chosen to be (3, 0.25} in the phase space.
For p& =0, the stable rotational orbit has period
To=2nlQ with Qo=0. 6873 [Fig. 4(a}]. For p, )0.04,
the orbit becomes phase-locked with period T =2m lQ
[see Fig. 4(b)]. As p, increases from 0.12 to 0.195, the
trajectory experiences a process of period-doubling to
chaos. On the other hand, if we start from (1,0), the tra-

i.o

04.

03.

p 0.2-

0.1

0.0
0 0.5 1.5

FIG. 6. Linear damping with cosP term: onset of chaos for
0=0.4, 5= —0.8, and po

—p, =0.01. (a) The dissipative thresh-
old; (b) the conservative threshold; crosses —onset of chaos from
the numerical simulation (on rotational orbit).
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jectory is still phase-locked for rf bias below 0.4, but the
motion is oscillational [see Fig. 5(a)]. As p, increases
from 0.4, the orbit again goes through the period-
doubling bifurcation and becomes chaotic at p, =0.45
[see Fig. 5(b) and 5(c)].

In Fig. 6, a comparison of two Melnikov thresholds
and the numerical result is show on the a-p& plane for
Q=0.4, 5= —0.8, and b,pa=pc p, =0.01. T—he numeri-
cal threshold is the lower boundary of chaos developed
from the rotational orbits. It has been noticed that for
a & a2=0.9, the conservative threshold deviates quickly
from the numerical result with a so that it can no longer
give a good prediction for the onset of chaos.
Meanwhile, the dissipative threshold is getting closer to
the numerical threshold and almost coincides with it as a
is increased a little further. Therefore Eq. (40) gives a
better prediction on chaos for a&a2. However, for
0.4&a&0.9, the conservative threshold is better than
the dissipative threshold since the latter seems too low.
For a &a& =0.4, the two lines join together so that there
is almost no difference between them. In our calculation,
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FIG. 5. Linear damping with cosP term: oscillational orbit
for the same parameters as those in Fig. 4. (a) Period 1 orbit for
pl=0. 3; (b) period 2 orbit for p, =0.4; (c) chaotic orbit for

pl =0.45.

FIG. 7. Linear damping with cosP term: onset of chaos for
a=1.004, 5= —0.8, and p0=0. 8237. The notation is the same
as that in Fig. 6. 0—onset of chaos from the numerical simula-
tion (on oscillational orbit).
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we have also found that p, is approximately the lower
limit of the dc bias below which the phase-locked rota-
tional solution cannot exist. A similar phenomenon has
been discussed for the Josephson junction with only
linear damping. '

In Fig. 7 the chaos thresholds are shown on the Q-p,
plane for +=1.004, 6= —0.8, and hpo=0. 01. As we
have already pointed out in Fig. 4 the system is in a
periodic state with the frequency Q0=0. 6873 if the rf
bias is zero. It turns out in Fig. 7 that there is no chaos
at all above this frequency. When Q approaches Qo from
below, the numerical threshold goes to infinite. Thus,
none of these two Melnikov predictions could tell the
happening of the chaos since they are finite. For
Q &0.55, even though there is a noticeable discrepancy
between the dissipative and the numerical thresholds, the
former is still a big improvement over the conservative
threshold because the Melnikov threshold has been ex-
pected to give the lower boundary of chaos for rf bias.
By the way, the onset of chaos on the oscillational orbit
has also been calculated numerically and shown in Fig. 7
as O. Generally, it is much higher than that on the rota-
tional orbit and cannot be predicted by the Melnikov
method.

IV. CONCLUSION AND DISCUSSION

The lack of an analytical method to predict the chaos
threshold in a Josephson junction has been changed since
the introduction of the Melnikov method. In general, the
conservative system defined by Eq. (2) is adopted as the
unperturbed system on which the Melnikov threshold is
calculated. However, as Kautz and Macfarlane pointed
out, the validity of the Melnikov method has been limited
to the parameter region of small damping and dc bias.
This situation could be greatly improved if the damping
term and the dc bias are included into the unperturbed
dissipative system. One such system is represented by
Eq. (7) which is known to be the only one having an ana-
lytic solution. Using this solution, the following prob-
lems are studied in this paper: first, the utility of the
Melnikov method has been extended to the parameter re-
gion of intermediate damping and large dc bias for the
Josephson junction with quadratic damping term. It has
been shown that for small damping and weak dc bias,
there is no significant difference between Melnikov
thresholds based on the conservative and dissipative un-
perturbed systems, respectively, but these two thresholds

diverge from each other with the damping constant y.
For y&y, , the latter comes close to the numerical
threshold so that it yields a very good prediction of
chaos, while the former seems completely useless since it
is too high. This result is not difficult to understand if we
recall that the Melnikov method is a perturbation
method. The smaller the perturbation, the more precise
the result. It is obvious that the perturbation in the dissi-
pative case is much smaller because the main part of the
damping and dc bias has been included into the unper-
turbed equation.

Second, we have also used the dissipative system given
by Eq. (7) as the unperturbed system for the Josephson
junction with linear damping and the cosP term because
of the lack of an analytical solution of Eq. (6). The Mel-
nikov thresholds calculated on this system and on the
conservative system [Eq. (2)] are compared with the nu-
merical simulation in several different parameter regions.
We have found that for small damping these two Melni-
kov thresholds are almost the same. They start to bifur-
cate at a& with increasing a. For a& &a &a2, the Melni-
kov threshold based on the conservative system can give
a better prediction than that based on the dissipative sys-
tem. Above a2, the latter approaches the numerical
threshold curve and finally coincides with it as a is in-
creased further, while the former is becoming too high to
be used. The comparison also indicated that the agree-
ment between the Melnikov thresholds and the numerical
result depends on the frequency of the rf bias Q. When Q
approaches the plasma frequency Qo from below, both
Melnikov thresholds seem too low to predict the onset of
the chaos. For Q & Qo no chaos has been observed in our
calculations.

Finally, a less strict validity condition [Eq. (18) or (32)]
for the Melnikov prediction has been proposed. Our re-
sult has verified that the satisfaction of this condition
may generate better agreement between the Melnikov
threshold and the numerical simulation.
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