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In expressing the partition function for a system of interacting electrons as a path integral, the
effective Boltzmann weight is not sign definite. This limits our ability to reach very low tempera-
tures in numerical simulations. While magnetic phase transitions are well studied, superconducting
instabilities are much more elusive. In this paper we study the properties of the sign in a novel for-
mulation of the path integral within the finite-temperature grand-canonical "determinantal" Monte
Carlo method. The approach decouples the interaction into pair creation and annihilation opera-
tors rather than the particle number density operators previously used. %'e find that the average

sign depends on the particular path-integral formulation and hence does not correspond to any
physical observable. The asymptotic exponential behavior of (s ) with P previously reported holds
here as well but with a different decay constant.

I. INTRODUCTION

There are a number of alternate approaches to the
study of systems of correlated electrons, from mean-field
treatments and variational wave-function calculations to
selective diagrammatic summations. One of the advan-
tages of quantum Monte Carlo simulations is that, in
principle, it treats the interactions in an exact way. How-
ever, these simulations have a number of limitations. The
most severe is the fermion sign problem, which makes it
difficult to reach low temperature. ' This problem ap-
pears when the partition function is written as a path in-
tegral with the inverse temperature acting as imaginary
time. The integrand, which is a product of determinants
arising from tracing out the fermion operators, is not sign
definite and therefore cannot be used directly as a proba-
bility density. The average sign decreases exponentially
with P, which means that measurements of observables
are obtained from cancellations of large numbers. This
introduces large fluctuations in the results. In this paper
we will study the behavior of the sign problem in detail
for a new type of Hubbard-Stratonovich (HS) transforma-
tion in this determinant algorithm. So far, the sign prob-
lem has been studied only for a transformation that
decouples the quartic Hubbard interaction into density
operators. It is therefore unknown whether the sign
problem, in this algorithm, is of physical significance or if
it is an artifact of the way the partition function was for-
mulated through the Trotter-Suzuki approximation and
the particular HS transformation employed. The general
belief is that the cause of the problem is the antisym-
metry of fermion wave functions even in the determinant
algorithm where no wave functions are used. Our results
show that the sign problem does depend on the transfor-
mation, whereas the physical observables do not. This
emphasizes that in the determinant algorithm, the aver-

age sign does not correspond to a physical observable.
The paper is organized as follows. In Sec. II we derive

the path integral for the partition function and the decou-
pling of the Hubbard interaction both for the convention-
al and the new anomalous HS transformations. We also
discuss some of the new features exhibited by the anoma-
lous transformation. In Sec. III we discuss exact and
simulation results for the Hubbard model in the no-
hopping limit ( t =0) in the anomalous decoupling
scheme. Section IV deals with the Monte Carlo results
for t=1 on 2X2 and 4X4 lattices, and Sec. V has con-
clusions and further discussions

II. PATH-INTEGRAL FORMULATION

A. Conventional Hubbard-Stratonovich transformation

We start this section by reviewing the path-integral
formulation of the partition function for the Hubbard
model via the Trotter approximation and the convention-
al HS transformation. The partition function in the
grand-canonical ensemble is given by

Z=tr(e t'"),

H = —t g [c (i)c (j )+ct (j)c (i)]
(ij ),o

+ U g [n+(i) —
—,'][n (i)——,']

(2.1a)

—p g [n+(i)+n (i)] . (2.1b)

The sum (ij ) is over all pairs of nearest-neighbor lattice
sites, t is the hopping parameter, c (i) and c (i) are
creation and annihilation operators for electrons of spin
o. along the z axis at site I.. U is the Coulomb coupling
constant (in this paper we take it to be positive), P is the
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inverse temperature, p is the chemical potential and the
number operator at site i is n (i)=c (i)c (i).

For the purpose of performing numerical simulations,
we need to represent the partition function as a path in-
tegral over classical 6elds. This proceeds via the
Trotter-Suzuki approximation. The inverse tempera-
ture, P, is treated as imaginary time and is divided into L
time intervals separated by ~=P/L. We can therefore
write

Z =ti(e 'LH)

This Trotter-Suzuki approximation introduces errors of
order r in physical observables because we ignored com-
mutator terms between the kinetic and potential ener-
gies. The quartic interaction terms can be put into
quadratic form at the expense of introducing a classical
auxiliary Geld. This Hubbard-Stratonovich transforma-
tion can be done with continuous or discrete fields. In
the discrete case (introduced by Hirsch }we get

exp{ rU—[n+(i) —
—,'][n (i)—

—,']I

where

tr(e
—A(K+ vj)L

=tr(e ' e 'x)' (2.2)
e

—~U/4

s(i, 1)= +1
exp{ —As(i, l)[n+(i) —n (i)]I

(2.5)

K = t g —[c (i)c (j)+c (j}c (i}]
(ij ),cr

—p, g [n+(i)+n (i)]

at each site i and time slice l. A, is related to the Coulomb
coupling constant by the relation

cosh(A) =e'U" (2.6)

and

c (i)k;, c (j),
(ij),0

V= U g [n+(i) ,'][—n —(i)——,'] .

(2.3)

(2.4)

Substituting Eqs. (2.3)—(2.5) in Eq. (2.2) we see that all
operators in the partition function appear quadratically
(repeated indices are summed and V is the spatial
volume),

—PVU/4z=' L

g tr g exp{ —v[c+(i)k, c+(j )+"c (i)k; c (j)]Iexp{—As(i, l)[n+(i) n(i—)]]
Is I 1=1

(2.7)

and the trace can be easily done yielding the classical partition function (dropping the constant prefactor)

Z = g detM+detM
s(i, 1)= +1

where

(2.8)

and

M =I+B 8 1
. BL L —1 1

+ A.U (1) —~k—e

(2.9)

(2.10)

I is a VX V unit matrix ( V is the spatial volume), and v (l); =5,"s(i,l}, where i runs from 1 to V, and l from 1 to L
Physical observables can be expressed in terms of the electron Green function, (M ) ', and to measure them we per-
forrn a classical Monte Carlo simulation in the auxiliary fields s (i, l)

Before proceeding to the anomalous decoupling we wish to express Eq. (2.8) in a form that is more convenient for
later comparisons. In Eq. (2.7) make the particle-hole variable change

d (i)=c (i), (2.11)

and for siinplicity of notation drop the + subscript on the c operators. Defining n, (i)=c (i)c (i) and nd(i) =1 (i)d (i)
gives

PV(p —U/4) L

gtr g exp{ ~[c (i)kjc(j)—d (i)kid(j)]]exp{ —As(i, l)[n, (i)+nd(i)]J
Is) 1=1

(2.12)

which can be written as

e P V(p —U/4)

VL2

r r r

L k 0 c v(l) 0 c
gtr g 'exp r(c d ) ()

—
k d exp A(c d —) ,

() v(l)
IsI 1=1

(2.13)
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Doing the trace finally yields

e P V(P, —U/4) L
Z= ydet I+ g C,

2 l=1

where

(2.14a)

and

I (i)= —2[n+ (i)——,
' ][n (i)——,

' ]——,
' (2.17a)

by first expanding e ' " " in a power series in I (i),
then using the identities

z —
A,Iv(l) (2.14b)

I (i)= —I (i) (2.17b)

and

k
o.,(3}k = (2.14c)

cr, is the third Pauli matrix, I is the 2X2 identity matrix,
and v (I) is the V X V auxiliary field matrix defined in Eq.
(2.10). This form of the partition function is completely
equivalent to Eqs. (2.8)—(2.10) in the strong sense that the
summands in both expressions are equal configuration by
configuration.

to do the integrals term by term and resum the series.
The identity Eq. (2.16) can be used to perform a
Hubbard-Stratonovich transformation, with continuous
auxiliary fields, thus enabling us to do the trace over the
fermion operators since they now appear only quadrati-
cally. We will, however, concentrate on the correspond-
ing discrete transformation as we did in subsection A.

It is perhaps a bit surprising that there is a discrete
form of the transformation defined in Eq. (2.16). This is

expI —rU[n+(i) —
—,'][n (i)——,']]

B. Anomalous Hubbard-Stratonovich transformation

e7U/4
e yI (i)s(ii),

s {i,l) =+1
(2.18a)

I (i)=c+(i)c (i)+c+(i)c (i) .

Then we can prove the operator identity

exp[ rU [n+ (—i) —
—,
' ][n (i) —

—,
' ] I

e ~U/4

f +
d x~/2+v U—xr(i)

~2~

(2.15)

The preceding HS transformation is not unique. In
particular, instead of transforming the quartic interaction
term by introducing auxiliary fields coupled to the num-
ber density operators, we can introduce auxiliary fields
coupled to pair creation and annihilation operators.
Consider the operator I defined by

where y is defined by

cos(y) =e (2.18b)

and I (i) is defined in Eq. (2.15). It is interesting to com-
pare our new discrete transformation with that previous-
ly defined by Eqs. (2.5) and (2.6). One marked difference
is the limit of the two coupling parameters A, and y as the
Coulomb coupling constant U gets very large. As U~ ~
so does )(,, whereas ym/2. The significance of this will
be further elaborated in the following.

We now use this discrete transformation to implement
a HS transformation. Substitute Eqs. (2.3), (2.4), and
(2.18a) in the Trotter-Suzuki formula Eq. (2.2) to obtain

e PVU/4

Z
L

gtr g expI —r[c+(i)k; c+(j)+c (i)k; c (j)]]e'"'""
2 Is I I = 1

(2.19)

PV(p+ U/4) L

gdet I+ g D,
2 I=1

(2.20a)

where repeated indices are summed. Again the fermionic
operators appear quadratically and the trace can be done.
To perform the trace we make the particle-hole variable
change, Eq. (2.11), and proceed in the same manner as
with Eqs. (2.12) and (2.13). This finally gives the classical
partition function

I '(i)=c+(i)c (i) c+(i)c—(i),
which gives the partition function

PV(p+ U/4) L
Z= —gdet I+ Q F,

IsI I=1

where

(2.21)

(2.22a)

point out that instead of using I (i) [see Eq. (2.15)] in our
anomalous decoupling scheme, we could have used

where
—~o. k i ya v(l)Dl=e ' e

and

0 —u (l)
0'y v (l) =l

(l) 0

(2.20b)
and

(2.20c)

—z(y. (3) k lyly„ v(l)
F, =e - e

0 u (l)
~r„v(l)= (1} 0

(2.22b)

(2.22c}

o. is the second Pauli matrix. For completeness, we

o.„ is the first Pauli matrix. Note that whereas the ma-
trices Dl are real, Fl are complex.
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C. Discussion

The problem of evaluating the expectation value of
physical observables has been reduced to that of perform-
ing Monte Carlo simulations on one of the equivalent sys-
tems given by Eq. (2.14), Eqs. (2.20), or Eqs. (2.22). An
efficient algorithin to simulate system (2.14) was first
developed in Ref. 4 and extended to low temperatures in
Ref. 3. It is equally applicable to (2.20). This algorithm
may need some modification to study system (2.22) be-
cause this system has complex matrices, while the algo-
rithm was developed for real matrices. Here we concen-
trate on (2.20).

The major problem encountered in simulations with
the conventional decoupling [Eqs. (2.14a)—(2.14c)j is that
the configuration sum in Eq. (2.8) or (2.14a) cannot al-

ways be easily done by Monte Carlo methods because the
summand can have different signs for different
configurations of the auxiliary field [s ). This means that
the summand cannot be used as a probability density in
numerical simulations. In practice what has been done is
to consider the absolute value of the summand as a prob-
ability density and explicitly keep track of the changing
sign. For details, see Refs. 1-4. This has small Auctua-
tions when the average of the determinants

g detM
(~l

y„ ldetMI
'

[s)

(2.23)

is not far from unity. For values that are much smaller
than one the method becomes less practical, and in the
physically interesting region of the positive U Hubbard
model, i.e., large p and doped away from half filling, the
problem is most severe. It was shown numerically that
the average sign tends to zero exponentially:

(s)-e (2.24)

where c is a constant. Clearly this makes simulations at
low temperatures very hard to do. Meanwhile, ignoring
the sign completely can give reasonable values for some
observables, but gets even the qualitative behavior of oth-
ers completely wrong. '

It was noticed' that at least some of the auxiliary-field
configurations that lead to negative determinants corre-
spond to a pair of electrons or holes whose paths cross as
the pair evolves from imaginary time t=0 to imaginary
time t =p. This is because the auxiliary field is coupled
to the number density operator (actually to the magneti-
zation) and therefore acts as a chemical potential which
locally enhances or suppresses the density of particles. If
the probability of these path crossings in a given imagi-
nary time interval hP approaches a constant at low tem-
perature, then the exponential decay law follows directly
from phase-space considerations. This provided a con-
venient qualitative picture of the origin of the sign prob-
lem valid within the normal decoupling.

Before moving on to numerical results we wish to make
some observations about the form of the three decoupling
schemes we presented here. Comparing Eqs. (2.14),
(2.20), and (2.22) we see that they all have the same gen-

III. NUMERICAL SIMULATIONS: t=0

We want to study the behavior of the (s ) in the anom-
alous decoupling scheme. The no-hopping limit of the
Hubbard model is well suited for that for two reasons.
First, we know the exact solution so we can easily check
numerical results, and second there are no finite time
step, ~, errors due to the Trotter-Suzuki approximation.
This will allow us to study the algorithm for various time
step sizes without worrying about the errors introduced
into the observables. Also, recall that in the normal
decoupling scheme there is no sign problem at all in the
no-hopping limit (t=O). The reason is that for t=O all
the B& matrices in Eqs. (2.8)—(2.10) commute and are di-

agonal, so it is easy to prove that all the eigenvalues of
M are positive for any auxiliary-field configuration.
This is not true for anomalous decoupling, and therefore
even in the t=0 limit the sign problem still exists. This
offers a very simple model to study this complicated
phenomenon.

We want to study the system given by Eqs. (2.20).
With t=0 it collapses to independent one-site systems,
and by Eqs. (2.3) and (2.20) we get

L L 7po &ya v(l)n D& = e 'e
1=0 1=1

(3.1)

We can easily evaluate exactly the partition function, the
average sign, and physical observables for L ~ 20 by sort-
ing through all configurations of the auxiliary field. For
L & 20 this becomes too time consuming and these quan-
tities are evaluated by Monte Carlo to very high accura-
cy. We also made sure that physical observables ((n )
and (n+n )) from our algorithm always agreed with
exact results.

Figure 1 is a plot of log, o((s ) ) versus p and shows the
familiar exponential decay of the sign as the temperature
decreases. We also made the same plot but for U=30
and (n ) =0.4 and again found exponential decay. It is
very interesting that the same exponential behavior,
which is observed in the normal decoupling scheme (with
t&0) and attributed to crossing fermion paths, is also ob-
served in the one-site problem where no such paths exist.

eral form, namely that of a sum over configurations of the
auxiliary field, which appears in a determinant. Also the—Vo gk
kinetic-energy part in all schemes appears as e ' . As
for the auxiliary-field parts, difFerent matrices (I, a„, and
o~) multiply the auxiliary-field matrix. We have not
found an anomalous transformation that introduces a o,
into the auxiliary-field part of the determinant. There is
such a transformation for the normal decoupling, and it
leads to Eqs. (2.14) but with e "" replaced by—incr, U(l)
e ' . It is interesting that the four preceding
decouplings are related by the generators of the U(2)
group. Note that although the partition functions in all
decoupling schemes are equal, the determinant are not
equal configuration by configuration for the normal and
anomalous decoupling schemes. It is this that raises the
possibility that the sign problem could be a function of
the HS transformation.
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FIG. l. Iog, o((s) ) vs p for the Hubbard model in the no-

hopping limit. The errors for the Monte Carlo are smaller than
the point sizes.

FIG. 3. (s) vs the number of time slices, L, at fixed p. The
average sign appears to approach limiting value as L ~~, i.e.,
as r= (P iL)~0

Furthermore, a plot of (s ) versus occupation (( n ) ), Fig.
2, again shows the same qualitative features observed
with conventional decoupling. The plots for two-
dimensional lattices show more structure due to the band
effects, which are of course absent in the one site prob-
lem. This very close similarity between Figs. 1 and 2 for
the one-site problem and the corresponding plots for
two-dimensional lattices with conventional decoupling
leads us to believe that similar mechanisms are at play in
both cases. In Fig. 3 we show the behavior of (s ) versus
the number of time slices L or equivalently the time step
w at constant P. We see that there is a relatively mild
dependence of (s ) on the size of the time step. As the
number of time slices increases (s ) decreases, but this
decrease is not exponential. It appears that for the physi-
cal parameters shown in Fig. 3, (s) reaches a limiting
value of about 0.84 as L~~, i.e., as ~~0. We also
checked this for P=6 and ( n ) =0.4 and observed the
same effect. Again this behavior agrees well with conven-
tional decoupling results for t%0 where (s ) is found to
have little dependence on ~. Note, however, that when

t%0 one cannot make L arbitrarily small because that
makes the time step ~ large and introduces finite time
step errors which are unacceptably large. Thus the con-
ventional wisdom that (s ) depends on P and not on w or
L is to be understood to assume that ~ is small enough to
give good results for observables. If it were possible to
increase ~ to larger values, (s) would be considerably
better behaved. When t=0 there are no finite time step
errors which enables us to make ~ as large as p. It is in-
teresting to note that in this limit physical quantities like
the occupation and energy have no r (or equivalently L)
dependence whereas (s ) does.

Next we checked our observation in Sec. II that since
for large U that anomalous coupling constant saturates at
y = n. /2, it may also lead to the saturation of (s ). Figure
4 shows a plot of (s ) versus U for two different tempera-
tures. We see that indeed the average sign does saturate,
for U = 10 ( v U = 5), at a value which seems to depend on
the temperature. The large value of ~U is not trouble-
some here because there are no finite time step errors in
the one-site model. This however, is not so for Monte
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FIG. 4. This plot shows how the values of the average sign
saturates for large U.
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Carlo simulations with the nonzero hopping parameter, t,
where in the simplest Trotter-Suzuki breakup the errors
are of order HtU T. hen as U increases r must decrease
with r t U constant in order to keep the systematic errors
fixed. This means that v.U is still increasing and that
eventually, by Eq. (2.18b), y will saturate, and so will

(s ). This could be useful for simulation at very large U,
especially if a higher-order breakup is used' which al-
lows larger ~.

We also checked the behavior of Eq. (2.22) where, since
the matrices I'I are complex, it might appear that the
determinant will also be complex. We found that the
determinants are always real, and that they are equal
configuration by configuration to those from Eq. (2.20).
So, both anomalous decoupling schemes, Eq. (2.20) and
(2.22), behave identically.

To summarize, we have found that (s ) for the single
site Hubbard model (t=0) in the anomalous decoupling
scheme exhibits qualitatively the same behavior previous-
ly observed for the tAO case with conventional decou-
pling. A similar sign problem in small size systems was
observed in simulations of the Anderson lattice in the
limit where the conduction p orbital overlap is zero but
the hybridization to the local d orbital is not. "

IV. NUMERICAL SIMULATIONS: t%0

In this section we study the systematics of the sign
problem when the hopping parameter, t, is not zero. We
start by examining the effect of the finite time step, v, on
physical observables. Figure 5 shows a plot of the kinetic
energy versus the time step v for anomalous and normal
decoupling. We see that the systematic errors in both
cases are the same, and that the kinetic energy converges
to the same value as ~~0. The horizontal line is the
value obtained from exact diagonalization. Figures 6 and
7 show the same behavior for the potential energy and
antiferromagnetic structure function, respectively. This
shows that we have control over the systematic errors
and that the algorithm works properly.
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FIG. 6. The same as Fig. 5 but for n+ n vs ~. The horizon-
tal line is from exact diagonalization.

Figure 8 shows a plot of (s ) versus the average occu-
pation, (n). It exhibits the same qualitative behavior
observed for normal decoupling in Fig. 10(a) of Ref. 3, in-
cluding the appearance of a peak at (n ) =0.6. Notice,
however, that whereas the peak in the normal decoupling
is pinned at (s ) = 1 (for the particular set of parameters
used) its height varies with P in the anomalous decou-
pling. This says that the band effects are qualitatively the
same and influence the average sign in the same way but
to different degrees. Also notice in Fig. 8 that at zero
chemical potential (i.e., at half filling), (s ) =1 just as for
normal decoupling. Another curious effect we noticed is
that at zero chemical potential (n+ ) =(n ) =0.5 ex-
actly with no statistical fluctuations. We believe this is
due to the fact that the auxiliary field does not couple to a
number operator, and therefore does not act as a Auctuat-
ing chemical potential.

Finally, Fig. 9 shows the average sign versus P, and ex-
hibits the familiar exponential decay. The slope is ap-
proximately —1.07, whereas the corresponding slope for
the normal decoupling, from Fig. 5 of Ref. 1, is —0.7.
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FIG. 5. A plot of the kinetic energy vs ~ for the Hubbard
model on a 2 X 2 lattice, for both normal and anomalous decou-
pling. It shows the anomalous decoupling results agreeing with
normal decoupling. The horizontal line is from exact diagonali-
zation.
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FIG. 7. The same as Fig. 5 but for the antiferromagnetic
structure function, S(m, ~) vs ~. The horizontal line is from ex-
act diagonalization.
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FIG. 8. This plot shows the dependence of (s ) on the occu-
pation for anomalous decoupling and exhibits the same peak
and general structure seen for normal decoupling.

Note that these slopes are calculated using the natural
logarithm, while our Fig. 9 shows logip. The data in Ref.
1 is for the canonical rather than the grand-canonical en-
semble, but their Fig. 6 shows data for both ensembles
and the slopes are equal and this is what we will assume.
Therefore, since the slope depends on the transformation,
it does not correspond to a physical observable.

V. CONCLUSIONS
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FIG. 9. Iog«&((s)) vs P for anomalous decoupling on 4X4
lattice. It shows the by now typical exponential decay of the
average sign as P increases.

Using the normal Hubbard-Stratonovich transforma-
tion in the determinant algorithm, it was noticed that
certain configurations of the auxiliary field lead to nega-
tive determinants. It was then suggested' that this sign
problem is caused by the crossing of fermion paths be-
cause the auxiliary field couples to the number operator
and acts as a chemical potential which guides the paths
of the fermions. This prompted us to derive anomalous
Hubbard-Stratonovich transformations where the auxili-
ary field does not couple to single-particle number opera-
tors but instead couples to creation and annihilation

operators of fermion pairs. The auxiliary field then cou-
ples to efFective boson operators that might significantly
modify the sign problem. We found that the sign prob-
lem is still present for the anomalous decoupling even in
the no-hopping limit, t=O, where normal decoupling
determinants are positive definite. We also found that al-
though for t=O physical observables do not depend on
the time step, the average sign does. Furthermore, we
found that while the properties of (s ) are qualitatiuely
the same in the normal and anomalous decoupling
schemes the slope of the exponential decay is not univer-
sal. Therefore, the sign problem and the "world line" in-
terpretation are not intrinsic properties of the model
Hamiltonian, but depend on the decoupling scheme em-
ployed in the determinant algorithm.

The world line picture of the origin of the sign problem
within the usual density decoupling has another interest-
ing feature: A configuration of Hubbard-Stratonovich
fields which forces the exchange of two up-spin electrons,
and hence has an up-spin determinant which is negative,
will also represent the exchange of two down-spin holes.
The down-spin determinant will therefore also be nega-
tive, and the product of the two determinants will tend to
be positive. Thus, while the world line picture provides a
feeling for the sorts of configurations that might result in
negative individual determinants, there is a somewhat
less complete understanding of those that lead to a nega-
tive product.

The dependence of the average sign on the decoupling
is not too surprising in view of the definition of the aver-
age sign,

(5.1)

Z is the partition function and Z is the partition function
using the absolute value of the determinant as a weight.
Z is independent of the decoupling scheme, while Z is
not. As a consequence, it is clear that (s ) must depend
on the details of the path-integral formulation. This is
consistent with the fact that similar "sign problems" in
quantum spin simulations can be altogether eliminated by
simple sublattice spin rotations.

A common feature of (s ) in the anomalous and nor-
mal decoupling schemes is its exponential decay,
(s ) = e ~'. The origin of this in both decoupling
schemes can be understood as follows. There are certain
configurations of the auxiliary fields that lead to negative
determinants. These configurations do not correspond
to, and cannot be characterized by, physical observables
because of the quantitative difFerences in (s ) depending
on the decoupling scheme. Regardless of the particular
characterization of these configurations, when there is a
large enough number of time slices and a finite,
temperature-independent correlation length in the time
direction, there wi11 be domains of these imaginary time
intervals with independent probabilities of having one of
these configurations. The independence of these proba-
bilities leads to the exponential decay law' in both
decoupling schemes. To test this idea, we measured the
correlation length in the time direction as a function of
temperature for the t=O case. We found for the parame-
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ters of Fig. 1 that the correlation length indeed reaches
the constant value of =0.5 for P & 3. For U=4, r=0.5,
and (n ) =0.875, the correlation length becomes constant
( =0.54) for P~ 5. It follows that for a given value of P,
the decoupling scheme that has the longest such domains,
i.e., the most correlations in the imaginary time direction,
will have the mildest sign problem.

This picture is further supported by the fact that in
models where the fields which couple to the electronic de-
grees of freedom have intrinsic dynamics in the imagi-
nary time direction, such as electron-phonon Hamiltoni-
ans, the sign changes of a single-spin determinant are
significantly moderated.

One of the new features of the anomalous decoupling is
that the coupling constant y [see Eq. (2.18b)] saturates
for large ~U. This raises the possibility of simulations at
large U, whereas ~U is large while the systematic error
-HtU is still small. This may be easier to achieve in a
higher-order Trotter-Suzuki breakup than the one used
here.

Finally, the discussion so far has been for positive U.
When H is negative, all the transformations go through
in exactly the same way, except that y~iy in Eq.
(2.18b). This makes the matrices in Eqs. (2.20) complex
and (2.22) real. However, we found that for t=O the
determinants in both cases are always real, positive, and
equal configuration by configuration. Of course for U & 0
and normal decoupling the determinants are also always
positive in the absence of an external magnetic field, but

not equal configuration by configuration to the anoma-
lous case. We believe the same is true for tAO. This
means that for U & 0 the sign problem is absent in the
anomalous decoupling scheme as it is in normal decou-
pling. It is easy to prove this for the normal case where
we can show that detM+=detM in Eq. (2.8), but no
such thing happens with anomalous decoupling. It is in-

teresting that, in the anomalous decoupling, the only
difference between positive and negative U is that in the
latter case the matrices DI in Eq. (2.20) become complex
(ia ~0~) and that this single change makes the deter-
minants always positive.

The normal density decoupling is also the one used in
zero-temperature canonical simulation studies, ' ' "
where a sign problem is again encountered. However,
there is an additional freedom in choosing the trial wave
function from which the projection begins and which
affects the average sign. It would be interesting to study
the sign properties of this ground-state algorithm with
our new decoupling. In particular some BCS-type trial
wave function might have interesting properties.
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