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Existence of an internal quasimode for a sine-Gordon soliton
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We apply our recently derived Hamiltonian theory of constrained nonlinear Klein-Gordon sys-

tems to the problem of a single sine-Gordon (SG) kink and show that there exists a quasi-internal

degree of freedom which we describe by a collective variable. W'e show that the collective variable

used by Rice to describe the regular oscillations of a P and SG kink internal mode is actually, in the
exact theory, coupled to the phonon field. In the P4 case, the internal mode is an exact eigenstate of
the linearized P equation {when linearized about the single-kink solution) whose eigenfrequency lies

in the gap below the phonon band edge. In the SG case there is no exact bound eigenstate (other
than the zero-frequency Goldstone mode) and so the frequency calculated by Rice corresponding to
the quasi-internal mode for the Sg system is in the phonon continuum. Therefore, any bound oscil-
lation at the Rice frequency in the SG system decays via spontaneous emission of phonons. Howev-

er, rather surprisingly, we find by numerical solution of the SG equation of motion that the internal
mode is extremely long-lived with a lifetime of well over 300 oscillations at a frequency

co, =(1.004+0.001)I 0, where I o is the frequency at the phonon band edge. We calculate the pho-
non dressing of the bare kink ansatz using the collective variable theory in lowest order and show

the renormalized "dressed" frequency Qd of the internal mode agrees with the frequency observed
from simulation co, to within 5%%uo. We calculate the linewidth of the radiation from simulation and
obtain 1/v; =(0.003+0.001)I o. Using collective variable theory and the simple model of radiation
reaction we obtain for the lifetime the value 1/~=0. 002I o. The physical observability and relation-

ship to other investigations of collective variable treatments of internal modes are analyzed and dis-

cussed.

I. INTRODUCTION

In this paper we consider the continuum sine-Gordon
(SG) equation and show that the single kink solution has
a long-lived internal quasimode whose frequency from
simulation is co, =(1.004+0.001)I o (where I o is the fre-
quency of the lower phonon band edge) and whose in-
verse lifetime from simulation is I lr, =(0.003+0.001)I'o.
The quasimode is that of an internal oscillation of the
kink, that is, a temporal oscillation of the slope of the
kink (at its center) about its static SG value. The original
suggestion for an internal quasimode for the SG system
was made by Rice' who introduced collective variables
X(t) for the center of mass of the kink, and I(t) for the
kink's length and derived equations of motion for the col-
lective variables in the approximation that all the phonon
degrees of freedom were set equal to zero. To be more
explicit, in his derivation which is valid for the SG, P,
and double sine-Gordon systems, Rice considers the con-
tinuum steady-state single-kink solution which for the SG
case is

/=4 tan exp (x —vt)
—

1 7T

I ( I 2)1/2

where 2~/lo represents the slope of the kink evaluated at
its center, Io a measure of the length of the kink, u the
kink's constant velocity, and P the single kink solution to
the SG equation of motion

(1.2a)

Equation (1.2a) is derivable from the Lagrangian density
2
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(1.2b)

Rice replaces vt by X(t) and lo(1 —v )' by l(t) and
writes the solution as

P~cr =cr
I [ir/I (t)][x —X(t)]I,

substitutes the new form 0. for the solution into the La-
grangian density for P, and integrates over the continuum
variable x to obtain an effective Lagrangian
L,fr[X(t), 1 (t)]. Next he derives the Hamiltonian and the
equations of motion for X(t), l(t), and their respective
conjugate momenta P»(t) and PI(t) The equatio. ns of
motion for X(t) and l(t) are coupled to each other and
since X(t) is cyclic, P» is a constant of the motion. P»
depends on I(t) as well as the velocity of the center of
mass of the kink X. Therefore, since I (t) is oscillatory, X
must also be oscillatory in order for P~ to remain a con-
stant of the motion.

We consider the center-of-mass frame of the kink in or-
der to concentrate on the l(t) motion and so we set
X(t) =X(t)=0 and, thus, P» =0. The resultant equation
of motion for 1(t) is nonlinear and Rice solved it obtain-
ing the remarkable result that I (t) oscillates harmonically
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about a center which depends on the constant energy and
with a frequency which is independent of energy. His re-
sults are

1/2
12

sG
'iT

7T
(sine-Gordon ),

lo
(1.3a)

II,=[3/(vr —6)]' —(P ) .
0

(1.3b)

There is a fundamental question raised by Rice's work.
We note that the equations of motion for l(t) for the SG
and P systems have exactly the same structure, the only
difference is in the value of constant coefficients in each
equation. The coefficients are different because of the
different substrate potentials of the two systems. Howev-
er, linearizing about the single-kink solution for each sys-
tem shows that the eigenfunction spectrum of the SG and

systems are not the same. Namely, the P system
possesses two localized modes and a continuum of linear
phonon eigenstates. The two localized modes are the
zero-frequency Goldstone mode and an internal oscillato-
ry "shape mode" of the kink whose nonzero frequency
lies below the lowest phonon frequency, that is, below the
frequency of the phonon band edge. The SG system, on
the other hand, possesses only a single localized mode
which is the zero-frequency Goldstone mode, and a con-
tinuum of linear phonon states. The SG system does not
support a localized oscillatory eigenmode with nonzero
eigenvalue whereas the P system does. Therefore, in the

case, we expect the collective variable 1(t) to describe
the oscillatory bound state and Rice's value' of 0 4 is

quite close to the exact frequency of that state. (We will
show in Sec. II that it is possible to set up a collective
variable theory for the P system which gives the exact P"
small oscillation frequency. ) In the SG case, however,
where there is no localized oscillatory collective mode,
the question arises as to what the frequency QsG corre-
sponding to the 1(t) motion means.

We gain insight into the physics by first noting that the
frequency QsG is larger than the lowest-frequency pho-
non and therefore QsG. lies above phonon band edge. The
"state" corresponding to QsG thus resonates with phonon
modes and radiates phonons. The direct resonance of the
"state" or quasimode with the phonons is what prevents
the mode from being an exact eigenstate of the linearized
SG system.

The question that remains is whether or not the life-
time of the internal SG quasimode is significantly long
enough to play any role in SG dynamics. Rice' was not
able to answer this question since he did not possess a
complete collective variable procedure that takes into ac-
count the phonon excitations. His calculation neglected
the phonons completely. Using a method similar to Rice,
Fernandez et al. have investigated the relativistic dy-
namics of a SG kink that is immersed in a medium with a
position-dependent index of refraction n (x ) and chose
n (x) to be such that the effect on the kink was that it was
trapped in a parobolic potential well. They showed
analytically that a stable constant solution existed for the
function 1 ( t ), as well as other time-dependent solutions.

They also performed simulations where the kink oscillat-
ed inside the parabolic well. The functions X(t) and 1(t)
were monitored and oscillatory behavior was observed in
both collective variables accompanied by phonons emit-
ted by the kink. The phonons are easily discernible in the
simulations [see Fig. (2b) of Ref. 3] where the length of
the kink was given an initial value which deviates about
18% from its constant equilibrium value. Since Fernan-
dez and co-workers, like Rice, ' completely neglected the
phonon excitations in their analytic calculations, they
were not able to account for dressing and radiation
effects.

In a recent paper we constructed an exact collective
variable formalism which takes into account all dressing
and radiation effects. In the formalism, the original or
"old" field P(x, t) is broken up into a set of "new" vari-
ables consisting of a single collective variable for each
nonlinear collective mode [such as X(t) and 1(t) dis-
cussed above] and a new field variable X which represents
the effects of phonons that are not necessarily perturba-
tive. We based the collective variable theory on Dirac's
theory of constrained Hamiltonian systems because, for
each collective variable introduced into the "new" set of
variables, one must also introduce two constraints —one
for the collective variable and the second for its conjugate
momentum. Therefore, the number of degrees of free-
dom in transforming from the old to the new variables is
conserved.

We frequently refer to our collective variable formal-
ism as a projection operator method since the equations
of motion for the collective variables and field g are ob-
tained by projecting the original or "old" equation of
motion onto appropriate directions in Hilbert space, as
we show in Sec. II. We have shown that the equations of
motion obtained using the projection method are identi-
cal with those obtained using the Dirac bracket pro-
cedure. The benefit of the projection approach is that the
equations of motion are derived with much less work
than with the Dirac procedure.

In Sec. II we derive the full collective variable theory
for a kink with an internal or quasi-internal mode. The
equations wi11 be in terms of a general substrate potential
V and therefore valid for systems such as the SG, P, and
double sine-Gordon systems. We wi11 then specialize in
the SG case and show that our equations reduce to those
of Rice' and Fernandez et al. when we set the phonon
field g to zero. We discuss the simulations of the SG
quasimode in Sec. III. Section IV contains a derivation
of a model for the radiation linewidth and in Sec. V we
discuss our conclusions. We put the details of the deriva-
tion of the phonon dressed frequency, the calculation of
the radiation linewidth, and the analytic evaluation of in-
tegrals in three Appendices.

II. EQUATIONS OF MOTION

The continuum SG field P obeys the continuum SG
equation given by Eq. (1.2a) with the steady-state solution
Eq. (1.1). However, when the quasimode is excited by
some process, Eq. (1.1) no longer correctly describes the
evolution of the system. That is, the slope of the kink is
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no longer constant nor is the position of the kink given

by the quantity Ut. We therefore introduce time-
dependent collective variable functions in order to de-
scribe the more general behavior that occurs when the
quasimode is excited. Let X(t) denote the center of mass
of the kink and let 2I (t) denote the slope of the kink
evaluated at its center. The new field variable will be
denoted by g. We set the speed of sound in our system to
unity, i.e., c =1, so x and t, the continuous space and
time variables, have the same units.

The first step in obtaining the Hamiltonian equations
of motion for the collective variables is to define

C„=f jr(t)[x —X(t)]]~jr(t)[x —X(t)],t jd»

= —
& ~'(g) l~(g, t) & =0, (2.2c)

& ger'(g) lfr(g, t) & =0,1

r2
(2.2d)

C „=f jI (t)[x —X(t)]]mjr(t)[x —X(t)],t j dx

0« t)=0M(t)]+y[wt»t]

g(t)—:I (t)[x —X(t)],
(2.1a)

(2.1b)

where m.
j I (t)[x —X(t)],t] is the momentum conjugate

to y, the prime denotes the derivative with respect to g,
and

B'y B'y BV
Bt2 B»2

(2.1c)

and y is the phonon field. Below, we will choose V to be
the SG potential, but for now V is any potential that sup-
ports stationary single-kink solutions. Note that the ar-
gument of 0. and y is a function of the collective vari-
ables.

Since we have increased the number of degrees of free-
dom by four, namely X(t), I (t), and their conjugate mo-
menta, we need to specify four constraints and they are

=f j r(t)[x —X(t)]]yj r(t)[x X(t)],t jjdx—
= —&~'(g) y(g, t) & =0, (2.2a)

C&&= I t x —Xt gI" t x —Xt, t dx

, &g~'(g)ly(g, t) & =0, (2.2b)

where o [((t)] is the steady-state single-kink solution cor-
responding to the substrate potential V in the equation of
motion

&fig &
= ff '(k)g—(C)dk

Setting the constraints to zero determines the values of
X(t) and r(t) that minimize the fluctuations about the
kink form a[((t)]. It is in this manner that the collective
variables X(t) and I (t) are given their physical meaning.

In Ref. 4 we proved the equivalence of the Hamiltoni-
an equations of motion for p(x, t) and its conjugate
momentum 11(x,t) to the collective variable equations of
motion for X,P x, I, Pr, By/Bt, and Bm/Bt where the
overdot indicates differentiation with respect to time.
Furthermore, in Ref. 4 we proved that the equations of
motion for X, I, and B y/Bt, which are obtained after
eliminating the momenta, are more directly obtained by
substituting Eq. (2.1a) for P(x, t) into the "original" equa-
tion of motion Eq. (2.1c) and projecting the resultant
equation along Bcr/BX to derive the equation of motion
for X, along Bo /BI to derive the equation of motion for
I, and projecting along the space orthogonal to the direc-
tions 00./BX and Bo./BI to derive the equation of motion
for B y/Bt . To this end we substitute Eq. (2.1a) into Eq.
(2.1c) and obtain

—
g
—Xr +y'r

r

=0" 1 (1 —X )+2(Xr—

'2
a2 I

I" (1—X )+2(XI — — g +2
at2 r 9t g

—2xr —xr +
80

2

(2
~ ~

g —2XI —XI . (2 3)r
When we multiply Eq. (2.3) by (Bcr /BX)dx = cr'dg, inte—grate over g, and solve for X we obtain

2

& ~'ly" & r'(1 —x ')+2& ~'I4" &xr-
M~(1 b»)— I

+2xr ~' ——
& ~'lay' &+2& ~'ly' &xr —~'aq . , aq r. . . , -. , av

r at Bt I 0'

(2.4a)

where

~,=r&~ l~'&

is the bare mass of the kink associated with the X motion and

(2.4b)
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(2.4c)

Note that the term proportional to 8 X/Bt does not appear in Eq. (2.4a) because

o' = o' g =0

by virtue of the constraint C,~ =0. In deriving Eq. (2.4a) we have also made use of the general result
I & o '~ger" ) = —M~/2 which is obtained from an integration by parts.

Likewise, when we multiply Eq. (2.3) by (Ba /BI )dx =(g/I )0'dg, integrate over g, and solve for I, we obtain

3I
2r(1 br )—

Mx(1 —X )

2I Mt. (l br —
)

(2.5a)

where

(2.5b)

is the bare mass of the kink associated with the I motion
and

We obtain Rice's equations of motion for X and I
when we set X=O and V=I o[1—cos(cr)] in Eqs. (2.4a)
and (2.5a), where I 0=m/lo represents the frequency of
the phonon band edge, i.e., the lowest-frequency phonon.
Equations (2.4a) and (2.5a) for the case X=O were ob-
tained by Fernandez et al. where they used

(2.5c)

In order to arrive at the form for Eq. (2.5a) we used

and

We also used & ger
'

~
gX' ) = —

& g 0 "
~ X ) which is merely

an integration by part with an application of the con-
straint C&z =0.

Next we need to project Eq. (2.3) onto a direction that
is orthogonal to the Ba /BX and Bo /Br directions in or-
der to obtain the equation of motion for g. However, it is
not necessary to do so as long as we consider the system
of three equations [Eqs. (2.3), (2.4a}, and (2.5a}] simul-
taneously. The projection needed to obtain the equation
of motion for X is then carried out implicitly (see Ref. 4
for a detailed explanation}. Therefore, Eqs. (2.3}, (2.4a),
and (2.5a} are the exact system of equations that govern,
respectively, the dynamics of the phonon field g, the
center of mass X(t), and shape I (t) of a single-kink sys-
tem with potential V for which the field P may be broken
up as in Eq. (2.1a). We point out that we cannot really
associate Eq. (2.4a), say, as the equation of motion for X
since it is coupled to the other two equations (2.3) and
(2.5a). Nevertheless, we refer to the equations according
to the variable on their left-hand sides for convenience.
Equations (2.3), (2.4a), and (2.5a) are identical to the
equations of motion obtained using the Dirac bracket for-
malism, as shown in Ref. 4, and therefore satisfy the con-
straints of Eqs. (2.2a}—(2.2d) rigorously.

V=[1+n(x)][1—cosa] .

To facilitate the study of the quasi-internal mode we
now set X =X=0 for the remainder of the paper. There-
fore, the only coupling we are concerned with is that be-
tween I (t) and X(x, t) of which there are two conse-
quences: (1) dressing of the mode Bo /Br and (2) radia-
tion of phonons by the kink. For the remainder of Sec. II
we discuss the dressing problem and the consequent re-
normalization of the small oscillation frequency of the
quasi-internal mode. We will address the radiation prob-
lem in Sec. IV.

We begin our discussion of the dressing problem by
first looking at the P system where there exists, in con-
trast to the SG system, an exact bound state whose eigen-
function of the linearized P equation has the form

1(b(g)-tanh(g)sech(g)

but whose shape mode derived from the ansatz function
(the steady-state $ kink)

cr —tanh( I x)= tanh(()

has the form Bo/BI -(sech ((). We see that 1(tb and
Ocr/Br are approximately equal for small ( but, in gen-
eral, they are not the same. Since Pb is the exact func-
tional form of the small oscillation solution it does not
have to be dressed. On the other hand, if we use, instead,
Bo./BI in our calculations, then, since Bo./BI is only an
approximation to the exact shape mode, it must neces-
sarily be dressed by g in order to correct for its inadequa-
cy. If we do not allow X to dress Ocr/Bl then our calcu-
lations will be inaccurate. However, since we know the
exact small oscillation eigenfunction for the bound state
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P(x, t) =o [I (t)x]+y[I (t)x, t],
e[r(t)x]=—e,,[r~]+I "q,(r x)dr,

(2.6a)

(2.6b)

where e 4(I ox)=tanh(I ox). Now we have the result

from Eq. (2.6b) that the eigenfunction and shape mode
are equal 88/BI =g&. Therefore, when we use the an-
satz of Eq. (2.6a) and set y=0, we still retain the exact
bound eigenstate and its corresponding eigenfrequency,
so the linear dressing vanishes. We, therefore, need not
worry about dressing (at least for small oscillations) as

of the P case, we can bypass having to work with Be/BI
and its dressing by constructing a more accurate ansatz
to begin with, namely

long as our ansatz includes the exact gi, as in Eq. (2.6).
In the SG system, however, there is no exact oscillatory
bound state and so we cannot construct a o for the SG
system that is analogous to Eq. (2.6a). Therefore, we
must use Bo fBI and its dressing since we expect that if
there is some kind of quasi bound state in the SG case
then the approximate shape mode Bo.fBI will be dressed
by X.

In order to calculate the dressing for the small oscilla-
tions of the quasi-internal mode of the SG system, we set

V = I p[1 —cos(e+y)]

in Eqs. (2.3) and (2.5a). We then linearize the resulting
equations to first order in y and, in doing so for Eq. (2.3),
we obtain

aq „,r, re r
r rat r+2— g+ —gy'+ I psine + I ~ cose =e" I

2

(2.7a)

and for Eq. (2.5a) we obtain

~ 3I
21" (1+br )+

M (g ~~)
'2

2 r, ay' r,'
Mrr2 I Bt

—ge'
~ g

— ( ge'
~
sine )(1+b„)— ( ge'' ~y cose ) .

M~I
(2.7b)

Since we are considering small oscillations of the
quasi-internal mode, we further linearize Eqs. (2.7a) and
(2.7b) in 5I':—r(t) —I o discarding terms of second order
such as y, (5I ), y5r, (5I ), and higher. Upon lineariz-
ing with respect to 5I, Eqs. (2.7a) and (2.7b) become, re-
spectively,

A 2- 2I ~"+ rQ cosep=2rp5rep )pep (2.7a'), 5I
Bt 0

5I = —Qso5r+ (goeoiy" )
Io

found. We point out that Rice found QsG, to be the fre-
quency at which the quasimode oscillates no matter what
the amplitude. However, there is about a 10% discrepan-
cy between the value of QsG and the value obtained from
simulation ~, . In our collective variable theory, the
linear dressing which appears explicitly on the right-hand
side of Eq. (2.7b') will modify the theoretical value of the
frequency of oscillation of the quasimode and hence im-
prove the agreement with simulation.

We now eliminate 5I' by substituting Eq. (2.7b') into
Eq. (2.7a'), and using Eq. (2.8) once more to obtain

1
( gpep~y cosep)

M~ 0
(2.7b')

2

+(1—Pr )Xo~y) =2I o5r(1 —Pr )~eo'), (2.9a)

where

eo=e~r=r Co= rpx
0

Qso is given by Eq. (1.3a) and we used e"=sine. In go-
ing from Eq. (2.7b) to Eq. (2.7b') we used the fact that the
terms proportional to bz cancel exactly to first order and
that

=- ~
a'

Xp—:I Q&—= —I o + I ocosep .a2 (2.9b)

The spectrum of the operator L& has one localized mode
which is

where we have made use of bra and ket notation. The
operator Xp is defined as

M (r=r, )

I pMr ref
( e' e")= 12I 0 0$/ e

(2.8)

~ o,') = sech&
1, 1

2~2
(2.9c)

with eigenvalue zero and an infinity of extended "pho-
non" states

Equation (2.7b') indicates that, when y~0, the quasi-
internal mode oscillates with frequency Qsz that Rice

e '"~(ik —tanh( )
1

v 2'trek
(2.9d)
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whose eigenvalues are rpk
——k +1, where k = k/I"p is the

normalized phonon wave number. The projection opera-
tor Pz is de6ned as

0

The Goldstone mode lop) is orthogonal to I(pop) in Eq.
(2.12} and makes no contribution. Upon inserting Eq.
(2.13) for Xt ' into Eq. (2.12), we obtain

1

I pMr
(2.9e}

I2

I4
(2.14a)

We note that Eq. (2.9a) is identical to operating on Eq.
(2.7a') with the operator 1 —Pr which projects orthogo-

nal to I(pop). The factor 1/I p in Eq. (2.9e) is present be-
cause the bracket notation represents integration over dg
and not dx.

We calculate the static dressing of the kink by neglect-
ing IB y/Bt ) in Eq. (2.9a). We then solve the static ap-
proximation to Eq. (2.9a) by first explicitly bringing the
projection operator terms on the right-hand side

Sp IXd & =2ro5r
I
oo" &

and

(g lp )0+0
k

(op ll(k ) =&~/2'„-sech(km. /2) .

where

p dk
sech (km/2)

n J 00 N k

To obtain Eq. (2.14a) we made use of

(2.14b)

(2.15a)

(2.15b)

0SG 1+ g,~;) 5r+, (g,o,'g, lg„)
rp I pMr

The integrals I2 and I4 are evaluated in Appendix A and
the result for k in Eq. (2.14a) is

(2.10a)

where we used the notation yd to explicitly indicate the
dressing. We evaluate the contribution to the source of
the inatrix element (gpoplXpljd ) by first rewriting Eq.
(2.10a) as

where

g(2)+ g(3)

oc

g(p)= g, Rep )0
n

(2.16a)

(2.16b)

z, lx, &
= r,5r(2lo,"&+alp, o,'& ),

where

0
+ kp~p I p ltd

(2.10a')

(2.10b) lg ) =5rl~ )

is the Riemann g function and Re is the real part.
We are now in a position to evaluate Eq. (2.10c) for

Ifd ). Upon substituting Eq. (2.13) into Eq. (2.10c) we
obtain

Note that both terms in Eq. (2.10b) are 0(1). Next,
operating with Xp '=(1/I p)X&

' on Eq. (2.10a'), we ob-
tain

lg, &= „(~-,'I,"&+~-, 'lg, ,'&) .
0

(2.10c)

We evaluate A, by operating on Eq. (2.10c) with (gpopl
and invoking the constraint C&j- =0 which, in the present
limit, is (gpopl fd ) =0. (We used this same method to
obtain the static dressing of a discrete SG kink. '

)

Operating on Eq. (2.10c) with (gpopl and invoking the
constraint, we obtain

f dk leak &, (2& 4k lop'&+~&i}'k lkp~p& }
0 00 Qj-

k

~—5I f —
I

)
se h( n/2)

I 0
—oo Q)k

k 2CO-
k

(2.17}

Note that If„)is 0 (5I ) but lyd ) is 0 (1).
In order to calculate the effect of the dressing lyd ) on

dynamical quantities, such as the renormalization of the
small oscillation frequency of the quasi bound state, we
construct the new ansatz

&&poplx. &
=0= (2&kpopl&g 'lop'&

(t(x, r) =e+y=o[r(r)x]+5rq„+q
from which we derive the new shape mode

(2.18a)

+~&goopl&q'I(pop&) . (2.11)

When we solve Eq. (2.11) for A. we obtain

2
~ -1 ~

~ (2 '-2)

In order to evaluate the right-hand side of Eq. (2.12)
we represent the Green's function X&

' as

&, '= f" «lq„-(g)& ', &y;(g')I. (2.13)

(2. 18b)

5r 'o,'+~, +5rle~„—2r,o,"&=0.
0

(2.19}

In order to calculate the renormalized or "dressed" fre-
quency, which we denote by Qd, we substitute the new
ansatz Eq. (2.18a) with y=0 into the original equation of
motion Eq. (1.2a) and linearize in 5I . We obtain
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We now need to project Eq. (2.19) into the direction
given by the new ansatz vector ( (acro/I o+yd ~

which is

the right-hand side of Eq. (2.18b} in the present limit of
small 5I". Note that, according to the general theory of
Ref. 4, projecting in the new direction implies that we are
now operating under the constraints in Eq. (2.2) in which
cr is replaced by the 8 of Eq. (2.18a). The projection on
Eq. (2.19) yields

sr+ n', sr =0, (2.20a)

1 o
Qd —— O+yd X(gd 2rQ (2.20b)

„
r, r,

ae ae"=r, ar ar r=r,
' (2.20c)

is the renormalized or dressed mass. In Appendix B
0

we show that

2n ~p 6.7864
lo ~3 6

0 p

I4
q

4I 0 g(2)+g(3)
I6 3 ((2)+g(3)+—'g(4)

=(1.0585) r

(2.21)

(2.22)

is closer to the phonon band edge, and is independent of

In the next section we carry out simulations and find
that there is a long-lived quasirnode with a frequency
very near the phonon band edge which differs by 10%
from Rice's value QsG and by 5% from our dressed fre-
quency Qd. We also discuss in Sec. III ways to improve
agreement between the value of Qd and the value co, from
simulation.

III. RESULTS OF SIMULATIONS

We discretize the SG equation of motion in the follow-
ing manner:

u~+' —2u~+u~

(«)
u,~+, —2u,'+ u,~,

I psinu ~

(hx)

(3.1)

where u,~ is the phase of the ith discretized segment of the
field at the jth time step. The magnitude of the time step
is At =0.01, the length of each discretized segment is
hx =0.02, and the length of the system is 1000 units so
that the system is divided into 50000 segments. We treat
the ends of the system as free. Solving Eq. (3.1) for u/+'
we obtain

We see that the dressed mass differs from the bare mass
Mr =2m /(3I o) =6.5797/I 0 by only about 3% and de-

pends quadratically on A, . The dressed frequency Qd is
about 4% smaller than Rice's bare frequency

0 =(12I / )' =1.1027I

u,j =(u,'+, —2u,~+uj, )
X

2

—(ht) I osinu, i+2u J—u,i (3.2)

We use Eq. (3.2) in our numerical solution of the SG
equation in order to follow the evolution of the quasi-
mode from various initial conditions.

We impose initial conditions in our simulations in two
different ways. The first way is by specifying the field u,~

at t =0 to be ~oo) and at t =At to be ~era)+a~goo),
where e is a small number thus giving the equilibrium
kink a nonzero initial velocity. The second way is to
start the kink from rest with an initial kink length lo such
that n/loAI'0 and then let the field evolve according to
Eq. (3.2). Either way, the resulting oscillation of the
quasi-internal mode corresponds to a roughly constant
amplitude (after initial transients have vanished} which
we denote by 5yo. We will indicate explicitly below
which method we invoke in order to gather data for the
following figures. In our simulations we monitor the
functions I (t) and y=P(25, t) ao, t—hat is y evaluated 25
units away from the kink.

In Fig. 1(a) we plot the simulation results for I (t)
where the initial configuration

harp

is given a nonzero ini-
tial velocity as described above so that 6y0=0. 01. We
have set I 0 [the parameter in the SG potential in Eq.
(3.2)j equal to unity. Figure l(a) is thus representative of
the small oscillation regime. After the initial buildup of
phonons due to the imposition of the initial conditions,
the variable I (t) settles down to a quasimonochromatic
oscillation of frequency ru, =(1.004+0.001)I 0 with a
linewidth of 1/r, =(0.003+0.001)I 0. The magnitude of
the Fourier transform of I (t) is plotted in Fig. 2. In Sec.
IV we model the decay exponentially but the actual decay
is not a simple exponential, rather it has some power-law
character. In Fig. 1(b) we plot the amplitude of y as a
function of time at a distance of about eight kink lengths
from the kink at the origin. We can see y(t) build up
from zero as the kink starts oscillating and then after
four or five oscillations the amplitude of y(t) starts to de-
cay at the same frequency and lifetime as I (t).

The frequency of oscillation in the simulation,
co, =1.0041 0, is about 10% less than the bare Rice fre-
quency Qso in Eq. (1.3a) and about 5% less than our
dressed frequency Qd. Thus, our static dressing gd ac-
counts for half of the difference between Rice's frequency
and the value obtained from simulation. Better agree-
ment might be obtained by picking a different function
Bo./Bt" with which to represent the internal oscillation of
the kink, that is, a function whose linear dressing would
account for more of the difference between Rice's value
of the frequency and the simulation value. However, it is
diScult to construct a suitable functional form for
Ocr/BI, if it exists, in order to obtain a value for Qd that
is less than S% from the simulation frequency value. It
may be possible to find such a function by invoking a
variational procedure with the constraint being that the
value of the simulation frequency is obtained, but we
have not investigated this possibility. On the other hand,
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FIG. 2. Magnitude of the Fourier transform of I (t) in Fig.
l(a). The transform started at t =200.

FIG. 1. 5I o=0.01, I 0=1. (a) shows I (t) and (b) shows
y(t)=P cr measure—d 25 units away from a kink. The initial
condition for t =0 is a kink Iop& with velocity determined by
specifying the kink shape at t =Et as Icr )+p0.001IBo /BpI p).
Motion evolves according to Eq. (3.2). The length of the system
is 1000 units.

one may not be able to obtain better than about 5%
agreement with the simulation frequency by just using
the static dressing. The dynamical dressing must then
be taken into account. In fact, in Ref. 6, we have theoret-
ically calculated the Peierls-Nabarro frequency of a
discrete SG kink using two methods: (1) using an ansatz
analogous to Eq. (2.6b), where the ft, we used was the
eigenfunction of the linearized discrete SG equation cor-
responding to the lowest eigenvalue, and (2) dressing the
continuum kink form using a Lagrange multiplier
method just as we did in the previous section. The result
was that method (1) gave essentially exact agreement
with simulation for the Peierls-Nabarro frequency
whereas method (2) agreed to within 5% of the simula-
tion value for values of I 0 which corresponded to max-
imum dressing of the continuum kink form. Thus, for
the discrete SG, a 5% discrepancy is obtained with
method (2) even when there is an exact eigenstate corre-
sponding to the mode in question. This indicates that the
5% discrepancy using the static dressing is most likely
due to an insufficient incorporation of dynamical effects
which are, in fact, taken into account using tnethod (1).
Since we cannot set up an ansatz using method (1) for the
analysis of the present paper, we are forced to use
method (2).

The measured linewidth in Fig. 2 does not agree well
with the linewidth calculated from our dressed frequency
Qd. However, when we use the simulation value of the
frequency co, in the theoretical calculation of the
linewidth in Sec. IV, we obtain essentially exact agree-
ment with the simulation value. As we see in Sec. IV and
Appendix C, the essential reason for the long lifetime is
the fact that the linewidth is proportional to k, [where
k, = I 0(c02/I o~

—1)'r~] so that the closer co, is to the pho-
non band edge the more narrow the linewidth.

In Figs. 3(a), 3(b), and (4) we plot, respectively, I (t),
y(t), and the Fourier transform of I (t) where the initial
condition corresponds to giving an equilibrium kink ~cTo)

a nonzero initial velocity such that 5y0=0. 1. Within the
limits of accuracy of our simulations, the frequency and
linewidth for the case 5yo=0. 1 are the same as in the
case 5yo=0. 01. In Fig. 4, for 5@0=0.1, we can see a
small peak due to the second harmonic at co=2.008I O.

Note the magnitude of the large peak in Fig. 4 (corre-
sponding to 5yp=0. 1) is about 10 times the magnitude of
the corresponding peak in Fig. 2 (corresponding to
Sy, =0.01).

In Figs. 5(a) and 5(b) the results of simulation for
5@0=1 are plotted where the initial kink form with zero
initial velocity corresponds to a kink length such that
~/lo=0. 005. The initial condition is then allowed to
evolve according to Eq. (3.2) where I &&=1. Consequent-
ly, the kink is almost flat initially. Yet after Gve or six
periods the kink oscillates at the frequency co, =1.004I o
with a linewidth of 1/~, =0.0031 0. The only qualitative
difference of the nonlinear oscillation in Figs. 5(a) and
5(b) and the linear oscillations of Figs. 1 and 3 is that, in
the first few periods in Fig. 5, the kink oscillates very
nonlinearly and radiates over 75% of its oscillation ener-

gy in phonons and then settles down into the same quasi-
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FIG. 3. 51"0=0.1, 10=1. (a} shows 1(t) and (b) shows
y(r)=p omeasured —25 units away from a kink. The initial
condition for r =0 is a kink loo) with velocity determined by
specifying the kink shape at r =Dr as leo)+0.01lBo'0/BI p&.

Motion evolves according to Eq. (3.2). The length of the system
is 1000 units.

FIG. 5. 510=0.1, Fo= 1, (a) shows I (t) and {b) shows

y(r) =p omeasure—d 25 units away from a kink. Initial condi-
tion for t =0 is a kink with m/l0=0. 005 with zero velocity.
Motion evolves according to Eq. (3.2). Note the reAection in (b)
because of a shorter system (200 units long) than in Figs. 1 and
3.

mode as in the linear oscillation case. The reason for the
large initial radiation burst is that the initial I'(t) motion
has many higher-order harmonics which radiate orders of
magnitude more rapidly because the higher harmonics
have much shorter lifetimes, e.g. , the lifetime of the
second harmonic is more than ten times shorter than the
lifetime of the fundamental. Consequently, for nonlinear
excitations we have rapid radiation of phonons of wave-
lengths the size of the soliton and shorter and then the
SG kink oscillates at the quasimode frequency with nar-
row linewidth, as in Figs. 1 and 3.

I l )

0.0 1.0 2.0 3.0 4.0 5.0 6.0
FREQUENCY

FIG. 4. Magnitude of the Fourier transform of I"(t) in Fig.
3(a). Transform started at t =200.

IV. RADIATION LINKWIDTH

In this section we apply the standard perturbation cal-
culation used in electromagnetic theory to calculate the
radiative lifetime of a radiating oscillator. The calcula-
tion assumes one has an undamped radiating oscillator at
frequency ~0 and one calculates the power radiated by in-
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tegrating Poynting*s flux over a sphere at a distance large
compared with the wavelength. The expression for the
resultant power in Gaussian units is

cop4e' x
P =

—,'ck'lpl'=
3c

(4.1)

where p =exp is the dipole moment and xp is the initial
displacement of the oscillator from its equilibrium posi-
tion. We calculate, in the absence of damping, the time
average (denoted by an overbar) of the quantity xdx/dt
where we assume

x ( t) =xoexp( i too—t)

and obtain

. dX
l I2 4x — —xp[ cop )

dt

which yields

(4.2a)

2e . dxx
3c

(4.2b)

We next assume that the damping rate is not zero but
small compared with its oscillation frequency cop and that
it is equal to the time rate of change of the energy of the
oscillator

d—( —'mx +—'mtoox )= P, — (4.3a)

which becomes, after simplifying,

1x+ —x+copx =0,
7

where the damping rate is

(4.3b)

1 2 P
coom lxo l

(4.4a)

Now, although in the case of the SG system the decay
is not exponential, we will nevertheless model the decay
as

Sr+ —'SI +,'Sr =0,
7

where co, =I pcs, is the frequency of the quasimode ob-
tained from simulation. (A bar over a variable denotes
that the variable is normalized to I'o. ) We, therefore,
tnake the association with Eq. (4.4a) for the inverse life-
time

&P).„,
Mr„ l

&yol' roto '&r, l &yol'
(4.4b)

where 6 p is the initial displacement of the internal quasi-
mode, r is the dressed mass given by Eq. (2.21), and

0

1/r=—2e too(3mc )

The above argument uses only conservation of energy
and the fact that the damping is perturbative. The rela-
tion between I /~ and the power is

(P),
„

is the spatial average of the radiated power.
Equation (4.4b) is correct in the units of the present pa-
per.

In order to utilize Eq. (4.4b), we calculate P for our sys-
tem by considering the conservation of energy for a one-
dimensional system

(4.5)

where h is the SG energy per unit length and j is the en-
ergy flux. We integrate Eq. (4.5) from —x to x (where x
is a distance large compared with the size lp of the kink
and the wavelength of the radiation) and obtain

dZ ay
' "

dt Bx
(4.6)

where E = f" hdx and where we used the fact that the

Poynting's flux at —x is the negative of the flux at x.
Since $=0+y, and since the flux is evaluated at a dis-
tance far from the kink, we have

. axP = —2j = —2I pyy',
Bx

(4.7)

where the prime indicates the derivative with respect to

We now briefly describe how to calculate the radiation

g and, consequently, the Poynting's flux given by Eq.
(4.7) but give the details of the calculation in Appendix C.
In order to calculate y we begin by substituting the an-
satz of Eq. (2.18c), which includes the dressing into the
original SG equation of motion, for (t

a' a' + I osing=0
ay' ax' (4.8a)

to obtain an equation identical in form to Eq. (2.3) but
with 0~a and

V=I [1—cos(&+y)] .

Then, linearizing the resulting equation in 5I and y, we
obtain

2

+colm &
=Sr(2rol ~"

&
—Z, ly & )

Btz

(4.8b)

I I

0

(4.9)

Of course, Eq. (4.8b) does not contain any information
about the constraints yet since all we have done is substi-
tute the ansatz into the original equation of motion and
linearize in 5I and g. We effectively impose the con-
straints by projecting out of Eq. (4.8b) the mode corre-
sponding to 5I (t) so that what we are left with is an
equation of motion for 8 y/Bt . We accomplish the pro-
jection by operating on Eq. (4.8b) with 1 Pr, where—

0
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and where M„ is given by Eq. (2.21). Recall that the
0

constraints effectively invoked when operating on Eq.
(4.8b) with 1 —P„arethose in Eqs. (2.2a)—(2.2d) in which

0

we must make the replacement a~o. After projecting,
we solve the resulting equation of motion for y and then
calculate the spatial average of the Poynting's Aux
defined in Eq. (4.7) (see Appendix C) to obtain

2I 0(5yo) co,*
(k, +k,')I o

2&co I ()

(5)'o)'—
k N

2~
(4.13)

where

k I 5

2 ' I o
(4.10)

Then substituting Eq. (4.13) into the expression for the
inverse lifetime defined in Eq. (4.4b), we obtain

(I ),„,
(I co, ) Qr (5yo)

dk
k sech (kn. /2)

Q Q987
0 CO—

7
k

2k, I"o

( 2m ) co, A. I6

1 1

7TtsisA, I6
(4.14)

and k, = I ok, =I o(B,—1)'~ . Then substituting Eq.
(4.10) into Eq. (4.4b) we obtain, for the lifetime,

k, l OA.'g k, ~ =0.1220
fr 2m' I6 As I6 As

0

(4.11)

where A, , =2m/k, is th. e radiated wavelength from simu-
lation and the value of I6 is given by Eq. (Al 1). We have
calculated 2 numerically. The wavelength corresponding
to the simulation frequency co, = 1.004I o is

~, =70. 18I o
' and thus we obtain

which agrees to within a factor of 2 with simulations. [In
the rigorous calculation of Appendix C, the inverse life-
time is proportional to an integral over all k s, which is
the reason for the difference in magnitude between Eqs.
(4.11) and (4.14).]

From the above heuristic argument, we see again that
the dominant cause of the smallness of 1/~ is the very
long wavelength of the radiation emitted by the internal
oscillation. For example, if the bare Rice frequency is
used [Eq. (1.3a)] instead of the observed ~„wefind that
1/r is approximately an order of magnitude larger.

—=0.0017I =0.002I1

7

which agrees well with our simulation value of
I/r, =0.003+0.001)I o. We see that the damping is ex-
tremely small because it depends inversely on the wave-
length which is very long (over 22 kink lengths according
to simulation) because the frequency of radiation is very
close to the band edge.

In order to understand more qualitatively the 1/A, ,
dependence of the linewidth, we now perform an approxi-
mate calculation of 1/r by calculating the power radiated
by a single phonon of frequency co, =co, I o with ampli-
tude 5yo. Using Eq. (2.9d) we express the phonon as

&ro i(k, g
—cg, l otj

Re(ik, —tanhg)e
v'2mg, r,

&ro
[cos(k, g

—r), I Ot)
t/21rcos I 0

+k, sin(k, j—co, I ot)] ~

(4.12)

The factor of I 0 in the denominator of Eq. (4.12) is
present in order to maintain the correct units. Since we
are interested in the radiated power far from the kink, we
have set the tanh to unity in Eq. (4.12). Next we calcu-
late the space (or time) average of the fiux and obtain

V. DISCUSSION AND CONCLUSION

%e have used a projection operator collective variable
formalism in order to study the internal quasimode for a
SG soliton which we found to have a frequency
vs~,

= ( l.004+0.001)I 0 with an inverse lifetime of
I/&, =(0.003+0.001)I 0. Our theoretical values for the
frequency and inverse lifetime are Ad=1. 0585I o and
1/~=0. 0017I o=0.002I o. The system in our simulations
was 1000 units long corresponding to a lowest phonon
frequency of

co~,„=[(2'/1000)+1]' =1.00002 .

Our simulation value for the frequency co„with uncer-
tainty included, is well above co;„andso our value of co,
is not due to finite-size effects, nor does co, correspond to
an excited phonon state since the shape of the quasimode
is truly that of a localized internal vibration of the soliton
and not that of an extended long-wavelength phonon.

Thus, collective variable descriptions of kink phenome-
na (such as kink internal modes, kink-kink collisions, and
kink impurity scattering) are very useful because they al-
low a particlelike description of phenomena, which are
often complicated, to describe in terms of the original
nonlinear field. A particularly useful example of the ap-
plication of collective variables is, as we have seen in the
present paper, the case of internal degrees of freedom
such as the double sine-Gordon (DSG) and P systems.
In the DSG and P systems, however, one finds that the
collective variable for the exact radiationless linear inter-
nal mode can also describe highly nonlinear anharmonic
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oscillations of the internal mode where the anharmonici-
ty couples the internal oscillations to the phonon field.
Often the coupling to the phonon field is relatively weak
and the collective variable description of a "particle"
with an internal anharrnonic mode is a very good zeroth-
order description. Examples are Rice's work on po-
lyacetylene, Campbell and co-workers ' on P, and DSG
kink-kink collisions and Ref. 11 on DSG dynamics.
Segur' showed that the P has a wobbling kink solution
for a relatively long time. In a collective variable treat-
ment Segur's result would be described as a kink with an
excited internal anharmonic degree of freedom that radi-
ates phonons only weakly. Segur has also constructed an
exact three-soliton solution of the SG equation (which
may be unstable' ) that also has the properties of a wob-
bling kink. However, unstable or not, the quasimode of
the SG system of the present paper is a single soliton
solution and bears no relationship to Segur's SG wob-
bling kink solution. Nevertheless, our SG quasimode is
closely related to his P wobbling kink solution with the
shape of the modes being very close to each other. The
fundamental difference is that an infinitesimally small
amplitude P oscillation does not radiate at all but the SG
soliton does. If, on the other hand, the SG "internal
mode" solution behaved such that co, were equal to 1, the
band edge, instead of 1.004, then it would be a true mode,
i.e., it would have an infinite lifetime. Peyrard and Camp-
bell' studied the interactions of a kink and an antikink in
a parametrically modified SG model with the potential

V(P) =(1—r )(1—cosP)/( I +r +2r cosP),

with the pure SG case corresponding to the parameter
value r =0. For r negative they found a series of bound
states where the band edge of their continuum is located
at co, =(1 r)/(1—+r). Their lowest bound state as r~0
through negative values is very close in frequency and
shape to the SG quasimode which suggests the possibility
that the internal quasimode of the present paper might be
related to an analytic continuation of the Peyrard-
Campbell parametrically modified SG model.

%e, and the authors of Refs. 3, found the SG quasi-
mode by changing the slope of the static kink initially
and following its weakly damped oscillations. The ques-
tion arises as to which physical phenomena will actually
excite the SG quasirnode. The first case that should be
studied is the interaction of the SG soliton with an im-

purity whose potential varies on the same length scale lo
as the size of the kink. Preliminary simulations show the
kink slope deforming. The important signature of the ex-
citation of the SG quasimode is radiation at the frequen-
cy co, corresponding to a wavelength A,, which is about 22
times larger in length than the length lo over which the
potential varies. A second important case where the SG
quasimode should be excited is the discrete SG where the
kink is trapped in a Peierls-Nabarro well and there is a
resonance between a harmonic of the nonlinear Peierls-
Nabarro frequency copN and cu„e.g. , 3copN co, .

An important question about the internal quasimode of
the SG that remains to be answered is why are there no
effects of the mode in SG soliton-soliton and soliton-
antisoliton collisions where we know analytically that, al-

depends on X and X. Since the Lagrangian depends on
and P, in turn, depends on X, it follows that the La-

grangian equation of motion for X is a fourth derivative
equation d X/dt which can be thought of as two cou-
pled second-order differential equations. It is possible
that, in problems where the relativistic behavior is impor-
tant, such as in kink-kink collisions, the d X/dt collec-
tive variable description might have advantages over the
present coupled X and I equations when carrying out
calculations that are based on approximations to the ex-
act equations of motion.

APPENDIX A

The purpose of this appendix is to evaluate the in-
tegrals Ip, I2, I4, and I6 defined in Eq. (2. 14b) which we

rewrite as

„—sech (km/2)
2p?

N1
(Al)

Ip is elementary and we obtain Ip=4/m. For the other
three integrals m = 1, 2, and 3 we choose a contour in the
complex plane that lies along the real axis and is closed
by a semicircle of infinite radius in the upper half plane.
The integrand along the semicircle vanishes for Iz, I4,
and I6 and so we write

d
sech (zm/2)

Q)z 1=0
(A2)

where R1' ' is the residue of the lth singularity enclosed

by the contour for the integral I2 . The singularities are
located at z&=(21+1)i for 1=0, . . . , oo. The contour
for m =1,2, 3 thus encloses an infinite number of singu-
larities, the sum of whose residues we express in closed
form.

The singularity in I2 at zp=i is of order m +2 [m
from

co, =(z+i) (z i)—
and 2 from the square of the sech]. The singularities in

I2 at z& for I )0 are second order (from the sech). We
define the variable u by z =z1+u, substitute into the in-

tegrand in Eq. (A2), and expand the integrand of I2

though the slopes of the solitons change as they pass
through each other, the resultant shapes after collision
are the same as the shapes before collision and nothing
else has changed. In particular, there is no radiation be-
cause such a collision is an exact solution of the SG equa-
tion. In some sense the change of slope has to occur in
such a manner that no radiation is emitted. The problem
is very dif6cult to solve analytically because the soliton-
soliton collisions are highly nonlinear and they are rela-
tivistic because the potential well depth is comparable to
the rest energy of the solitons.

A completely different exact collective variable ap-
proach to the problem of the SG internal mode is to not
introduce the second variable I (t) and just keep the sin-

gle collective variable X. However, then

cr [(n. /1 p)[ x—X(t)]/(I —X )'~
a
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R (2)
0

R (2)l)0

2
1

(2ni)n 3

1 2l +1
(2ni)7r I~(I +1)~

2
1 7T + 1

(2ni)n. 6

(A3)

(4) 1 21+ 1

(2ni)n I (1+1)

(A4)

about u =0 to evaluate the residues at z& for
I =0, . . . , oo.

%'e find

=g(2) —[g(2)—1]= 1

and therefore, using Eq. (A3), we obtain

(A6)

%e need to evaluate the sum of the residues for
m =1,2, 3. %e find it convenient to express the sums in
terms of the Riemann g function defined in Eq. (2.16b).
Values of the Riemann g function that we use are
g(2) =n /6, g(3) = 1.2021 (which is, at present, not
known analytically), and g(4) =n. /90.

Iz is evaluated by noting that

2l+1 "
1 1

(=i I'(I+1) =i I =i (I+1)

4 2
(6) 1 m n 15

(2ni)n . 240 S 16

Iq=2ni g R( '= —=1.0472 .(7 ) 1T
(A7)

(6)
—3 2I +1

(2n'i)1617 I (I +1)4

(A5) In order to evaluate I4 we must compute g(",R(
To this end, we consider the expression g(3)—1 and, us-

ing Eqs. (2.16b) and (A6), write g(3)—1 as

(( ~ 1 ~ 21+1 ~
—I +21+1

(=i I (=, !(1+1) (=, I (I+1)
1

" 21+1
, =, (I+1) (=, I (I+1)

= —[g(3)—1]+ g 21+1
(=, I (I+1)

from which we obtain

=2[((3)—1] .
( i I (I+1)

Therefore, using Eq. (A4), we obtain

Therefore, using Eq. (A5), we obtain

I6=2ni g R('"= [g(2)+g(3)+ —,'g(4)]
4m

=0.8089 . (Al 1)

I~=2n.i g R(' '= —[g(2)+g(3)]=0.9062 .
I 0

To calculate I6 we use Eq. (AS) and consider the ex-
pression

Using Eqs. (A7), (A9), and (Al 1) we are then able to
evaluate the quantities ({, [Eq. (2.14a)], the dressed mass
Mr [Eq. (2.21)], and the dressed frequency Qd [Eq.

0

(2.22)].

g(4) —4[((3)—1]= g —,—2 g1
" 21+1

, I (, I (I+1)
I +21+1
I (I+1)

~
+1

" 21+1
(=i (I+1) (=i I (I+1)

=[/(4) —1]+ g(=( I (I+1)
from which we obtain

=5—4g(3) .
(=, I (I+1) (A 1 0)

APPENDIX B: DERIVATION
OF DRESSED FREQUENCY Qg

AND DRESSED MASS Qr

We derive in this appendix the expressions for Qd [Eq.
(2.22)] and 1&„[Eq.(2.21)], which are expressed in terms

0

of the integral I„defined in Eq. (2.14b) and evaluated in
Appendix A for n =0, 2, 4, and 6. In order to calculate
Qd defined by Eq. (2.20b), we first need to calculate four
integrals, namely ((3o 0/ar, lr, lq, ), &y„lr, ly„),
(Boo/BI olo.o ), and (ydlcro ) which appear in the
numerator of Eq. (2.20b).

From the definition of gd in Eq. (2.17) and X& in Eq.
(2.9b), we obtain
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=v'2m. I of dk
l g„-&co„s-ech 1—

2 7

CO-
k

(81)

ao'o ao o

ar, ar, =r~"
auo 1

Xd r & Co~olXd &

0 0

(87)

where we used X&lg& & =co& l Pz &. Then, since

& a~, jar, ly,—&
=

& g,~,'/r, ill„-&

is given by Eq. (2.15a), we have the result

2m. ~ —sech km 2

r,2 CO—
2
k

(I A.I —)2'
2 4

0

2CO-
k

(88)

p pg 2' k sech

= —2m(Io —A.I2) .

1—
2CO-
k

(82)

and

2n ~
dk

sech (kn /2) A,

r, N-
k

N-
k

&Xd l/olXd & =2m f dk sech' A,
'

1—
2N-
k

Next, taking the inner product of Eq. (2.17} for &Xdl
with Eq. (Bl), we obtain

p2 (I2 2AI~+—A. I6}, (89)

where lXd & is defined in Eq. (2.17) and we used Eq.
(2.15a} in order to obtain Eq. (88). We then obtain, for
the dressed mass 1Qr defined in Eq. (2.20c), the result

0

=2m'(Io 2A,I2+A. I4}

We also obtain

(83}

(84}

2mQr =Mr —2 (I2 —AI4)
0 0

0

0 0
(810)

Finally, we evaluate the integral & Xd l 0 o & by using
Eqs. (2.15b) and (2.17) to obtain

&Xdloo'& = f dk sech
p

—00

1—
2N-
k

(Io —A.I2) .
0

(85)

Using the above integrals we now calculate the quanti-
ty which appears in the numerator of Eq. (2.20b}, which
is the expression for Qz,

(
O'0

+y~ X(g~ 2I ()rro )
= 8 2v10 +2m' l~

0

which is Eq. (2.21). We used Mr =(2m. /I o)I2 to obtain
0

the last equality in Eq. (810) and I6 is given by Eq. (Al 1).
Finally, upon substituting Eqs. (86} and (810) into Eq.

(2.20b) for Qd, we obtain

(2m/I o)k I4 I4

(2m jl o)A. I6 I6

which is Eq. (2.22).

(811)

APPENDIX C

In this appendix we solve Eq. (4.8b) for x and calculate
the spatially averaged radiated power

where we used

=2@k, I4,

2n f dk sech (km/2)=2nIo=8

and the value of I4 is given by Eq. (A9).
To calculate

(86) For convenience we reproduce Eq. (4.8b):

2+ +,q =Sr 2r, ~," —,q„t'
I

—5I' +y~) .
0

(4.8b)

ee ae
I o aI aI r=r,

defined in Eq. (2.20c) [which appears in the denominator
of Eq. (2.20b)] we need to calculate

& a~, jar, +x, la~, /ar, +x„&
which requires the integrals

Projecting out the 5I term by operating on Eq. (4.8b)
with 1 —Pr [where Pr is defined in Eq. (4.9)], we obtain

0 0

x +(1—f, )z, lx&=sr(i —f, )(2r, l~ &

—&olxd &)

=—(1—~„,)lp&,
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where we used

00 P
(1—Pr ) +yq =0r,

and where we have denoted the right-hand side of Eq.
(Cl) by (1—Pr }p ), which defines ~p ). We use Eq. (4.9)

to obtain

ever, because of the presence of the projection operator-
the eigenfunctions of the operator d Ir)t +(1 P—z )Xo

are unknown. Therefore, to simplify the calculation of
the Green s function we will ignore the projection opera-
tor on the left-hand side of Eq. (Cl). Thus, for the equa-
tion of motion for y we obtain

a t2
~ +&olr&=5«21 l~o"& —&olX„&)

+5I +y„ko~o

lo I r0

(ohio
X +yz g&gz 2I oo'o

0
(C2)

We see that the last term in Eq. (C2) is directly propor-
tional to the expression for 0& which was already derived
in Eq. (2.20b). Therefore, substituting Eq. (2.20b) into
Eq. (C2) we obtain

(1—P, )Ip& =5«21,I~,"&—&,lq. &)

ko&o+SIn'„+y„

Re f dkP&(g)r, o

sin( I ocoq r)
gk ( g'), (C5)

where ~= t —t'. The formal solution is then

Then, the Green's function for the operator on the left-
hand side of Eq. (C4) is

sin( I'oak r }

f

ko~o+5I Q~ +y~
0

(C3)
2

Re f dk f dt'sin[I ocok(t —t')]
I o o coj- o

Equation (C3} is the expression for the source that ap-
pears on the right-hand side of Eq. (Cl}.

In order to find the solution g we need to integrate the
source in Eq. (C3) against the Green's function for the
operator that appears on the left-hand side of Eq. (Cl).
The construction of the Green's function is dificult, how-

x(1(„-(g')ll—P"„lp(g', t')) .

(C6)

In order to evaluate the last term (the bracket) in Eq. (C6)
we note, using Eq. (C3), that

(iIr„-(g')~1 Pr ~p(g', t') & =5l —(i/r„-~21 oo,
"—X(g~ )+510~ q„- cro+y„

0 0
(C7)

Then, using Eqs. (2.15a)—(2.15b), (2.17), and (Bl) to perform the integrals in Eq. (C7), we see that the right-hand side of
Eq. (C7) becomes

0
& P„-(P')l l —

P&,Ip(g', t') ) =&2nr, 5rz "'"'", (CSa)

Next we substitute Eq. (CSa) back into the expression for y, Eq. (C6). At the same time we make the substitution, we
express i{(k explicitly using Eq. (2.9d) and also set

5I'( t ' )—:5y osin( Qq t '
)

which, analogous to the electromagnetic calculation outlined in Sec. IV, indicates that we are calculating g for an un-

damped radiating oscillator where 6yo represents the amplitude of oscillation. Carrying out the substitutions we see
that Eq. (C6) becomes

2

y=25yok, Ref dke'"~(ik —tanhg), cok
— f dt'sin[I ozark(t

—t')] isn(Q&t'),
COk 0

where we have extended the upper limit of the t' integral to infinity. The t' integral is

(C9)

dt'sin[I otok(t t')]si (nQqt')= ———5(Qq —I
otok

)cos(I ocokt)+Qq sin(I ocokt),
~ ~

0
(C10)

where the Dirac 5 function appears in the first term on the right-hand side of Eq. (C10) and I' denotes the Cauchy prin-
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(Cl 1)

ciple value in the second term. When we substitute Eq. (C10) back into Eq. (C9) we see that the 5-function term gives
zero when the integral over k is performed because of the factor [cok

—(Qd /I o)] in the integrand. On the other hand,
the same factor [co„-—(Qd /I o)] in the integrand just cancels the denominator of the principle part in Eq. (C10) (leaving

only a factor of —1/I o). Therefore, Eq. (C9) becomes

5l'o —;k .— sech( k n. /2 )y= —2A, Re dke'"~ ik —tanh
5

sin I ocoktr, r, o

Next we consider only waves traveling to the right, so Eq. (Cl 1) becomes

QdX= —2X r,
5'Yo

k
sech(km /2)

ro
] I [kg —ro"-']——.e ' " (ik —tanhg)

2l

5'Yo ~ —sech( k ~/2 )
dk [k cos(k( —I ocokt) —sin(kg —I otozt)],r, r, o N-

k

(C12)

where we have set tanhg equal to one since we will be evaluating the radiation and, hence, the Poynting s fiux far away
from the kink.

In order to calculate the Poynting's fiux we calculate the quantity y'(By/Bt). The result is a double integral over k
and k ' of four trigonometric functions. When we space average the twofold integration over k space only the following
integral survives:

I- &z
e Po

dk dk, sech(kn. /2) sech(k 'n. /2)
k '(k k '+ l)(cos[(k —k ')k])

0 6y
0 4 5 avg ~

0 0 COk COk i

(C13)

5(k —k '),
Xd

(C14)

where the factor of —
—,
' out front appears as a conse-

quence of multiplying the trigonometric functions togeth-
er in order to obtain the argument (k —k ')g in the cos in
Eq. (C13) and the definition of the spatial average is

g+ A,d
(cos[(k —k ')g]),„= f dgcos[(k —k ')g]

2~d

sin[(k —k ')Xd]
cos[(k —k ')g]

kd k —k'

I

where kd = I okd and A.d is the wavelength corresponding
to the frequency Qd. That is, A, d =2m/kd, where

kd = I o(Qd /I —1)'

The value of g where the space average is performed is a
distance from the soliton at the origin that is large com-
pared with the size of the soliton and large compared
with A,d. The 5 function is exact in the limit A.d ~ ~ and
in our units the observed radiated wavelength is greater
than 70 (greater than 22 kink lengths). Note that the
space average has suppressed the time dependence in the
trigonometric functions.

When we substitute Eq. (C14) into Eq. (C13) we obtain

—2I o
X'BX

avg

T

—= (P),„,= r,X'
0 0

'2 2
kd Qd 5yo

I ok,
0 0

2

f "dk k(k 2+1) sech'(k~/2)
0 COk

(C15a)

where

h k /22= f dk k =0.0987, (C15b)
0 CO—

k

and where (P ),
„

is the space averaged power. In order
to obtain better agreement with the simulation value of
the linewidth we express the average power (P ),„s
defined in Eq. (C15a) in terms of the simulation frequen-
cy, i.e., Ad~co, =roc@„and the simulation wave num-

ber, i.e., kd ~k„and obtain

k, 5yo(P ).„=' roX'io,' (C15a')

(P).
„

(1 oco, ) M„(5yo)

k, I oA, 2

r~,
ks 2 1 2 o o

1

2~ I6 k, I6
(C16)

which is Eq. (4.11) where we used Eq. (2.21) for Mr to
0

obtain the third equality in Eq. (C16).

Finally, substituting Eq. (C15a ) into Eq. (4.4b) for the in-
verse lifetime 1/~ we obtain
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