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We study dynamical properties of two holes in the ¢-J, t-J,, and Hubbard models using exact diag-
onalization techniques on small clusters. For the three models we found that the ground state of
two holes has d-wave symmetry. Studying the dynamical d-wave pairing susceptibility at zero
momentum, we observed a quasiparticle-like peak at the bottom of the spectrum in a broad region
of parameter space. The lowest-energy p-wave state is close in energy to the d-wave ground state,
and they both behave qualitatively similarly, while the lowest-energy states of the s-wave and
extended-s-wave subspaces have higher energies and present no quasiparticle peak. The ground-
state energy of two holes in the ¢-J model scales with J as a power law. Binding energies for
different symmetries as well as dynamical properties for nonzero momentum are also discussed.

There is considerable interest in the analysis of strong-
ly correlated electronic systems since it is believed that
variations on the Hubbard or Heisenberg models in two
dimensions may contain the basic ingredients for under-
standing the mechanism leading to a superconducting
phase in the recently discovered high-T, materials.'
Since the appropriate region of parameter space seems to
be the strong-coupling regime, then standard mean-field
or weak-coupling expansions are not reliable and numeri-
cal methods (or more sophisticated analytic approaches)
are necessary to study static and dynamic properties of
the Hubbard model. In this paper we concentrate on the
dynamics of two holes in these strongly correlated sys-
tems.

The numerical study of dynamical properties of the ¢-J
model was initiated>® recently in the one-hole subspace.
It was found that there is a quasiparticle-like peak at the
bottom of the spectrum in a wide range of values of
J/t>0.2 and that its energy scales like J %7 for small J.
This is compatible with the “string picture” prediction
(J%) in the Ising limit* where the movement of the hole
creates a string of overturned spins whose energy grows
proportional to J and the length of the path of the hole.
For large paths the problem is well approximated by a
Schrodinger equation with a linear potential from where
the J dependence of the results can be obtained exactly by
a change of variables. The numerical results>? suggest
that even for a Heisenberg model where quantum fluctua-
tion can in principle destroy the string of overturned
spins, this scenario is still valid at least at low energies
(the effective potential may be linear at short distance but
flat at large distance). Other states have been identified in
the spectrum corresponding to excited levels of the hole
in a linear confining-like potential. This result would
have been very difficult to obtain without numerically
analyzing the spectral function of the hole.

The static ground-state properties of the two-hole sub-
space of the t-J model have been studied numerically by
several groups.>”7 On a 4X4 lattice it was found that
holes attract in the ¢-J model forming bound states in a
finite region of J /¢, while for large J /¢t phase separation
takes place. 5% This is reasonable, since for static holes
the number of broken bonds should be minimized to
reduce the antiferromagnetic energy of the spins favoring
the clustering of holes. In the context of the one-band
Hubbard model the binding energy E has been also eval-
uated using a new Monte Carlo technique’ on a 4 X4 lat-
tice and exact diagonalization techniques on an eight-site
lattice.> There it was found that Ej is negative near
U ~4-5¢ but small in absolute value, and it is not clear if
that result will survive the bulk limit. The symmetry of
the two-hole bound state was found in these models using
different methods. Diagrammatic, 10 yariational,!! and
exact diagonalization techniques for the z-J model,>® and
Monte Carlo!? and spin-bag'® studies for the Hubbard
model all suggest that the symmetry of the state is d
wave.

The purpose of this paper is to study the dynamical
properties of the two-hole subspace of the t-J and Hub-
bard models. In particular, we want to analyze if there is
a quasiparticle in the spectrum, how close in energy are
the other states with different symmetries under rotation,
and if the above mentioned string picture valid for one
hole can be extended to two holes. Another motivation
for our analysis is that spectral functions are being mea-
sured experimentally and thus we can in principle com-
pare our predictions with the behavior of the new super-
conducting materials. The pairing susceptibilities that we
present below may be relevant in the superconducting re-
gime while the one-hole spectral functions presented in
Refs. 2 and 3 are important at low doping of holes before
superconductivity occurs.
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The ¢-J model is defined by the Hamiltonian'*
H=J3Y (5, ; )
i,5
—t > ,,,El+50+H.c.), (1)
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where the notation is standard and Eig is a hole operator
acting in the space where there is no double occupancy.
We work on a two-dimensional lattice with periodic
boundary conditions. Note that in Eq. (1) we included a
term +n;n, ; which appears in the derivation of the t-J
model from the Hubbard model.® For zero and one holes
this term is a constant, but not for more holes. In the
strong-coupling expansion of the Hubbard model there
are other hopping terms that for simplicity we do not in-
clude in Eq. (1), but they will be discussed below. The t-
J, model is defined from Eq. (1) simply by replacing S by
S?in the spin-spin interaction. The other model we stud-
ied was the one-band Hubbard model defined as

H=—1 3 ( l(,C”bUJrH.c.)
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where again the notation is standard. For the ¢t-J and t-J,
models we worked on 4 X4 lattices, while for the Hub-
bard model the size of the Hilbert space restricted our
work to a V10X V10 lattice, the same as that used in
Ref. 3 for one hole. The dynamical properties of the
two-hole subspace can be obtained by studying the pair-

ing correlation functions
= [ " dre (AT ()A0)) | (3)

where the expectation value is taken in the ground state
with no holes. Here the pairing operator for the ¢-J mod-
el is defined as
A= FKIT 1T ot 4)
k
where the sum is over all momenta k of the lattice
weighted by the function f (k) which defines the sym-

metries under rotation of the operator while Q is the total
momentum of the two-hole system. In what follows we

will mainly discuss the special case Q=(0,0), where we
have considered four possibilities: if f )=cos(k,)
—cos(k,) then we study a d wave,

f(k)=cos(k, )+cos(k ) corresponds to an extended s
wave, and f(k)=sin(k,) corresponds to a p, wave
(v=x,y). The d- and s-wave states are singlets, while the
p wave is a triplet. For the Hubbard model we have con-
sidered also the possibility of an on-site s wave defined by
f(k)=1 [of course for this model the hole operators in
Eq. (4) are replaced by electron operators]. If higher har-
monics are introduced in the definition of f(k), then the
two holes can be located at distances larger than only one
lattice spacing, but we have not considered that possibili-
ty in this paper.

As numerical technique we used a Lanczos method
adapted to the evaluation of dynamical properties. Ac-
cording to standard linear response theory P(w) can be
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TABLE I. Ground-state energy of two holes in the #-J model
[Eg. (1)] on a 4X4 lattice at different values of J. The total
momentum is zero.

J d wave p wave s wave
0.2 —4.366 —4.173 —4.192
0.4 —2.993 —2.624 —2.366
0.6 —1.775 —1.234 —0.641
0.8 —0.646 0.066 0.863
1.0 0.422 1.292 2.131
2.0 5.277 6.716 7.257
written as
Pl@)=—Im |(dyA————ATy) | | (5)

o+E,+ie—H

where [¢,) is the ground state of the Heisenberg model
with zero holes and energy E,, which we obtain with the
Lanczos method. € is a small parameter that gives a
finite width to the & functions appearing in Eq. (5). P(w)
can now be evaluated by a continued fraction expansion
using the Lanczos method. For a finite system P(w) con-
sists of & functions corresponding to those states |n) of
the two-hole subspace having a prO_]eCthI] on A”le) with
an intensity proportional to |{n|A'[¢)[>. As a test of
our method we checked that the lowest-energy peak has
the same energy as that provided by an independent
Lanczos calculation of the two-hole ground state. For
more details see Refs. 2, 3, and 15.

In Tables I and II we present the ground-state energies
of the ¢-J and t-J, models in different subspaces for a 4 X4
lattice. In Fig. 1(a) we show our results for P(w) at
J =0.4 and 1 =1 in the t-J model using the d-wave pair-
ing operator (here and below €=0.05 and we used 100
iterations of the continued fraction expansion). There is
a large quasiparticle-like peak at the bottom of the spec-
trum showing that the state A WJO) is a good approxima-
tion to the ground state of the system. Beyond the first
peak there are many other lower-intensity peaks present-
ing some structure as happened for one hole.? Increasing
the value of J, the first peak accumulates more spectral
weight (note that the intensity of the peaks in absolute
value depends on the particular normalizations we use;
thus, only relative intensities are physically interesting).
For J =2.0 [Fig. 2(a)], only a few peaks can be easily ob-
served beyond the dominant one, although there are
many more of negligible spectral weight. In analogy to
what happened in the one-hole subspace,® we believe that

TABLE II. Same as Table I but for the 7-J. model. The s-
wave energy is given exactly by E =3.5J..
J, d wave p wave
0.2 —4.832 —4.771
0.4 —3.381 —3.337
0.6 —2.131 —2.119
0.8 —0.999 —1.000
1.0 0.057 0.054
2.0 B 4.721 4.726
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these excitations can be explained as follows: At large J
the ground state approximately corresponds to the two
holes located at a distance of one lattice spacing forming
a d-wave state. Excited states can be obtained by moving
a hole one additional lattice spacing creating a (length
one) string of overturned spins or, equivalently, a spin flip
in the vicinity of a hole (like a trapped spin wave).

For values of J/t between 0.4 and 2.0 we found a
smooth interpolation between the results of Figs. 1(a) and
2(a). However, for J =0.2 although the quasiparticle can
still be distinguished in the spectrum, its spectral weight
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FIG. 1. P(w) for the r-J model on a 4X4 lattice at J =0.4,
t =1 for (a) d-wave symmetry, (b) p-wave symmetry, and (c) s-
wave (extended) symmetry.
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is now approximately equal to that of another state that
appears at higher energies (while many other states have
comparable spectral weights). For J =0, P(w) is sym-
metric under  — —w and has a large peak at =0 plus a
mostly incoherent spectrum on both sides (see Fig. 3).
The total width of the spectrum is reduced from the naive
values 16¢ corresponding to that of a free particle to
~13.3¢ due to strongly correlated properties of the fer-
mions in this limit. This result is actually very close to
the obvious generalization of the self-retracing ray ap-
proximation of Brinkman and Rice'® to two holes, i.e.,
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FIG. 2. P(w) for the t-J model on a 4X4 lattice at J =2.0,
t =1 for (a) d-wave symmetry, (b) p-wave symmetry, and (c) s-
wave (extended) symmetry.
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FIG. 3. P(w) for the ¢-J model on a 4 X4 lattice at J =0.0,
t =1 for d-wave symmetry.

width =8V 3t ~13.9¢. For finite J, the total width of the
spectrum does not change much. For the 7-J, model we
obtained very similar results. We also analyzed the J-t-¢’
model where ¢/ (~J) corresponds to a second-neighbor
hopping term as it appears from the strong-coupling ex-
pansion of the Hubbard model. The results for the d-
‘wave pairing susceptibility are qualitatively very similar
to those found for the ¢-J model.

In Figs. 1(b), 1(c), 2(b) and 2(c) we show the p- and
extended-s-wave pairing susceptibilities for J =0.4 and
2.0, respectively. For the p wave the general trend is that
qualitatively the spectral function is similar to that of the
d wave, although, of course, they differ in details, espe-
cially regarding the intensity of the peaks, which is much
smaller for the p wave. For the s wave the situation is
drastically different. In this case there is no large peak at
the bottom of the spectrum, and thus we conclude that
there is no quasiparticle-like excitation in this subspace.
Note, however, that at intermediate energies a very large
peak appears in the spectrum having most of the spectral
weight. This is a general trend that is present for all the
interesting values of J. Only at very large J (> 2) does the
first peak in the spectrum accumulate enough spectral
weight to become the dominant peak. This peculiar be-
havior of the s-wave susceptibility can be understood
from the Ising limit (the 7-J, model) where the situation is
similar. In that case there is only one peak in the spectral
function of the s-wave susceptibility at energies very close
to those where we found the large peak in the z-J model.
It can be shown that this is due to the fact that the state
A*|¢0> for an s wave is an eigenstate of the t-J, model.
For the d wave the minus sign used in the definition of
f(k) avoids the problem and the state is not an eigen-
state. To prove these results care must be taken with
signs appearing from fermionic permutations. Actually,
we remark that if the spins would have had bosonic
statistics then the d wave would have had this pathologi-
cal behavior rather than the s wave. This is also in agree-
ment with recent exact results on the half-filled Hubbard
model,!” where it was shown that d and s symmetries
usually interchange places by changing the statistics.

We fitted the ground-state energy of the #-J model of
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two holes as a function of J for different symmetries. For
the d-wave (p-wave) subspace we found that the data can
be approximated very well by a power-law behavior
JO-78E0.02 (y0.7920.02) i the region 0.2<J <1.5. On the
other hand, the energy of the extended s-wave ground
state cannot be fitted reliably with a power law. Are
these results compatible with the string picture found to
be a good approximation for the one-hole subspace??
For that comparison it is important to note that the
influence of the term tn;n, ; should be taken into ac-
count in the fitting procedure since it is not present in the
original formulation of the t-J model. ** We proceeded in
two ways: First we removed that term from the Hamil-
tonian and repeated the calculation for the d-wave sub-
space. Now the energy of the first peak can be approxi-
mated very well by a power law J%%*%92 whose exponent
is in excellent agreement with the string picture which
predicts a value of 2. We have also simply subtracted
from the energy obtained with the full Hamiltonian Eq.
(1) the value that would correspond to that term in the Is-
ing limit, i.e., —7J/4. In such a way we also found
JO-69£0.01 iy the same interval of J) in excellent
correspondence with the previous result. Then, we con-
clude that once the term {n;n, ; is properly taken into
account then the results for the ground-state energy are
in good agreement with the string picture as for one hole.
We have not attempted to fit the energies of higher excit-
ed states as we did for the one-hole subspace.??

We also analyzed the binding energy of two holes®
defined as

EB:(E2/1_th)_z(Elh—EOh)’ (6)

where E,, denotes the ground-state energy of the sub-
space with n holes. E,,, E,, can be obtained from previ-
ous work.'® For two holes and d-wave symmetry we
found that the binding energy is negative and behaves as
|Eg|~J100%0-05 f5r 0.2<J=<1.0. For the p-wave sub-
space pairing begins at J =0.8 and is weaker than for the
d-wave case. For the s-wave subspace there is no pairing
for realistic values of J. A similar situation occurs for the
t-J, model.

Finally, for the ¢-J model we present results for
nonzero total momentum. Due to the particular
geometry of the 4 X4 lattice the 7-J model with two holes
has a degenerate ground state since the subspaces with
total momentum Q=(0,0) and Q=(0,7),(m,0) have the
same ground-state energy. This spurious symmetry is
also responsible for the degeneracy between
Q=(w/2,7/2) and Q=(0,7),(m,0) in the one-hole sub-
space.® To study the dynamics of Q=(,0) and in order
to include the ground state of this subspace as part of the
spectrum, it is necessary to take f(k)=sin(k,). The
reason is that Lanczos studies have shown® that the
ground state with Q=(m,0) changes sign under a rota-
tion in 7 around a site, but under a reflection with respect
to the x axis it is invariant. We found numerically that
the pairing susceptibility of this state behaves qualitative-
ly in a similar way to the d- and p-wave spectrum for
Q=(0,0), i.e., there is a quasiparticle-like peak at the
bottom of the band. It would be very interesting to find
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numerically which state [Q=(0,0) or Q=(0,7),(,0)]
becomes the ground state for a large lattice. The Monte
Carlo simulations performed so far have not analyzed the
possibility of a nonzero momentum in the pairing opera-
tor, although work is in progress. '’

Now we present results for the Hubbard model. In
Fig. 4(a) we show P(w) for the d- and p-wave pairing
operators on a ten-site lattice at U =10, t=1 (the
strong-coupling region) which corresponds to J =0.4 in
the ¢-J model. The ground state presents a large peak at
the bottom of the spectrum, but others are of comparable
spectral weight. There is a large difference in intensity
between the p- and d-wave susceptibilities, but there is a
good correspondence in the position and intensity of the
peaks between the two as happens in the 7-J model. For
the s- and extended-s-wave susceptibilities [Fig. 4(b)] we
found that most of the spectral weight is concentrated at
high energies, again in agreement with the ¢-J model. In
Figs. 5(a) and 5(b) we present results at U =4 as a
representative of the weak-coupling region. For the d-
and p-wave states the quasiparticle peak now has most of
the spectral weight. This is not surprising since at U =0
the pairing susceptibilities for these symmetries have only
one peak at w~2 (for a ten-site lattice), i.e., A+111/0> s an
eigenstate of the model in that limit. By continuity we
expect a similar result to survive in the weak-coupling re-
gion. On the other hand, it can be easily checked that for
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FIG. 4. P(w) for the Hubbard model on a 10 site lattice at
U =10, t =1 for (a) d- and p-wave symmetries, (b) s and extend-
ed s symmetries.
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the s- and extended-s-wave state AT|¢0> is not an eigen-
state at U =0 and, for a ten-site lattice, it presents two
peaks, one at =2 and the other at =8, the latter with
the largest spectral weight. It is the smooth continuation
of this peak to higher values of U that produces the
anomalous concentration of spectral weight at large ener-
gies that we found in the s-wave subspace.

Due to the similarities found between the spectral
functions of one and two holes in the ¢-J model, we re-
mark that the conductivity o(w) of the two-hole subspace
may present a shape similar to that recently calculated in
the one-hole subspace,20 i.e., due to the movement of the
hole (low-J picture) or to spin waves (large-J picture) a
broad low-energy structure appears similarly to that ob-
served experimentally at intermediate energies. At very
high energies charge excitations will be observed if the
Hubbard model is used.

Recently, we received a paper by Hasegawa and Poil-
blanc?' where the dynamics of two holes in the ¢-J model
is studied. However, the conclusion of that paper is that
no quasiparticle-like state was found with zero total
momentum, in contradiction to our results. The reason
for the disagreement is that in Ref. 21 a state with a hole
creation operator acting over the exact ground state of
the one-hole subspace was used to study the dynamics of
two holes, rather than our pairing operators. For the
particular choice of quantum numbers made in Ref. 21
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FIG. 5. P(w) for the Hubbard model on a 10 site lattice at
U =4, t =1 for (a) d- and p-wave symmetries, (b) s and extended
s symmetries.
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this state can be shown to have very small overlap with
the actual ground state of two holes, and this is why the
absence of a quasiparticle peak was concluded in that
reference. To show this result simply replace the exact
one-hole ground state by a hole operator with
k=(m/2,m/2) acting over a Néel state (|N)). We know
that this approximation works very well.> Then, the
two-hole state used in Ref. 21 can be approximated by
€L (2/2.2/2C (w2207 N ), which is explicitly orthogonal to
the state created by the d-wave pairing operator acting
over a Neel state [ f(k)=0if k, =k, ].

After completing this work, we received a paper by
White?? with Monte Carlo results for the pairing suscep-
tibilities of the Hubbard model at U =4. For the d-wave
susceptibilities his results for the quasiparticle peak are in
qualitative agreement with ours. However, the results for
the s and extended-s susceptibilities are not, as can be
easily seen comparing our Fig. 5(b) with Ref. 22. The
gap between the d- and s-wave subspaces reported in that
reference is ~4-5t while our result is much smaller
(< 1t). We believe that the continuation from imaginary
to real time done by Monte Carlo (MC) calculations only
reproduced the high intensity peaks of our Fig. 5(b) at w
between 7 and 10, missing the low-energy one at w~3.5,
which is the actual ground state in the s-wave subspace
and should be used to study gaps. Note that this result is
also obvious from Fig. 2 of Ref. 22 since the s and
extended-s waves cannot have peaks at different positions,
since they have exactly the same lattice symmetries.
Only the intensity of the peaks can change. We believe,
therefore, that the recently developed MC methods to ob-
tain real-frequency information, although promising,
should still be applied in combination with Lanczos
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Summarizing, we have studied the dynamical proper-
ties of pairing operators. We found good qualitative
agreement between the ¢-J, t-J,, and one-band Hubbard
models. The general pattern is that the ground state of
these models in the zero total momentum subspace is a d
wave for physically interesting values of the parameters.
Their pairing susceptibilities present a quasiparticle peak
in a broad region of parameter space. The p wave is close
in energy and has a similar qualitative behavior although
with lower intensity peaks and weaker binding energy.
Then, p-wave pairing in slightly modified variations of
the Hubbard model is not completely excluded. On the
other hand, the s- and extended-s-wave states have a
different behavior, having most of the spectral weight
concentrated at high energies and without a quasiparticle
peak. At least at low doping our numerical evidence
shows that the s-wave pairing is strongly suppressed. We
are currently evaluating the bandwidth (W) of the two-
hole quasiparticle. Preliminary results suggest that W is
small (at small J) as in the one-hole case, and thus the
effective mass of the two-holes bound state is large.
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