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The vibrational relaxation and dephasing of two-phonon states in the region of combinations or
overtones of intramolecular vibrations in molecular crystals are discussed. The model Hamiltonian
used includes (1) a harmonic part comprehensive of two-body intermolecular interactions that are
responsible for the phonon dispersion; (2) a single-site intramolecular anharmonic term that can
give rise to the formation of resonances or bound states; (3) cubic and quartic terms coupling inter-
nal modes to the lattice phonons. These latter terms give rise to depopulation and dephasing pro-
cesses, respectively, of the bound states. Explicit expressions for the shift and linewidth of the
bound states are obtained. It is shown that the relaxation processes are mixed processes involving
both the intra- and the intermolecular anharmonicity. The relaxation follows multistage routes.
Besides contributions due to scattering diagrams of single-phonon lines there are relaxation process-
es that are peculiar to the bound states. Calculations of the shift and linewidths of bound states
have been performed on a model system and the general trend of the shift and linewidth as a func-
tion of temperature and of the strength of anharmonic interactions has been studied. It is shown
that the contribution of depopulation and dephasing processes can be comparable. The model cal-
culations are discussed in connection with available experimental results.

I. INTRODUCTION

Two-phonon bound states have been observed in a
number of molecular crystals in the region of combina-
tions and overtones of internal vibrations. The spectros-
copy of these states is well accounted for by the presently
available theory' and detailed calculations have been
performed in crystals such as CO~, NzO, ' HCl,
HBr, and CS&. In recent years the dynamics of bound
states in some of these crystals has been probed by
coherent time-resolved Raman experiments " or by
high-resolution Raman spectroscopy. ' ' The data re-
ported so far (relaxation times or linewidthsi show con-
siderable peculiarities. For instance, the low-temperature
relaxation times of different bound states in the Fermi
resonance region in the CO& crystal may differ by as
much as 4 orders of magnitude. " ' This and other
features are not fully understood. The interpretation of
the available experiments is of considerable interest to
clarify the dynamics of two-phonon bound states and
their role in matters such as the phonon instabilities. '

A theory of the dynamics of two-phonon bound states
poses some novel problems. Indeed, the well-known ex-
pressions for the depopulation' and dephasing process-
es' of single-phonon states are not valid for bound states.
These latter, in fact, are not easily described in terms of
crystal normal coordinates. They are rather collective
excitations of the crystal and most likely share the char-

aeter of soliton waves. At least, this kind of interpreta-
tion has been suggested in the case of two-magnon bound
states. ' It is, therefore, necessary to formulate a theory
of the relaxation of two-phonon bound states ex novo.
This can be accomplished using two different approaches.
According to the first, one can look for a definition of a
collective normal coordinate appropriate for the bound
state and then apply the usual expressions for the phonon
linewidths with a proper redefinition of the anharmonic
coefficients. This kind of approach, as outlined in Ref.
12, leads to simple and compact expressions for the
linewidths but leaves some conceptual difficulties in-
herent to the definition of the collective coordinate.

In the second approach, which is the object of the
present paper, the choice is to work with the harmonic
normal coordinates of the crystal. The bound states are
then considered as strongly perturbed two-phonon states
that are further, but weakly, coupled by anharmonic in-
teractions to the phonon bath. According to this view
the interaction of the bound states with the phonon bath
is mediated by the phonons composing the collective ex-
citation. The strong perturbation producing the bound
states arises from the intramolecular anharmonicity'
and the coupling to the phonons and the vibrational re-
laxation have an intermolecular origin. The two types of
interaction must be considered simultaneously. Owing to
the different strength of the two types of terms, the inter-
molecular anharmonicity can be discussed within a per-
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turbation scheme while the intrarnolecular part requires,
at all stages of the calculation, a more exact treatment.
As will be shown in the following, the present approach
certainly leads to more complicated expressions for the
linewidths but has the great advantage of being formulat-
ed in terms of well-defined quantities of the harmonic
crystal and of avoiding the conceptual difficulties previ-
ously noted.

Before entering into the details of the theory it is ap-
propriate to describe qualitatively the physical processes
considered by the model discussed in this paper. The
internal vibrations of crystals composed of sma11 mole-
cules give rise to two-phonon bands that occur at high
energy and have bandwidths small compared to the pho-
non energy. When the intramolecular anharmonicity is
comparable with the two-phonon bandwidth resonances
may occur within the two-phonon continuum' as ob-
served, for instance, in the CS2 crystal. For larger
anharmonicities bound states may be split outside the
two-phonon continuum, as observed in crystalline
CO2, ' N20, ' and HC1. Typical frequency spectra
generated by different strengths of the anharmonic in-
teraction are shown in Fig. 1. Depending on the sign of
the anharmonicity constant the bound states may occur
at higher or at lower energy than the two-phonon contin-
uum. These bound states will be denoted in the following
as 0+ and 0, respectively.

As it is usually done for single-phonon states, also in
the discussion of the relaxation of two-phonon bound
states it is convenient to distinguish between the contri-
bution of depopulation processes, ' with change in the
occupation number, and of dephasing processes, ' where
the occupation number is unchanged. Energy and
momentum must be conserved between the initial and
final state but virtual processes may occur at intermediate
stages.

The simplest depopulation processes arise from the cu-
bic part of the anharmonic potential. In the case of
bound states we may, however, further distinguish be-
tween (a) processes of down or up conversion of the ener-

gy of the phonons composing the bound state, and (b)
scattering processes by low-energy phonons. Down con-
version processes of the type (a) have been suggested by
Cohen and Ruvalds. ' In the simple crystals in which
bound states have been investigated so far the energy
difference between internal modes largely exceeds the
maximum phonon frequency. ' ' Therefore conversion
processes of type (a) involve a large number () 3) of pho-
nons and occur through higher-order terms of a pertur-
bation expansion. These processes will not be considered
here and their contribution to the linewidth of bound
states is discussed elsewhere. The scattering processes
of type (b) describe the relaxation of 0+ and fl bound
state into the two-phonon continuum with the emission
or absorption, respectively, of a lattice phonon. In these
processes bound states behave like phonon excitations
with we11-defined energy and wave vector. The ultimate
result of the relaxation process is the dissociation of the
bound pair of excitations assisted by a lattice phonon. In
the approach used in this paper the conversion occurs as
a multistage process with individual intra- or intermolec-

ular steps.
The lowest-order dephasing processes are produced by

the quartic terms of the intermolecular potential. ' Only
the simplest contribution arising from these terms will be
considered in the following. Also in dephasing processes
the bound state behaves as a well-defined crystal excita-
tion. It will turn out, however, that the dephasing pro-
cesses of the component phonons do not contribute to the
dephasing of the bound state. This is not surprising if we
consider that the relative phase of the component pho-
nons does not play any role in the formation of the bound
state. Therefore a change in phase of the component
phonons will not affect the phase of the bound state. The
dephasing processes of importance are therefore peculiar
to the two-phonon bound state.

The dynamics of bound states in the region of an isolat-
ed two-phonon band differs appreciably from that of
bound states in regions of overlapping one- and two-
phonon states (Fermi resonance) and the two cases are
better discussed separately. In this paper we sha11 con-
centrate on the depopulation and dephasing processes of
bound states in isolated regions while the Fermi reso-
nance case will be treated in a subsequent article. The

(a)

~j~+ x

(b)

0

FIG. 1. Evolution of the two-phonon spectrum as a function
of the anharmonic strength X for an isolated overtone (a) and
for an overtone in near resonance with a fundamental (b).



VIBRATIONAL RELAXATION AND DEPHASING OF TWO-. . . 2309

plan of the paper is as follows. In Sec. II we discuss the
terms of the Hamiltonian and the multiphonon processes
that are considered in the theory of vibrational relaxation
of bound states. The spectroscopy of two-phonon states
is briefly reviewed in Sec. III reformulating previous re-
sults in a reciprocal space representation. The depopula-
tion processes arising from cubic terms of the intermolec-
ular potential are discussed in Sec. IV. Explicit expres-
sions are worked out for their contribution to the shift
and linewidth of the bound states. In Sec. V the dephas-
ing processes arising from the quartic terms of the Ham-
iltonian are considered. In Sec. VI the theory is applied
to a model system, a linear molecular crystal, and the
various contributions to the linewidth are calculated and
discussed trying to establish possible connections with
available experiments. The line broadening of resonances
in limiting cases (quasibound states) is discussed in the
Appendix.

II. MODEL HAMILTONIAN

H =HQ+Hg +H3 +H4 (2.1)

where HD is the harmonic and H„, H3, and H4 are
anharmonic terms.

The quadratic Hamiltonian H0 can be written, in re-
duced Planck's-constant units, as

HD= g +co;(k)a;+(k)a; (k)

+ g g co (k)b (k)b (k), (2.2)

The interest of this paper wi11 be on bound states in the
combination regions of two internal modes, labeled with
indices 1 and 2, of a molecular crystal. The system in-
cludes internal and external (translational and librational)
degrees of freedom of the molecules. For simplicity and
without loss of genera1ity the case of a cubic crystal with
one molecule per cell will be considered.

The total Hamiltonian H of the crystal can be written
as

where i=1,2, e is a branch index, k the wave vector
defined in the Brillouin zone, and a —and b+— are phonon
creation and destruction operators for the internal and
external modes, respectively, and obey the boson commu-
tation rules, the nonzero commutators being

[a, (k);a+(k')]=5,,5(k —k'),

[b (k);bp (k')]=6 pb(k —k'),
(2.3)

Q (k)=a+( —k)+a (k),

q, (k)=b+( —k)+b (k) .
(2.4)

The anharmonic Hamiltonian Hz couples the two
internal modes and affects the two-phonon spectrum' in
the ~, +co2 region and may give rise to two-phonon
bound states. The theory of two-phonon bound states in
molecular crystals has been discussed recently' and it
has been shown that the only important terms are in-
tramolecular anharmonic terms that can be written as

H„=X g h(k, +k2+k3+k4)Q, (k, )
k l, k2'k3, k4

XQ, (k, )Q, (k, )Q, (k4) . (2.5)

Other intramolecular anharmonic terms will only con-
tribute to the shift of the free-molecule frequencies co,
and co2 and their effect can be taken into account by using
appropriate effective frequencies. '

The anharmonic terms (2.5) can give rise to bound
states with zero linewidths. In perfect crystal, in the ab-
sence of impurities, defects, etc. , a finite linewidth for
these bound states is contributed by the anharmonic cou-
pling terms between the internal and other phonons. To
lowest order, only cubic H3 and quartic terms H4 will be
considered. The cubic terms have the form

where the 6's ensure the condition of momentum conser-
vation. The phonon field, Q or q, is defined in terms of
a+—and b by

H, = g gh(k, +k, +k, )[V', (k, , k, , ak, )Q, (k, )Q, (k, )q, (k, )+ V', (k, , k„ak, )Q, (k, )Q, (k, )q (k, )] .
kl, k~, k~ a

(2.6)

To simplify the treatment it will be assumed that V, (k, —k, 0)=0, a condition that is fulfilled strictly for nonfer-
roelectric or centrosymmetric crystals. The quartic terms are written as

H4= g g b(k, +k2+k, +k4)[ V, (k, , k, ,ak„f3k4)Q, (k, )Q, (kz)q (k, )qp(k4)
kl, k~, k3, k~ a, P

+ V, (k, , k~, ak3, Pk4)Q~(k, )Q2(k~)q (k3)qp(k4)] . (2.7)

Both cubic and quartic terms contribute to the fre-
quency shift of the bound states relative to the two-
phonon continuum and to the linewidth through popula-
tion relaxation mechanisms. Quartic terms give an ad-
ditional contribution to the linewidth through pure de-
phasing processes. Contributions from cubic and quar-
tic terms will be considered separately.

The anharmonic terms included in (2.6) are the only
cubic terms that, in the present case and to second order
of perturbation, ensure the energy conservation in the re-
laxation process of the bound state. As a matter of fact,
in this paper reference is made to crystals composed of
small molecular units (like triatomics) where the internal
vibrational energy levels are sparse and well separated
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from each other in such a way that their energy separa-
tion largely exceeds the maximum external phonon fre-
quency. Therefore, terms of the type Q, g, q, Q, q q&,

Q, Q2Q&, and the like would not, to second order, ensure
the energy conservation and have been neglected. Simi-
larly in the quartic Hamiltonian (2.7) only the terms that,
to the lowest order, can give rise to dephasing processes
have been included. Terms of the type Q, Q, Qg, where

Q is an internal coordinate, are of the same order as those
of (2.8) and the model of this paper can be easily general-
ized to include them.

Whenever necessary the Hamiltonian can be written in
terms of the time-dependent operators a-(kit) and
b +—(kit) operators defined in the Heisenberg representa-
tion.

III. TW'0-PHONON BOUND STATES

The two-phonon spectrum and the formation of bound
states in the combination region of two internal modes
have been discussed in detail in previous papers. ' The
theory assumes that the crystal Hamiltonian includes a
harmonic part of the type (2.2) for the internal modes and
an elfective quartic potential (2.5) arising from single-site
anharmonicity. The two-phonon spectrum is obtained
from the two-phonon Green function which is calculated
using the equation-of-motion method. It was shown' that

the problem formally resembles that of vibrations in crys-
tals with point substitutional impurities, with the
single-site anharmonicity playing the role of the mass de-
fect. Owing to the nature of the anharmonic perturba-
tion it was found convenient to work out the theory in a
local representation. ' With appropriate decoupling
schemes an analytic solution was obtained for the two-
phonon Green function in the zero-temperature limit.
For the clarity of the following discussion it is appropri-
ate to recall the main results of the theory. However,
since the interest of this paper is on the interaction of
bound states with lattice phonons it is more convenient to
reformulate the results in the reciprocal space representa-
tion. In addition, the zero-temperature approximation
may not be appropriate to certain experimental situa-
tions. For instance, decay times in the bending overtone
region of some linear molecules have been measured close
to the melting point ' where the mode occupation
number is of the order of 0.02—0.03. For these systems at
high pressure or for crystals that are solid at room tem-
perature experiments can be carried at temperatures
where the occupation number can be c1ose to unity.
Therefore, in this section the treatment is extended to
finite temperatures.

The basic information on the two-phonon spectrum is
contained in the retarded two-phonon Green function

((a, (kit)az (
—kit);a, (hlO)az ( —hl0))) = i8(t—)([a+, (kit)a2+( —kit), a, (hl0)a2 (

—hlO)]), (3.1)

where (( )) indicates the Green function, ( ) the statistical average over the grand canonical ensemble,[,. . . ] the commutator, and 8 is the Heaviside step function. The Green function (3.1) obeys the equation of
motion

d((a,+(kit)a&+( —kit);a, (hlO)az ( —hlO)))
iA =5(t)( [a i+(kit)az+ (

—kit), a i (hlO}a2 ( —hlO)])

+ (([a,+ (kit)a2+ (
—kit), H);a, (hlo)a,

—
(
—hlO} )) .

The Fourier transform of the Green function (3.1) is defined as

G(k, h)= I exp( idiot)((a&+—(kit)a&+( —kit);a, (hlO)a2 (
—hlO)))dt

and, whenever necessary, will be denoted by

G(k, h)=((a,+(k)a+( —k);a i (h)a2 (

The two-phonon density of states is given by'

1
p(~) = ——ImG,

7T

where

6=QG(k, h) .
k, h

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

When only the terms (2.2) and (2.5) are included in Hamiltonian H in (3.2) one obtains for the Fourier transform of
the equation of motion (3.2} (Ref. 1)

[co—co, (k) —cu2(k)]G(k, h) =h(k —h)[1+%,(k)+%2(h)]
—X g b(k, +k2+k3+k4)

kl, k2, k3, k4

X (([a i+ (k)a 2+ (
—k), Q&(k&)g&(k2)Q2(k3)Q2(k4)];a, (h)a& ( —h)))
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where N is the occupation number defined by

N;(k) =(a;+(k)a; (k)) =
t exp[fico;(k) /kiiT] —I ]

with kz the Boltzmann constant.
Exploiting the commutation relations (2.4) Eq. (3.7) reduces to

(3.8)

[co—coi(k) —co2( —k)]G (k, h)

=b(k —h)[1+N, (k)+N2(h)]+2X g h(k+k2+k3+k4)((a, +
(k2)a&+ (

—k)Qz(k3)Q2(k4);a, (h)a2 ( —h) ))
k2, k3, k4

+2X g b(k, +kz+k3 —k)((a i+ (k, )Q, (kz)Qi(k)az+ (k3);a, (h)a2 ( —h))) (3.9)

Equation (3.9) involves higher-order Green functions but using standard decoupling schemes can be transformed into
a set of self-consistent equations. ' The degree of the Green functions on the right-hand side of (3.9) can be reduced
substituting a pair of operators with the statistical average (3.8). Considering all the possible pairs of operators one ob-
tains'

I co —co,(k) —coz( —k) —4X[1+N, (k)+N2(k)] I G (k, h) =h(k —h)[1+N, (k)+N2(k)]

+4X g [I+Ni(k')+N (zk')]G(k', h), (3.10)

showing that the intramolecular anharmonicity has the
twofold effect of shifting the frequencies of the continu-
um and of coupling the various Green functions. It is
possible to obtain a straightforward solution of (3.10) as-
suming that the dispersion of the internal modes is small
compared to the molecular frequency and therefore tak-
ing the occupation numbers N as independent of k. ' We
define the quasiharmonic two-phonon Green functions'

(3.14)

—4X(1+N, +Nz )], (3.15)

p(co) = n (co)

[f(co)] +[4nXn (co)]

with

n (co) = g (1+N, +Nz)5[co —co, (k) —co2( —k)
k

b(k —h)(1+N, +N2)
g(k, h)=

co —co,(k) —
co&(

—k) —4X(1+N& +N2)

n (z)dz
~ [co—z —4X(1+N, +N2)]p

(3.16)

g(k)= gg(k, h),
h

g = gg(k, h) .
h, k

(3.11a)

(3.11b)

(3.1 lc)

where [ ]p indicates the principal part of the integral.
Bound states are formed when the zeros of the function
f(co} fall at a frequency coa outside the continuum

[n (co&)=0]. The frequency of the bound state is there-
fore defined by

G(k, h)=g(k, h)+4Xg(k) g G(k', h) . (3.12)

The function (3.11a) corresponds to the solution of (3.10)
assuming that X=O in the right-hand side of (3.10). In-
troducing (3.11a) in (3.10), one obtains

1 —4X =0.
[coa —z —4X(1+N, +N2)]p

(3.17)

The density of states at the bound-state frequency pa(co)
is obtained by expanding the denominator in (3.13b) in a
Taylor series. Taking into account that

Summing on the wave vectors b one obtains
lim (1—4Xg) =0 (3.18)

G(k)= g G(k, h)=g(k)+4Xg(k) g G(k'), (3.13a) and therefore g = I/4X, one obtains

and summing also on k,

k'
1 1

pz(col =
z
—5(co —

cori )
(4X)' D

(3.19)

G =g+4XgG or G =
1 —4Xg

(3.13b)

Introducing (3.13b) in (3.13a) for g&.G(k') one obtains

G(k)=
1 —4Xg

(3.13c)

The solution in (3.13b}can be represented as an infinite
chain of diagrams of the type illustrated in Fig. 2. From
Eq. (3.5) the following expression is then obtained for the
renormalized density of states:

FIG. 2. Diagrammatic representation of the two-phonon
bound-state Green function in the overtone region.
phonon ei', . -. .. phonon co&.
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with

Bg
y

n (z)dz

[coii —z —4X(1+N, +N2)]

(3.20)

where co~ is a reference frequency of the two-phonon
continuum. The frequency shift is of the order of
4X(Ni+N2) assuming D =(4X) . It is therefore seen
that if the molecular frequencies ~& and co2 are low the
frequency shift, from zero to room temperature, can be
appreciable.

A(N, +N2)
b, (cos —cue ) =

T=O
(3.21)

The behavior of the two-phonon density of states as a
function of X has been discussed by several authors.
As shown in Ref. 29 the integral of p(co) and ps(co) as
given by (3.14) and (3.19) is normalized to unity.

Equation (3.17) defines a bound state with zero
linewidth. However, there is a shift of the frequency co&

with temperature since both the position of the two-
phonon continuum [represented in (3.17) by the term
z —4X(1+N, +N~)] and n (z) change with temperature.
Within the approximations used in this section, the two-
phonon continuum and then the bound state has a rigid
frequency trans1ation with temperature given by
4X(N, +N~). The shift of the bound state relative to the
continuum is obtained taking the derivative of (3.17) with
respect to X„X2,and cuz. One obtains

IU. LINE BROADENING PROCESSES:
CUBIC TERMS

In this section contributions to the linewidth of bound
states due to processes that depend on the cubic terms H3
of the Hamiltonian and are quadratic in the anharmonic
coefficients V will be discussed. In essence, the purpose
is to evaluate the probability for the bound state to decay
into the two-phonon continuum with the emission or ab-
sorption of a lattice phonon.

It will be assumed that the temperature is sufficiently
low such that the internal modes occupation numbers can
be neglected. To simplify the notation the coupling with
a single-lattice phonon will be considered and the branch
index a omitted.

Considering the perturbation due to the cubic terms
(2.6) of the Hamiltonian, the Fourier transform of the
equation for the two-phonon Green function (3.10) can be
rewritten as

[co—co, (k) —
co2( —k)]G(k, f) =b, (k —f)+4X g G(k', f)—(( [a,+ (k)a,+ (

—k), H3];a, ( f)a2 (
—f) )),„,

k'
(4.1)

where the anharmonic frequency shift 4X [see Eq. (3.10)]
has been considered included in the frequencies m, and

co2. According to the approach underlying (4. 1), the
strong intramolecular anharmonicity, within the approxi-
mations discussed in the previous section, is taken into
account in full, while the intermolecular coupling is in-
cluded with a perturbation treatment.

As it can be seen from (4.1), developing the commuta-
tor, the two-phonon Green function is connected to
higher-order three-phonon Green functions. The equa-
tion for the three-phonon function gives in turn a connec-
tion with higher-order functions. A set of self-consistent
equations is obtained by a standard decoupling pro-
cedure substituting pairs of operators with their statisti-
cal averages. In this way the three- and higher-order
Green functions are expressed in terms of the two-
phonon Green function. The truncation of the infinite
series of equations is performed with the condition that in
the final expressions terms of order higher than i V i are
neglected. It can be shown that the equation of motion
(4. 1) can be transformed into the following Dyson equa-
tion:

~ ~
~ ~

~ ~ ~ ~
+ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ' ~ ~ ~ ~

~ ~
~ ~ ~ ~

G(k) =g~(k)+4Xg~(k) g G(k')+p„(k)G (k)
k'

+p~2(k)G(k)+ g p, 2(k, k, )G(k, )

e

~ ~ ~
~ ~

~ e ~ ~ ~

e ~ ~
~ ~ ~ e\

k,

+ QP(k, )hG( )h,i

hl

(4.2)
FIG. 3. Single-phonon line cubic contributions to the

linewidth and shift of two-phonon states. : lattice phonon
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where G(k)= grG(k, f) and

p»(k) =4g2(k) g ~ V, (k, , k, k3) ~
n —+(k3)g3—(k, ,k, k3),

kl, k3

pz2(k)=4gz(k) g ~ Vz(k&, —k, k3)~ n
+—

(k3)g3 (k, k&, k3)
kl, k3

(4.3)
p, 2(k, k, ) =4g2(k) g [ V, (k, , k, k3) V~( —k, , —k, —k, )g3 (k, , k, k3)+ V, (

—k„k, —k3) V2(k, ,
—k, k, )g3 (k, k, , k, )],

k3
T

P(k, h, )=16Xg~(k) g g [V, (k„k,k3)g3 (k, , k, k3)+ V~(k, ,
—k, k3)g3-(k, k, , k3)]

k3 k[

X g [V, (
—h„—h2&

—k3)g3 (h„h2)k3)+ V2( —h, ,
—h2, —k3)g3 (h))h~, k3)]

h~

«-(k, ) 1 —4X g b, (p, +p, +k, )g-,'-(p, , p, , k, )

Pl PP

In these expressions the 6's, ensuring the wave vector
conservation, are included in the V coefficients, n is the
statistical average for the lattice phonons,

A perturbation solution to order
~

V'~ can obtained sub-
stituting (3.13) for G ( k ):

n (k) =
[ exp[A'co(k) lk~ T]—1]

with

(4.4a)

where

2 R
1 —4Xg, (1—4Xg, )' ' (4.6)

n+—(k)=n(k)+ —'+—'

g~(k, k')=[co —co, (k) —a), (k')] 'blk —k'),

g~(k)= gg2(k, k'), gq
—g g2(k, k'),

k, k'

g3(k, k', k")=[co —~;(k) —co (k')+co(k")]

(4.4b)

(4.4c)

(4.4d)

(4.4e)

R = g p„(h)+p~2(h)
h

+ gp, 2(k, h)+ QP(k, h) gq(h) .
k k

(4.7)

where g2(k, k') coincides with the function defined in
(3.11a) at 0 K.

The significance of the various terms contributing to
the Dyson equation (4.2) can be clarified by means of dia-
grams. The diagrams illustrating the terms p; are shown
in Fig. 3. It can be seen that p» and p&2 are renormaliza-
tion terms for the single phonons giving rise to the bound
state and p, z is an exchange renormalization term. They
correspond to scattering processes of the internal pho-
nons assisted by the creation or annihilation of a lattice
phonon. The diagonal terms have the usual form of the
cubic correction to single-phonon propagators. A11 the
p; terms contribute to the renormalization of the two-
phonon states also when the intramolecular anharmonici-
ty vanishes.

The P term gives rise to the diagrams shown in Fig. 4
and will only occur in rnolecules with intramolecular
anharmonicity. This term is peculiar to bound states and
describes a cubic renormalization in a process where the
bound state behaves like a harmonic phonon.

The Dyson equation (4.2) readily gives a solution for
G = gk G(k):

~ ~

~ ~ I

G =g~+4Xg~G+ g p„(k)G(k)+ g p~2(k)G(k)
k k

k, kl k, hl

+ g p, ~(k, k, )G(k, )+ g P( , k)h(Gh ).i(4.5)

FIG. 4. Cubic diagrams contributing to the broadening of
two-phonon states through processes mediated by the in-
tramolecular anharmonicity. ———:phonon co; - - . . : pho-
non co&, —.. lattice phonon co. Exchange terms are not
shown.
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Equation (4.6) can be rewritten as 1 —4Xg2 —4—X(co c—g~ )D, (4.9)

4['2

1 4Xg
1+

g2(1 —4Xg2 )

and remembering (3.18) we obtain
4.8a

When the terms in the large parentheses are considered
as the first two terms of a geometric series (4.8a) can final-

ly be written as

6= 1 1

D(4g)~ (m —m~) —H(~~)

with

(4.10}

R2

1 —4Xg2 —R /gz
(4.8b}

11(cos ) =R (cos )/D . (4.11)

Equation (4.8b) gives the Green function G renormalized
by the cubic terms of the Hamiltonian. The contribution
of the self-energy term R /g2 can be evaluated explicitly
calculating the function 6 at ~=co&, where co& is the
bound-state frequency. From (3.14) solved for co=co& we

have, expanding f (co) in a Taylor series and truncating to
the first term,

The real and the imaginary part of H give the shift and
the linewidth of the bound state, respectively, due to the
relaxation processes considered.

Considering (4.7) II can be written as

(4.12)

and the various terms are given explicitly by

11„=(4/D) g ~

V', (k, ,k, k, )~'n —(k, )g', (k}g;-(k„k,k, },
k, kl, k2

112'=(4/D) g ~ V2(k, , k, k3)~ n —+(k3)g2(k)g3 (k, , k, k3),

(4.13a)

(4.13b)

Ili =(4/D) g [Vi(ki, k, k3)V~( —ki, —k, —k )g-+(k„k,k )

k, kl, k,

II~~ =(16X/D) g
k3

+ Vi( —ki, k, —k3)V2(ki, —k, k3)g& (k ik, k& ])gz(k)g 2(k i)n (k&),

g g2(k)[V, (k„k,ki)g3—(k, ,k, ki)+ V2(k„—k, k, )g~ (k„k,k, )]
k, k,

(4.13c)

X g g2(h, )[V, ( —h, , —hi, ki)g3 —(h, , h2, k3)+ V2( —h„—h~, —k~)g3
—+(h„h2, k, )]

hl, h2

Xn (k3) 1 —4X g b, (pi+p2+ki)gi (pi, p2, k3)
Pl P2

(4.13d)

If the V, coefficients are real it is possible to define the effective anharrnonic constants

V'(k, ,k, k, ) = V', (k„k,k, )g, (k)+ V', (k, ,k, k, )g, (k, )

and

V (k3)= g g2(k)[Vi(ki, k, ki)g3 (ki, k, +ki)+ V2(k„—k, k3)g3+(k„k, + k))],
k, kl

and to rewrite, in a more compact form, (4.13a)—(4.13c) as

11, =(4/D} g l
V'(k, , k, k, )l'ii —(k, )g,+-(k„k,k, )

(4.14)

(4.15)

(4.16)

and (4.10d) as
' —

1

IIii =(16X/D) g ~
V (k3)~ n

+—(k3) 1 —4X g b(p, +p2+k3)g3+(p, , p2, k3) (4.17)
k3 Pl PP

The real and imaginary parts of (4.12) give the cubic shift 63 and linewidth I 3, respectively, of the bound state

H=h +i I

with

(4.18}
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and

~3 ~11 ~22 ~12+~BB (4.18a)

r,=r„+r„+r„+r„.
In particular,

+ 1 r „=Re [11„(~ ) ]+i Im [11„(co ) ]

1

a)B —co, (h) —co2(h)

2 —
1

(4.18b)

I
V', (k, ,k, k, ) I'

X g b(k, +k+k3)[n (k3)+1]
1,, ~, 1,, [~B—~1«)—~2«)1'

1
X +in5[coB .—co, (k, )

—co2(k) —co(k3)] (4.19)

with similar expressions for the contributions from H22
and H12. In this case the broadening arises from scatter-
ing processes of the component phonons that gain a reso-
nant character due to the presence of the bound state.
The effective self-energy term (4.16) is entirely similar to
the usual expression of the renormalization of a phonon
of energy co and zero wave vector due to processes in-
volving three phonons with conservation of the total en-
ergy and momentum. The occupation numbers of the
high-frequency modes co, and co2 produced in the decay
do not appear in (4.16) since they are very small and have
been assumed to be zero.

The renormalized frequency of the bound state is ob-
tained by taking the zeros of the real part of (4.19) or, for
small shifts, directly the real part for co=coB. The sign of
the shift will depend on the position of the bound state in
the three-phonon spectrum. The linewidth of the bound

l

I

state will depend on the three-phonon density of state at
coB, weighted by the cubic anharmonic coeKcients. To
calculate the linewidth all the three-phonon processes
shown in Fig. 3 must be considered with appropriate
matching of energy and momentum. These will mainly
involve virtual processes that do not conserve the energy
at intermediate stages but only between the initial and
final states. The variation of the linewidth with the posi-
tion of the bound state will mainly reflect the variation of
the three-phonon density of states. The temperature
dependence of the shift and linewidth is described by the
term [n + 1] that contains the occupation number of the
lattice phonon. Therefore, these terms will predict finite
residual linewidths and shifts at T=O (n=O) from pro-
cesses occurring with the emission of a lattice phonon.

The explicit expression for the term HBB, correspond-
ing to the diagrams of Fig. 4, is

rr„=a„+ir„
= 16X 1

coB —co, ( h )
—co2(h )

'2 —1

g [n (k3)+1]

k, kl

V, (k„k,k3)b (k, +k+k3)+ V2(k„—k, k3)b (k1 —k+k3)
coB —co, ( k )

—co2(k )

X +i m5[coB —co1(k, )
—co2(k) —~(k3)]1

[coB—co, (k1)—co2(k) —co(k3)]p

X 1 —4XQ 1 2 3&( + +k)
~B —~1(p1)—co2(P2) —co(k, )

b (p, +p2+k3)
1 —4X g

p, , p [~B ~1(pl ) ~2(P2) ~(k3)]P
+ ~4+ X ~(pl+ P2+ 3)'8[~B 1L11(pl 1L12(p2 ~(k3)]

Pi Pp

(4.20)
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and the same considerations developed for expression
(4.19) apply. However, in this case the dependence from
the three-phonon density of states is more complicated.
Also in this case the main contribution to the linewidth
arises from processes with virtual intermediate states.
Again the temperature dependence is expressed in the
term containing the occupation number n. The term Hzz
in (4.20), unlike II„, Il, z, and II&2, is proportional to the
internal anharmonicity constant X and vanishes in the
limit X~O. This term is peculiar of the bound state that
behaves as a single-phonon subject to a resonant scatter-
ing and, therefore, to a decay into the two-phonon con-
tinuum assisted by the lattice phonons.

In general, bound states in the combination region and
in the absence of Fermi resonance occur at frequencies
below the two-phonon continuum: the bound-state relax-
ation in this case involves the absorption of a lattice pho-
non. The expressions for I and 6 are identical except for
the substitution of the term [n +1] with n and of cu(k3)
with —co(k3). In this case the residual shifts and
linewidths at T=O are zero.

The preceding expressions have been obtained consid-
ering a single-lattice phonon. The self-energy contribu-
tions of the various lattice phonons are additive. There-
fore, in order to remove this limitation it will suffice to

assign to the anharmonic coefficients V and to the pho-
non frequency ~(k3) a branch index a and to sum on all
the branches.

V. LINK BROADENING PROCESSES:
QUARTIC TERMS

The quartic terms of the Hamiltonian give rise both to
a shift and a broadening of the bound state. To first or-
der in the quartic coefficients only a frequency shift is ob-
tained but to second order there is also a contribution to
the linewidth. There can be two types of line broadening
processes: (a) depopulation processes in which one of the
phonons giving rise to the bound state decays into three
phonons; (b) pure dephasing processes without variation
of the occupation number of the bound state.

In processes of the first type the restriction of energy
and momentum conservation considerably reduces the
number of available decay channels. In pure dephasing
processes virtual transitions are involved and therefore all
the phonons may contribute to the line broadening. For
this reason the contribution of depopulation processes
can be taken as negligible and only the terms of the Ham-
iltonian (2.7) giving rise to pure dephasing will be con-
sidered.

In the Hamiltonian H4 we only consider the terms

HD= g g V', (k, , k„a,P)Q, (k, )Q, ( —k, )q (k, )q&(
—k, )+ g g V', (k, , k„a,P)Q, (k, )Q, ( —k, )q (k, )q&(

—k, ),
kl„k2 a, P ki, k2 a,p

(5.1)

where V, (kt, k2, a,p) = V, (k, ,
—k„akim, p —k2) and the b has been omitted, since wave-vector conservation is automati-

cally satisfied. Terms of this kind are responsible for the dephasing of the phonons co, and co2. As it will be evident at
the end of this section they also contribute to the pure dephasing of the bound state at frequency co&. Quartic terms
different from those of (5.1) produce a decay of a component phonon and therefore do not contribute to pure dephasing.

The frequency renormalization due to the Hamiltonian HD can be determined in the same way as done in Sec. IV.
The equation for the function G (k, f ) is

[co—co, (k) co2( ——k)]G(k, f)=b(k —f)+4X g G(k', f) —(([a,+(k)a2 ( k), HD];a, (
—f)a2 ( —f)))„. (5.2)

As usual, the development of the commutator in (5.2)
leads to coupling terms with four-phonon Green func-
tions where two phonons are lattice phonons of equal en-

ergy and opposite wave vectors. Terms of this kind give
resonant contributions at the bound-state frequency and
will therefore contribute to the linewidth.

In the same way as for the cubic terms, writing the
equation of motion for the higher-order Green function,
it is possible to obtain a set of linear self-consistent equa-
tions. The details of the derivation are illustrated in Ref.
22. Solving this system of equations one obtain the fol-
lowing Dyson equation for the two-phonon Green func-
tion:

G =g, +4Xg, G+ + Q D( h) G(h)
C

1 —4Xg2
(5.3)

with gz given in (4.4c).
If we define

++
F k, k2 =[co—co, (k) —cu2(k)+-co (k~)+cop(k~)]

(5.4)

and
(5.5)

8(k)=2+ g [Vt(k, k2, a, p)+ V2(k, k2, a, p)](2n +1),
k, a

++
k, kz =4Vt( —k, —k2, a P)n +n& +4V2( —k, —k2, a P)n+n&ap

+25 ~g [V", ( —k, h, y, l )+ V2( —k, h, y, y)](n++n )(n+ +n ),
h, y

(5.6)



42 VIBRATIONAL RELAXATION AND DEPHASING OF TWO-. . . 2317

where n is the statistical average and n t—he quantity defined in (4.4b) for the lattice phonon co (h), the quantities ap-
pearing in (5.3) have the following meaning:

C = g e(k)g2(k) (5.7)

and

D(h)= V(+ —)+ V( —+), (5.8)

with

+ +—
V(+ —)=2 g [Vt(h, k2, a,p)+ Vz(h, k2, a,p)]g2(h}T ~ h, k& F ~ h, k2

k2, a, p

+8X g g [ V, (k, k2, a,P)+ V2(k, kz, a,P)]gz(k}
k, k2 a,p

+- +— +-
F

p k, k2 T
p h, k, F

p h, k~

1 —4XF k2

(5.9}

and

+- +—
F

p k~ =QF
p k, k2 (5.10)

and a similar expression for V( —+ }except for the exchange of the plus and minus signs in the functions F and T.
Solving (5.3) for 6 we obtain

C D(h)G(h)
1 —4Xg~ (1—4Xg ) q 1 —4Xg~

From this using (3.13c) one obtains

82 D(h)g, (h)6= + 2+
1 —4Xg2 (1—4Xg, )' „(1—4Xg, )'

with

g D (h)gq(h) =Si +S2+S3+L+ +L
h

+- —+
Si =8 g g i Vi(k, kz, a,P)+ Vz(k, k2, a,P)i [n (n&+1)+n&(n +1)]g2(k) F ~ k, k2 +F ~ k, k2

k, k& a, P

S2=45 pye (k)g~(k),
k

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

S3=4X5 p

g e(k)gz(k)
k

1 —4Xg2

4XC
1 —4Xgz

(5.16)

L+ =32X g g g [V, (k, kz, a,P)+ V~(k, kz, a,P)]gz(k}F ~ k, kz
k aP k~

n (n&+1)+n&(n +1)
+—

1 —4XF k2

(5.17)

and a similar expression for I. + but with the plus and
minus sign interchanged in the function F defined in (5.5).

The term S3 corresponds to the same process giving
rise to the C contribution [Fig. 5(a)] iterated on diff'erent
bubbles of the chain representing the bound state. S2 on
the contrary corresponds to an iteration of this diagram

I

on the same bubble of the chain [Fig. 5(d)].
The Dyson equation (5.3) can be rewritten as

6=
1 —4Xg~ —4XC —4X(S, +S2+L+ +L +

)

(5.18)
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The renormalization terms due to the quartic Hamil-
tonian previously considered are described by the dia-
grams shown in Fig. 5. The C term gives rise only to a
shift of the bound state. The term S2 is responsible for a
shift in the frequencies of the phonons composing the
bound state and therefore of the bound state itself.

As to the contribution of the S, term, corresponding to
the diagrams of Fig. 5(b) and 5(c), we may distinguish two
different cases: (i) aXP and

cuit =co,(k)+co, (
—k)+co (k~)+ cocci(k2) .

In this case S, contributes both to the shift and linewidth
of the bound state through a decay process of the bound

state involving four phonons. It can be assumed that de-
cay processes of this type can be neglected as compared
to the three-phonon decay processes considered in the
previous section. (ii) co =co&. In this case S, does not
contain resonant terms at the bound-state frequency and
therefore will only contribute to the shift of the bound
state. In other words, this implies that dephasing pro-
cesses of the individual phonons giving rise to the bound
state do not produce a broadening of the bound state.

On the other hand the I. terms [diagrams of Fig. 5(e)]
contribute essentially to the bound-state broadening. As
a matter of fact, when co=f8 the real part of the func-
tion

'=1 4XF — kt

1=1—4X Q—
[n~ —

cubi(p)
—

co&(
—p)+co (k, ) —co&(k, )]

~ ~
~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0

~ ~
~ ~

~ ~ ~ ~ ~ ~ ~ ~

(5.19)

in (5.15) vanishes for cu (k2) =co&(k2) by the definition of
bound state, and, using the same method applied to ob-
tain (3.19), we can then write for the imaginary part

lim Imp=i 5[co (k2) —co&(k, )]
Cd~Cd~

(5.20)

~ ~
~ ~ ~

~ ~
~ ~

~ ~ ~ ~

~ ~
~ ~ ~ ~ ~ ~ ~ ~

~ ~
~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~

(c)

with D defined in (3.20). Since the other terms of (5.11)
are real for co =co~ the L terms come out to be imaginary.

In these latter processes, as it has already been seen for
the corresponding cubic processes, the bound state
behaves like a harmonic phonon subjected to pure de-
phasing processes. Also the C term looks like the usual
expression for the shift of a phonon due to quartic anhar-
monicity and again, in these processes, the bound state
behaves as a single harmonic phonon. On the contrary
the S~ and S2 terms are strictly connected with the com-
posite structure of the bound state.

In conclusion, in the same way as for the cubic terms,
we may write

(5.21)

~ ~
~ ~

~ ~ ~ ~ ~
~ ~ ~ ~ ~ where

(e)

FIG. 5. Quartic diagrams contributing to two-phonon shift

(a), (b), (c), and (d) and linewidth (e). ———:phonon co&',-. . .: phonon ~,;:lattice phonon co. The diagrams (a),
(b), (d), and (e) with the phonons m& and co, interchanged are not
shown. FIG. 6. The linear molecular crystal.
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C S& 5 164=—+ +
[cos —co, ( h ) —co~(h ) ]

V (k, kz, a, a)(2n +1)
+2K X

[coa coi(k) —coz(k)]'

[V (k, kz, a,P)] n (n&+1)+32+ g
p [co~ —co,(k) —co~(k)]

L+ +L +
32~ y 1

D h [coq —co, (h) —co2(h)]

g V (k, kz, a, a)(2n +1)
a, k2

[cos —co, (k )
—co2(k )]

(5.22)

V (k, k2, a,p)
X g g g 2

n (n&+1)5[co~(kz) —co&(k2)]
[co~ —co ~( k )

—co2(k )]'
(5.23)

where we have introduced an effective quartic constant

V (k, k2, a, P)=V&(k, kz, a,P)+V&(k, k2, a,P) . (5.24)

1

[co~ —coi(h) —co,(h)]'
(5.25)

we obtain for the shift

b4=C/D = g V(kz, a, a)(2n +1)
k2

(5.26)

and for the linewidth

I 4=8m+~ V(k, ,a,P.)~'n (np+1)5[co (k, )
—cop(k, )] .

(5.27)

Expression (5.23) gives the contribution to the
linewidth of the bound state from pure dephasing pro-
cesses. This contribution vanishes at zero temperature
(n=0) and, with increasing temperature, has a parabolic
behavior with the occupation number of the lattice pho-
nons. Dephasing processes are second-order processes in
the quartic coeScients I.S. However, the number of pro-
cesses of this type is very high since there are no restric-
tions deriving from energy conservation, like in depopu-
lation processes. Therefore, we may expect that the con-
tribution to the linewidth from pure dephasing processes
can be substantial, particularly at not too low tempera-
ture, and even at low temperature when the depopulation
processes are inhibited.

As can be seen from (5.22) and (5.23) the expression for
the dephasing and the shift C/D of the bound state is
analogous to that of a zero phonon line of an impurity in
a host lattice. ' In fact if the quadratic exciton-phonon
coupling coefFicient is identified with the effective anhar-
monic constant

V (k, kz, a,P)
V(k2, a, p) =2

[cos —co, (k) —co2(k)]

This stresses the analogy already discussed' ' be-
tween a bound state and a localized state due to an im-
purity.

VI. RESULTS AND DISCUSSION

Calculations of the linewidth and frequency shifts of
two-phonon bound states in real crystals according to the
theory described in the previous sections require extreme-
ly large computing times. On the other hand the interest
of this paper is to study general trends of the preceding
anharmonic quantities, particularly as a function of the
strength of anharmonic interactions. To this end it was
felt more practical to perform calculations on a model
system consisting of a chain of linear triatomic molecules
with internal and external degrees of freedom. The mod-
el system is represented in Fig. 6. The external degrees of
freedom include the rigid translation of the molecules
along the crystal axis and the libration around the axis
perpendicular to the figure. For the present study we
considered two internal modes, the bending in the plane
of the figure having a significant dispersion due to
dipole-dipole interaction and the symmetric stretching
mode with negligible dispersion, and investigated bound
states originating in the bending overtone region or in the
combination region of the two modes. It has been as-
sumed that the internal and external degrees of freedom
are independent in the harmonic approximation. For
external coordinates only nearest-neighbor interactions
have been considered with values of the coupling
coefficients estimated from known atom-atom potentials
and adjusted to produce at k=0 a phonon frequency of
70 cm ', a value that can be considered typical for
molecular crystals. The dispersion of the bending inter-
nal mode in the dipole-dipole approximation has been ob-
tained with the dynamic dipole moment adjusted to give
a vibron dispersion comparable to that observed in simple
molecular crystals such as CO2, N20, CS2. The disper-
sion curves and the one-phonon density of states are
shown in Fig. 7. The singularities typical of linear crys-
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FIG. 7. Dispersion curves and density of states for the linear
molecular crystal.

40

20

tais can be noted. As a consequence of the shape of the
density of states there is not a threshold value of the
anharmonicity constant X for the appearance of bound
states. Bound states are therefore present in the overtone
spectrum also for low values of the anharmonicity con-
stant. The separation D of the bound state from the con-
tinuum edge as a function of X for the overtone of the
bending mode is shown in Fig. 8. Calculations of the
linewidth of the bound state have been performed as a
function of D.

The primary step for the calculation of the linewidth is

to estimate the cubic and quartic anharmonic coefficients
coupling the internal to the lattice phonons. Since for the
linear crystal considered in this paper there is not a
reasonable analytical or empirical form of the interaction
potential from which to calculate the anharmonic
coefficients, we proceeded as follows. Anharmonic calcu-
lations have recently been performed on the carbon diox-
ide crystal that exhibits low intermolecular anharmoni-
cities, as most molecular crystals. For this system and
using a simplified potential in the form of atom-atom po-
tential with interaction centers on the nuclei we have cal-
culated some of the cubic and quartic coefficients of in-
terest involving the cu, and co2 internal modes. The calcu-
lated coefficients are of the type V, (iO, jk, a —k) and

V, (iO, iO, ak, a k—), where i and j are additional indices
for the branches of the internal phonon. As expected,
and as already found in previous calculations on similar
systems, ' there is a marked variation of the
coefficients as a function of the wave vector of the lattice
phonon. In particular the coefficients involving acoustic
phonons vanish in the limit of k~0. In several cases the
coefficients involving optical phonons vanish at the zone
boundary because of symmetry restrictions. It is also
found that in all directions in the Brillouin zone the max-
imum value of the coefficients ( ~

V
~

= 10 cm
~
V

~

= 10 cm '
) is found for k approximately equal to

—,
' or —,

' its maximum value. The cubic coefficients for the
bending V~ are always greater than for the symmetry
stretching mode V, and are approximately in the ratio

~ Vz ~ /~ V, ~

=10. This is qualitatively in agreement with
the experimental observation that the phonon sidebands,
whose intensity is directly connected to these coefficients,
are quite prominent in the the infrared spectrum in the
bending region but are absent in the symmetric stretch-
ing region in the Raman spectrum. The quartic
coefficients for the two modes are approximately equal.

On the basis of these results calculations of the
linewidths and frequency shifts of bound states in the
linear molecular crystal were performed using for the
anharmonic coefficients, involving optical phonons, con-
stant positive values equal to the highest values found for
crystalline CO2. The anharmonic coefficients involving
acoustic phonons were allowed to increase linearly from
zero at k =0 to the maximum adopted value at
k =k,„/3.

D (cm') 0
20

-20
—20

—+0

FIG. 8. Separation of the bound state from the continuum
(D) as a function of the anharmonicity constant X for the bend-

ing overtone in the linear molecular crystal.

A. Linewidths

In most studies of the vibrational relaxation of internal
modes in molecular crystals reported so far, it has been
assumed that the available experimental data can be ac-
counted for by depopulation mechanisms arising from cu-
bic terms of the Hamiltonian with neglect of dephasing
processes. This occurs particularly at the lowest temper-
atures. In connection with this it is interesting to com-
pare the cubic, I"3, and quartic, I 4, linewidths of the
bound state calculated according to (4.18) and (5.23), re-
spectively. The results obtained for an overtone at two
diferent temperatures as a function of the separation D
from the continuum are shown in Fig. 9 for a bound state
0 (X negative) and II+ (X positive). It can be seen that
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FIG. 11. Temperature behavior of the cubic I, [Eq. (4.18b)]
and quartic I 4 [Eq. (5.23)] linewidths of bound states (D is the

separation from the continuum).

cal factor. This shows that the energy exchange de-

phasing is considerably more efFicient for an overtone
than for the corresponding fundamental. The tempera-
ture dependence of the quartic linewidth is shown in Fig.
11 and it can be seen that at high temperatures the
linewidth increases as T .

B. Frequency shifts

The calculated frequency shifts of the bound states in
the overtone region of the linear molecular crystal are

0.1

shift-
(cm-')

50 100 150 200 T (K)

FIG. 12. Frequency shift of bound states as a function of
temperature. a: fL {D= —15 cm '), quartic contribution, A4

[Eq. (5.22)]; b: 0 (D = —15 cm '), cubic contribution, b, ~

[Eq. (4.18b)]; c: Q+ (D=15 cm '), quartic contribution, b,„' d:
0+ (D=15 cm '), cubic contribution, 63.

very small and, even at the highest temperatures tested in
the calculations, are smaller than 1 cm '. The behavior
of the frequency shifts as a function of the temperature is
i11ustrated in Fig. 12. Calculations were performed as-
suming that the coupling coefficients were positive. A
change in sign of the coefficients will affect the calcula-
tion since there is a linear contribution to the quartic
shift and since, for a combination mode, both the cubic
and the quartic shifts contain interference terms. The
shifts are generally dominated by the quartic contribution
which may be larger than the cubic by 1 order of magni-
tude. Therefore we first discuss the quartic shifts.

As is shown in Fig. 5 there are four diagrams that con-
tribute to the quartic shift. However, it turns out that
the contribution of diagrams 5(b) and 5(c) are 2 orders of
magnitude smaller than the others. The contributions of
diagrams 5(a) and 5(d) are of the same sign for 0 and of
opposite sign for 0+. Therefore, the quartic shift for 0
turns out to be always negative, as can be seen from Fig.
12. The quartic shift for 0+ has a more complicated be-
havior depending on the relative magnitude of two con-
tributions of opposite sign.

Increasing the anharmonic strength, and thus the sepa-
ration of the bound state from the continuum, the abso-
lute value of the quartic frequency shift decreases. For
0+ the negative part of the shift dominates at large sepa-
ration from the continuum.

As already noted the cubic shifts are much smaller
than the quartic and are rather insensitive to the separa-
tion from the continuum. As can be seen from Fig. 12
the cubic shift is of opposite sign for 0+ and 0

VII. CONCLUSIONS

The purpose of this paper has been to discuss a model
for the vibrational relaxation of bound two-phonon states
that are observed in the overtone or combination region
of internal modes in molecular crystals. In essence, the
relaxation occurs through the interaction of the bound
state with the manifold of free two-phonon excitations.
It has been shown that the intramolecular anharmonicity
plays an important role in the relaxation process since it
brings about new depopulation and dephasing routes that
cannot be described as simple relaxation processes of the
component phonons. A quantitative estimate of the im-
plications of the theory has been obtained through calcu-
lations of the frequency shifts and linewidths of bound
two-phonon states in a linear chain of triatomic mole-
cules. This has allowed us to obtain information on the
relative weight of various relaxation processes. In partic-
ular it has been found that pure dephasing processes can
be important even at low temperatures. The model cal-
culations are a good basis for the discussion of available
experimental results. These latter, however, generally
refer to the Fermi resonance case that has not been dis-
cussed here and will be the object of a forthcoming paper.
It would be useful to obtain information on the
linewidths of bound states not involved in Fermi reso-
nance, for instance, through measurements of infrared
linewidths.

The theory has been worked out for a crystal with one
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molecule per unit cell. It is of interest to extend the
theory to crystals with more than one molecule per unit
ceil, in particular to account for differences in linewidths
that have been observed for components of bound states
belonging to different symmetry species. ' ' Such an ex-
tension does not raise conceptual di%culties but makes it
necessary to work with matrix Green functions. There-
fore, the application of the theory to real tridimensional
crystals only raises computational problems. In this
respect the model calculations reported in this paper can
be a useful guide to select particular diagrams and devel-

op proper approximations.
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APPENDIX: RELAXATION
OF QUASIBOUND STATES

When the zeros of the function f (to} in (3.16) fall
within the continuum we have what is called a resonance.
Then the intramolecular anharmonicity results in a defor-
mation of the two-phonon density of states. The reso-
nance is directly coupled to the two-phonon states and
can freely relax in the continuum. Generally speaking,
the frequency spectrum of the resonance will have an ir-
regular, non-Lorentzian, profile. The time decay, ob-
tained as the Fourier transform of the band profile, will
then be nonexponential. In particular cases, however, the
resonance can be very strong and give origin to a quasi-
bound state with roughly Lorentzian shape. This occurs
mainly when the resonance falls at the boundaries of the

two-phonon continuum, as has been found in the CS2
crystal. In this particular circumstance we can put the
renortnalized density of states (3.14) in the form of a
Lorentzian. In fact, if co, is the frequency of the quasi-
bound state we have

(A 1)

where

n '(z)dz, dn

(co —z)t,
"'

dz
(A2)

n(co„).
I = urn (co„}

n '(z)dz
(co„—z)p

(A4}

The half-width of the resonance is temperature indepen-
dent as far as N( and lV2 in (3.15) are negligible and is
also independent of the anharmonic coupling constant.
It should be stressed again, however, that (A4) is only an
approximate expression to be used in limiting cases.

is the derivative of the Hilbert transformation defined in
(3.16).

Therefore from (3.14) we obtain

n (co„)
p(co) =

z 2 z
. (A3)

(4XD„) I ( co — to) + [em ( co„)/D„] I

Expression (A3) shows that in the neighborhood of the
resonance the shape of the renormalized density of states
can be assimilated to a Lorentzian with a linewidth I
given by
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