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Pairing and charge-density-wave correlations in the Holstein model at half-filling
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We study the two-dimensional Holstein model at half-filling for small systems using quantum

Monte Carlo methods and through diagrammatic perturbation techniques in the Migdal-Eliashberg

approximation. It is found that the latter approximation is very accurate as long as the phonon

self-energy is taken into account in a self-consistent way. Vertex corrections are not required.

I. INTRODUCTION

In the past few years quantum Monte Carlo techniques
have played an important role in understanding simple
microscopic models of interacting electron systems. At
the same time, since these techniques give essentially ex-
act results for various properties of the system, they pro-
vide a standard by which approximate theories can be
evaluated. In this paper we wish to investigate the Hol-
stein model, which describes electrons on a lattice which
couple to ionic displacements at the lattice sites. This
model has previously been investigated with Monte Carlo
techniques by Hirsch and Fradkin' in one dimension and
recently by Scalettar et al. in two dimensions. At least
in the weak-coupling regime the appropriate theory to
describe the pair susceptibility within the Holstein model
is the Migdal-Eliashberg (ME) theory. In this theory
(see below) explicit vertex corrections are neglected. It is

important to realize, however, that in many real applica-
tions of Eliashberg theory, vertex corrections are includ-
ed in an implicit and uncontrolled manner, for example,
in the strength of the electron-phonon interaction which
is ultimately obtained from experiment, through tunnel-
ing inversion.

Similarly, explicit corrections to the phonon propaga-
tor are also omitted, since this propagator hardly
changes, as a function of temperature, for example, due
to the electron-phonon interaction. (Implicit corrections
are usually included since the phonon spectrum is often
taken from experiment. ) While this work is not directly
applicable to real materials in that we use a very simple
two-dimensional model, it has the merit that electron
(and phonon) properties are constructed explicitly from
the microscopic parameters, so that direct comparison
with Monte Carlo results can be made. In this way the
intrinsic importance of vertex corrections can be estimat-
ed. It will be seen that at half-filling corrections to the
phonon propagator are important, but that once these are
taken into account, the Monte Carlo results are well ac-
counted for, even in a situation where charge-density-
wave (CDW) correlations are dominant. In the following
section we describe the Holstein model in detail. Results
for the noninteracting case in two dimensions are also
discussed. In Sec. III we describe the Migdal-Eliashberg
formalism at two levels of approximation. The first uses

the bare phonon propagator as is customarily done, while
the second includes a phonon self-energy correction. Sca-
lettar et al. used the first approximation, which we will
call the "unrenormalized Migdal-Eliashberg" (UME)
theory, and compared pairing and charge-density-wave
susceptibilities with Monte Carlo results. This was also
done (independently) in Ref. 4. We will call the second
approximation the "renormalized Migdal-Eliashberg"
(RME) theory. In Sec. IV we present results from Monte
Carlo (MC) calculations along with comparisons to both
levels of approximation, at half-filling, followed by a brief
summary in Sec. V. A short report of this work was
given in Ref. 4.

II. THE MODEL

A. Hamiltonian

In our calculations, we use the "Holstein" model, with
the Hamiltonian

H= —gt, (c; c +H c ) —pg. n. ;

2

+ g + —,'Kx; —a g x, (n, —
—,
' } .

I I CT

The Hamiltonian written in this way has particle-hole
symmetry for zero chemical potential (p=O). The pa-
rameters entering the model are standard: x; and p; are
the position and momentum operators for the ion with
mass M at site i. The oscillators are taken to be harmon-
ic, with spring constant IC =MtoE, each having (unrenor-
malized) frequency to@. The electron kinetic-energy term
has hopping-matrix element t, , usually taken to be
nonzero for nearest-neighbor hops only. Finally, a is the
electron-phonon coupling parameter, coupling the lattice
displacement x, with the electron density, n, —=c,- c;, on
the same site.

The following assumptions are inherent in the Hamil-
tonian (1}: (1) single band, (2) harmonic approximation
for phonons, (3) local approximation for phonons (Ein-
stein model), and (4) on-site electron-phonon coupling
only.

As well, we are considering nearest-neighbor hopping

42 2416 1990 The American Physical Society



42 PAIRING AND CHARGE-DENSITY-WAUE CORRELATIONS IN. . . 2417

only. This and assumption (1) are easily relaxed. As-
sumptions (3) and (4) can also be removed, although the
simulations become more difficult, and the corresponding
Eliashberg equations become more complex. Assumption
(2) is most difficult to avoid, although systematic work
has already occurred in that direction.

With the simplifying approximations made thus far,
Eq. (1) can be Fourier transformed, using the convention-
al oscillator operators, al, = (Mcoz /2A')(xk +ipk ) (i)I —= 1):
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Here, the momentum sums extend over the first Brillouin
zone (FBZ), and
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The noninteracting case has been previously discussed
by many authors, but we include it here for completeness.
The electron density of states is

'2
1 E,N(e}= E 1—

27T2t 4t
lsi (4t, (3)

where K is the complete elliptic integral of the first kind.
As a result of two-dimensional (2D) topology on a lattice
there is a logarithmic singularity at v=0. Note that the
"textbook" constant density of states comes from a free-
electron model with parabolic band and no upper energy
cutoff. For our nearest-neighbor-hopping approximation,
it is important to realize that in the half-filled case (}u=0)
there is the added feature of perfect nesting for q=(m, n. ).
As a result, the noninteracting CDW susceptibility at this
wave vector is enhanced, and, in the interacting case,
Migdal's "theorem" may be violated (see the discussion
in Ref. 5).

In this paper we will focus on the singlet pairing (SP}
and charge-density-wave susceptibilities. The pairing
susceptibility (at q=O) is given by the two-particle
Green's function:

sp =—g f dr& c;&(v.}c;&(r)c
&
(0)c

&
(0) )

tJ

(4)

which is evaluated using Wick's theorem in terms of
single-particle Green s functions. The CDW susceptibili-
ty is similarly given by

FIG. 1. Plot of (a) yc (m.,n) and (b) y vs 1n p, for the
half-filled noninteracting case. We have used 1V =(4P), where
N is the number of sites on the lattice in order to eliminate
finite-size effects (Ref. 6). The solid circles are for nearest-
neighbor hopping only. The logarithmic singularity gives rise
to a 1n p instability in both the pairing and CDW susceptibili-
ties. The open circles are for a parabolic-like band structure.

(vr, m. ) has been suppressed completely, while a logarithmic
divergence remains for y

teracting case to illustrate the effect of nesting.
With nearest-neighbor hopping only, both the CDW

and SP susceptibilities exhibit ln P[P=—(kit T) '] diver-
gences in the half-filled case. Also shown are results us-
ing the free-electron-like band structure

N
( 1)n

Ek =2t' g [cos(nk„)+cos(nk»)],
n=i

where t' is determined to give the same bandwidth of St.
A cutoff of N =7 gives a very good -k dispersion for
most of the Brillouin zone. The figure shows the result
for half-filling. The CDW susceptibility is clearly
suppressed, while the SP susceptibility is reduced as well;
however, in the latter case a logarithmic divergence
remains. In the interacting case we can, in general, avoid
the nesting condition by remaining well away from the
half-filled case.

III. THEORETICAL BACKGROUND

We wish to compute the one-electron Green's function

ao' G(k, ice ) = [ice —sz X(k, ice )—] (6)

X f dr[&n, (~)n, (0))
0

—&;.( ))&,.(0))]. (5)

In Fig. 1 we plot g [q=(n, n. )] and esp for the nonin-

where ice —= inT(2m —1) are the fermion Matsubara
frequencies and X(k, iso ) is the electron self-energy due
to the electron-phonon interaction. (We use kz =—A'=—1,
and all energies are expressed in units of the hopping, t).
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The Migdal approximation is

X (k ico )

2
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where D (q, i v„) (i v„=i2mTn). is the phonon propagator

D(q, iv„)= [ M—(co@+v„)—II(q, iv„)] (8)

II(q, iv„)= g G(k, ico )G(k+q, ico +iv„) .
2a

k, m

(9)

Including Eq. (9) in the calculation will be seen to have
important effects on the electron propagator. Finally, a
Hartree term is also included and given by

2 2 0
X (k, ico )= D(0,0) g G(k', ico .)e

k*, m'

=a D(0,0)

Here II(q, iv„) is the phonon self-energy. As mentioned
in the Introduction, in the Eliashberg equations it is cus-
tomary to omit corrections to the phonon propagator,
since usually the phonons are given frorri experiment, or
from a theoretical computation in which the electron-
phonon interaction has already been included in the pho-
non properties. Moreover, it is common practice to use
the noninteracting Green's function in place of the fully
interacting one in Eq. (7). For a constant density of states
and assumed infinite bandwidth (t ~+ ~ ) this is, in fact,
exact, so that the approximation is justified for many real
materials. For our model we will retain Eq. (7), however,
as it is given. Computations have been performed using
Eq. (8) both with II(q, i v„) set equal to zero (unrenormal-
ized case) and with II(q, iv„) given by the self-consistent
expression (renormalized case):

FIG. 2. The Migdal-Eliashberg equations in diagrammatic
form. The single and double solid (wavy} lines represent the
noninteracting and interacting electron (phonon} Green's func-
tion. (a) and {b) determine the self-energies self-consistently,
while (c} and (d) represent the ladder and bubble sums for the
pairing and CDW susceptibilities, respectively. In the usual un-

renormalized ME approximation, the noninteracting phonon
Green's function is used everywhere.

which determines the self-consistent chemical potential.
These equations are given in the Appendix. For the
simplified case II(q, i v„)=—0, we obtain the equations

1
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This correction is independent of k and m and so is
reabsorbed into the definition of the chemical potential.
In particular, it restores the p=O condition for the half-
filled case, even in the fully interacting case. The graphs
used are summarized in Fig. 2.

Defining

X(k, i co„)=i co„[1 Z—(k, i co„)]—+y(k, i co„)

aIld
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we obtain four coupled equations for Z, g, II&, and Hz.
For a given occupation n, these are solved to consistency
along with the condition

Here, since II(q, iv„)=0,y:y(ico —), and Z =Z(ico )

are independent of wave vector, so that the iteration pro-
cedure is sped up significantly. The function A,o(z) is
defined

A, coE
A.(z) =

COE Z
(15)

The two are usually simply related by A(z)=N(0)AO(z),

(a /M)
2 2

COE Z

Equations (13) are the ones solved by Scalettar et al. (the
m dependence of y turns out to be not too important
near half-filling, and they have absorbed g into the
definition of the chemical potential; at half-filling,

—=0). We have included the subscript 0 to
differentiate this function from the more commonly used
(dimensionless) A, (z):
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where N(0) is the normal-state noninteracting (i.e., with
phonons) density of electron states at the Fermi level (as-
sumed to be constant over the energy range of interest).
Here, however, this simple relation clearly does not hold
(at half-filling, A, is not infinite, for example), and we will

resort to the fundamental definition

8 ReX(k, co)

a. 63—EF
(16)

g Fo(k, ia) )A(kicu , ),sp 1

k, m

where

(17)

Fo(k, i co ) = G(k, i co )G( —k, iso —
)

and A(kiev , ) is the solution of the vertex equation:

2

A(k, ice )=1— g Fo(k', ice )
N

XD(k —k', ice i co )— ~

XA(k', ice ) . (19)

As T~T, from above, A(k, ice )&)1, y ~~, and
Eq. (19) (with the 1 dropped) becomes the eigenvalue
equation that determines T„written on the imaginary
axis. Again, for II(q, iv„)—:0, A(k, ice )~A, and Eq.
(19) needs to be iterated in imaginary frequency space
only. In the nonretarded (NR) limit,

D(q, iv„)~( —Mcus )

so Eq. (19) decouples, and one obtains the BCS pairing
susceptibility

where X(k,co+iO+) is the analytic continuation of
X(k, ice„).

Once the self-energies are evaluated one can compute
the various susceptibilities to probe the tendencies of the
system at a given temperature. In particular, the pairing
susceptibility, y, given by Eq. (4), will diverge at the su-

perconducting transition temperature. As noted by Sca-
lettar et al. , in 2D this is expected to be a Kosterlitz-
Thouless-like transition, which is not described by Eliash-
berg theory.

Within the ME theory, Eq. (4) is given by summing the
infinite series of ladder diagrams. The result is

where yo (q) is given by the expression in Eq. (9):

CDW( Ii( 0)
Xp

Q\ 2 (22)

At half-filling, for q=(vr, 7r), then yo =2yo, so that
Eq. (21) will always diverge sooner than Eq. (20). More-
over, as discussed in Ref. 6, retardation will diminish the
enhancement of the denominator in Eq. (20). Further-
more, the self-energy effects from retardation "weigh
down" the single particle-hole bubble so that yz is
depressed and y is further reduced. These latter reduc-
tions cannot be avoided; however, the competition with
Eq. (21) can be readily avoided by going to fillings away
from half-filling, or altering the band structure, as already
noted.

Equation (22) also indicates that, in using the full equa-
tions for Z, g, H, , and H2, we are "backfeeding" the
CDW tendency into the self-energy equations. Thus, as
will be seen in the results, we obtain an immediate signal
that the system is unstable to a CDW.

The Monte Carlo algorithm used in this work is that of
Blankenbecler et al. , with modifications due to Hirsch'
to give greater stability at lower temperatures. We have
concentrated on 4X4 lattices. These small sizes are
sufficient for an evaluation of the ME theory (agreement
should improve for larger lattices). The ME equations
can then be readily solved for much larger lattices.

o|- I-

sp

IV. DISCUSSION OF RESULTS

The Holstein Hamiltonian with nearest-neighbor hop-
ping will not yield superconductivity in the half-filled
case in two dimensions. Nonetheless, as discussed by Al-
len and Mitrovic, this is precisely the situation in which
Migdal's theorem is expected to break down, so that ME
theory should fail. For this reason, we will concentrate
on the half-filled case.

In Fig. 3 we plot the pairing susceptibility y [Eq. (4)]

sp
SP

+NR
1 ~ sP

(LO
(20)

CDW( )
~CDW( )

CDW( )
(21)

where yo is given by Eq. (17) with A(k, ice )—:1, and
Fo(k, ice ) given in terms of noninteracting Green's func-
tions, and with ko ——(a /Mcus).

The CDW susceptibility is determined in similar
fashion, except that only the zero-frequency phonon
propagator at wave vector q enters, so that [for
II(q, iv„)—:0] one obtains

00
0. 5

I

1.0

FIG. 3. Plot of the pairing susceptibility g vs temperature,
as computed from Monte Carlo (circles) and from unrenormal-
ized ME theory at half-filling. Here, A.0=2 and ~z =0.5. There
is significant disagreement, especially at low temperatures. The
error bars accompanying the MC results indicate the statistical
error.
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as obtained from Monte Carlo calculations and from the
unrenormalized ME theory (using the bare phonon prop-
agator), for a bare coupling strength A,o=a /IC =2, pho-
non frequency ~&=0.5, and filling n =1. All energy
units are expressed in terms of the hopping integral t.
There is a clear "failure" of the UME theory even for this
"weak-coupling" case. The cause of the failure is clear
from Fig. 4, where we have plotted the charge-density-
wave susceptibility at wave vector q=(m, n ) (the nesting
wave vector), y (n, n) versus temperature, again for
both the Monte Carlo and the UME calculations. Note
that the scale differs from that of Fig. 3 by 2 orders of
magnitude. The system is clearly approaching a charge-
density-wave instability and finite-size effects become
prohibitive. When a susceptibility approaches the magni-
tude indicated in Fig. 4, a larger lattice size is usually re-
quired to handle the long-range correlation correctly.
The UME approximation has also indicated a CDW in-
stability. While the "bubble" approximation [Eq. (21)]
drastically overestimates the CDW susceptibility, it
nonetheless serves as a signal that the UME equations
will not be reliable below T=0.7t. Figure 3 shows that
this is indeed the case.

This result makes it clear that the unrenormalized ME
theory of the normal-state electron Green's function does
not incorporate either the tendency for singlet pairing or
the tendency for charge-density-wave formation. When
susceptibilities are calculated, however, we find that the
CDW instability dominates. The calculation is then
meaningless at temperatures below that which yield a siz-
able CDW susceptibility so that the disagreement in Fig.
3 is expected.

An improvement of the theory consists of improving
the agreement in CDW susceptibilities (Fig. 4). We then
expect the SP susceptibility to agree more closely with
the Monte Carlo result. Towards this end, we have car-
ried out calculations in which a renormalized phonon
propagator [Eq. (8)] is self-consistently calculated along

05-
XSP

0.0 I

0.5
I

1.0

with the electron propagator. We use for the phonon
self-energy the bubble diagram [Fig. 2 and Eq. (9)], which
is given in terms of the self-consistent electron Green's
functions. (See the Appendix for calculational details. )

The results are given in Fig. 5, for a slightly different set
of parameters: a /K =1.5 and coE =0.5. Figure 5(a) il-

lustrates the singlet pairing susceptibility, y, calculated
by various means. The dotted line represents the nonin-
teracting electron susceptibility and is included for refer-
ence. The solid line is the result from the unrenormalized
ME theory. Note that the pairing susceptibility is
suppressed in the temperature regime indicated, as point-
ed out previously. ' Calculation to lower temperatures
reveals a crossover, with the unrenormalized ME result
eventually diverging at a finite temperature. The points
indicate the Monte Carlo results. At temperatures below
T/t=0. 5, there is a definite overestimate of the UME
theory compared with the MC results. Finally, the
dashed line gives the renormalized ME result in very
good agreement with the MC results. In Fig. 5(b) we
show the same results for P (n, n). Agreement with
the Monte Carlo results is somewhat improved by using
the renormalized ME results.

We have chosen these particular parameters because
they give a clear indication of what is happening in the
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0.0
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0.5 1.0

10—

0
0.0

FIG. 4. Plot of charge-density-wave susceptibility g (m, m. )

vs temperature. The parameters and legend are the same as Fig.
3. Note the difference in scale compared to Fig. 3. The un-
renormalized ME theory drastically overestimates g (m, m).

FIG. 5. Plot of {a)y and (b) y 0
(m, m), calculated by vari-

ous means for A,o= 1.5, co+ =0.5, at half-filling on a 4X4 lattice.
The dotted lines indicate the noninteracting result for reference.
The circles are the Monte Carlo results, the solid lines are the
unrenormalized ME results, and the dashed lines are the renor-
malized ME results (phonon self-energy self-consistently includ-
ed). Agreement is markedly improved when the phonon self-
energy correction is included, especially in (a).
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relevant temperature range. As Scalettar et a/. have dis-
cussed, smaller values of A,p will, in general, shift the re-
sults of Fig. 5 to lower temperatures, where, however,
finite-size effects dominate. Larger values of A,p cause the
CDW instability to appear at higher temperatures, where
deviations from the noninteracting g are not significant.
Similarly a lower phonon frequency gives rise to stronger
CDW correlations.

The renormalized ME theory differs from conventional
Eliashberg theory in that in the former the phonon spec-
trum changes significantly as a function of temperature.
This is best seen in Fig. 6, where we plot II,(q, O) for

q= (~, m. ) versus temperature for the parameters of Fig. 5.
Recall that the phonon propagator at zero frequency is
—[I/Mcozll, (q, 0)] rather than —(I/Mcoz), the latter
case applying to the unrenormalized theory. This means
that the effective A, is given by V (q)=A, /Il&(q, 0). We
should stress that II &(q, O) has been calculated self-
consistently, and not just at the end of the unrenormal-
ized calculation. The question then arises: what value of
the dimensionless electron-phonon mass enhancement pa-

[]&[q,o]
Q.2—

0.0 0.2 0.4 0.6

FIG. 6. Plot of the real part of the phonon self-energy

II,(Q,i v„=O) [see Eq. (11b) for definition] for Q—:(n, n ) vs tem-

perature. H&(q, 0) approaches zero as Tdecreases indicating the
formation of a CDW. The e6'ective A.o becomes

Ao =AD/II(Q, O), and diverges as T decreases.

rameter, k, corresponds to a specific choice of A,p? We
can calculate A, via Eq. (16) exactly in the unrenormalized
theory, by solving the analytic continuation equations,
derived recently in Ref. 11. In our case, the equation is

1 A,pro E
X(k,cv+i5) = g Ao(co ice —)G(k', ice )+ [N(cos )+1 f (cu cos—)]——g G(k', a) —cox)

1

k'

+[N(cvF )+f(cv+cvE )]—g G(k', co+coE)
1

k'
(23)

where N (v) and f (v) are the Bose and Fermi functions,
respectively. Clearly, X(k, co) is independent of k. Equa-
tion (23) is solved by iteration, with the first term given
from the imaginary axis calculation. Equation (16) can
then be straightforwardly used to determine the dimen-
sionless mass enhancement constant A, . For frequencies
of order t, the hopping-matrix element, we always found
at low temperatures that A, =Ao/D, where D is the band-

width. Since 1/D is the average value of the density of
states, this is not too surprising. An intersting effect, first
discussed by Alexandrov et al. ' in the context of the un-

renormalized theory, is shown in Fig. 7, where we plot
the quasiparticle density of states N(cv) versus co for
A,o=1.5, co+ =0.5, and P=12, for a large system (80X80
sites). Smearing has occurred both due to finite tempera-
ture and due to the electron-phonon interaction. The
noninteracting result is also plotted, using an artificial
broadening to avoid the singularities due to the discreti-
zation. In the interacting case there is a collapse of the
quasiparticle density of states, occurring at the phonon
energy, ~E=0.5. Alexandrov et aI. claim that this
points towards the need for inclusion of vertex correc-
tions, whereas we have argued that only the phonon self-

energy correction needs to be included. The claim of Ref.
12 for definite values of the dimensionless electron-
phonon coupling constant A, is also in doubt since it is
clear from Fig. 6 that the effective A, is increasing as a
function of temperature, eventually diverging as the

CDW instability is approached. In order to shed light on
this issue we have examined the electron self-energy both
on the imaginary and real axis.

In the first case, recently, Moreo et al. ' have noted

0.5

0. 1

0.0
—4.0 0.0 2.0 4.0

FIG. 7. Plot of the quasiparticle density of states, W(co) vs co

for a large system, with Ao = 1.5, coe =0.5, and P= 12, calculated
within the unrenormalized ME approximation. The dashed line

represents the noninteracting case with artificial broadening.
Note the collapse in the density of states at +co& =0.5.
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that the electron self-energy evaluated on the imaginary
axis gives important information about the existence of a
gap in the one-electron spectrum. Specifically, they have
argued that in a Fermi liquid the imaginary part of the
self-energy will have a negative slope for small values of
co„, whereas it will diverge if a gap is forming. In Fig. 8,
we show results for a 4X4 system at low temperatures
(Ao=1.5, co@=0.5), for both the unrenormalized and re-
normalized ME calculations. We have been unable to
iterate the renormalized ME equations to lower tempera-
tures due to the CDW instability. Figure 8 shows that
while the renormalized ME solutions know of the forma-
tion of a CDW gap, the unrenormalized ME solutions do
not.

An exact analytic continuation of the electron self-
energy in the renormalized ME theory appears to be im-
possible so we have relied on Pade approximants. ' In
Fig. 9 we plot the spectral function

A (k, co) —= — Im—G(k, co+i 5)
1

0.00

1.0—

0 p
--2.0

)(

0.0 2.0

FIG. 9. Plot of the electron spectral function, A(k, co) at
(k=m/2, m/2) vs frequency. The solid and long-dashed curves
are obtained from the unrenormalized ME theory from Eq. (23)
and Pade approximants, respectively. This gives an idea of the
accuracy of the Fade approximants. Note that a quasiparticle
peak still exists with spectral weight depleted from the quasipar-
ticle part. The short-dashed curve is obtained via Fade approxi-
mants from the renormalized ME theory. In this approxima-
tion the spectrum has become entirely incoherent. We used
A,o=1.5, co& =0.5, for a 4X4 system.
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versus frequency for k=(rr/2, rr/2), which is on the un-

perturbed Fermi surface. We have used the usual param-
eters, A,o=1.5 and co& =0.5, for a 4X4 system. The solid
and long-dashed curves are for the unrenormalized ME
theory. The former comes from Eq. (23) with a small
artificial smearing, and can be considered exact. The
latter follows from Pade approximants. These are
presented to give an idea of the accuracy of the Fade ap-
proximants. The agreement is excellent considering the
sharp structure in the spectral function. The short-
dashed curve represents the spectral function obtained by
Pade approximants from the renormalized ME theory for
the same parameters. The most striking difference is
clearly the absence of a quasiparticle peak in the latter
case. The entire spectrum is incoherent. In this sense the
definition of a mass enhancement via Eq. (16) no longer
makes sense since there are no longer quasiparticles. We
note from Fig. 9 that a gap at the Fermi level has not yet
formed, though the tendency is clearly present, in con-
nection with the results of Fig. 8.

FIG. 8. Plot of the imaginary part of the self-energy on the
imaginary axis, X,(k, ice„):ImX(k, ice—„)=co„[1 Z(k, ice„)—] vs

co„. In (a) we plot the result due to the unrenormalized ME ap-
proximation (for A,o=1.5, co+=0.5, and X=4X4). We show
the result for temperatures P=10, 20, 100. The results are
essentially the same except that for /3=100 many more points
are filled in, thus indicating that P= 10 is a sufficiently low tem-
perature. Note that this result suggests normal Fermi-liquid be-
havior, even though COW correlations are dominant. (The
CDW susceptibility has already diverged, for example, within
this approximation at @=0.5.) In (h) we plot the result for
P=10 within the renormalized ME approximation at a wave
vector on the Fermi surface, k=(m/2, m. /2). We find the ex-
pected behavior (Ref. 13) ImX(k, ice„)-—(6 /co„) indicating
that a CDW gap is forming.

V. CONCLUSIONS

We have studied the Holstein model in two dimensions
in a very restricted parameter range in order to evaluate
the accuracy of the Migdal-Eliashberg approximation at
elevated temperatures. We have used a tight-binding
model which gives rise to Fermi surface nesting in two di-
mensions at half-filling, and we have used an Einstein
phonon frequency of order the Fermi energy. All of
these conditions are expected to give rise to a breakdown
of Migdal's approximation. While it has been clear that
there is no superconductivity under the conditions stud-
ied here, our results show that there is also no supercon-
ductivity predicted with the ME approximation if the
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phonon self-energy is self-consistently taken into account.
Alternatively, one could use the unrenormalized ME
theory but monitor the CDW susceptibility for an insta-
bility. However, in order to pursue more quantitative
agreement with Monte Carlo results, it was found that
the phonon self-energy corrections were necessary and
sufficient to take into account. At the elevated tempera-
tures studied in this work, vertex corrections were negli-
gible.

The case presented here (Ao= l. 5, co@ =0.5} would ap-
pear to be in the weak-coupling regime. However, this is
misleading, as the effective A, is actually diverging as the
CDW instability is approached. Moreover, the electron
spectrum becomes entirely incoherent. Since the renor-
malized ME theory has been successful in the half-filled
case, we expect that it can be used with confidence away

from half-filling, with possible exceptions arising near the
band edges.
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APPENDIX

The full set of equations is as follows:

and

v„2AO [sq+y (k)][a„.+y (k')] —co co Z (k)Z (k')

co~ &13 q [a)' Z (k)+[a„+y (k)]'j [co' Z' (k')+[a„+y (k')] I

2AO to Z (k)[e„+y (k')]+to Z (k'}[a„+y (k)]
[tv2 Z2 (k)+[ez+y (k)] I Its Z (k')+[eq +g (k')] I

(A 1)

(A2)

where Ao =—(a /Mcus) and k'=k+q, and m —= co +v„, and we have used the shorthand, Q (k)=—Q(k, it@ ). Given
that

II(q, iv„)=Mtoz II&(q, iv„)—1—
Q2

z +iII2(q, iv„)
COF

(A3)

then the renormalized phonon propagator is determined in terms of the fully interacting electron Green's function by
Eqs. (Al) and (A2). This latter quantity is given by

and

cv .Z (k')Il&(q, iv„)—[sz+y (k')]II (q, iv„)
~ [Ilf(q, iv„)+II&(q, iv„))leo .Z (k')+[s&+y (k')] }

XQ II&(q, iv„)[e&+y,(k')]+IIz( q, iv)cv Z (k')

~ [II&(q, iv„)+112(q,iv„)]It0 .Z .(k')+[a&, +y (k'}] )

(A4)

(A5}

~0
Ao'(q, i v„)=

II&(q, iv„)
(A6)

where A '(qo, i )vis now a phonon propagator (with
electron-phonon coupling a included) which has been re-
normalized by electron-phonon interactions. Equation
(A6) can be rewritten

where q=k —k' and v„—=tv —to, and Eq. (6) and the
ensuing definition of X(k, ito ) applies. It turns out that
II&(q, iv„) is zero, so that Eqs. (A4) and (A5) appear as
momentum-dependent generalizations of Eqs. (13a) and
(13b) in the text, with

(oi „v),
o'(q, iv„)—:,

1 Ao(i v„)y—o (q, iv„)

where

(A7)

m(q, iv„)gn (qiv„)=-
a

Equation (A7) clearly illustrates that the CDW tendency
is being incorporated into the normal-state self-energy
equation.

Momentum dependence in the starting electron-
phonon coupling constant is easily incorporated and
would alter Eq. (A7) by requiring A,o(iv„)~ko(q, iv„).
Equation (A7) is now in a standard RPA form, and one
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could define' an interaction kernel by Eq. (A7) with cou-
pling constant

10
cDw

1 —A~ (q, 0)
(A8)

so that A,o'—:(A,o'(k —k'))zz, where the brackets denote
Brillouin-zone averages. We see no reason why this
definition should agree quantitatively with the definition
(13), although both are expected to behave qualitatively

in the same way.
Equation (A7) contains the particle-hole bubble dia-

grams with fully interacting Green's functions. Hence
Eqs. (Al), (A2), (A4), and (A5) are iterated to consistency
(in one Matsubara frequency and two momentum dimen-
sions). Because, in the process of this iteration,
II,(q, i v„) approaches zero (see Fig. 6), it is necessary to
include a "damping" scheme in the iteration process
whereby a combination of the "new" and "old" solution
is taken as the new solution, for each iteration step.
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