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Shadow wave-function variational calculations of crystalline and liquid phases of He
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A new class of variational wave functions for boson systems, shadow wave functions, is used to
investigate the properties of solid and liquid He. The wave function is translationally invariant and

symmetric under particle interchange. In principle, the calculations for the crystalline phase do not
require the use of any auxiliary lattice. Using the Metropolis Monte Carlo algorithm, we show that
the additional variational degrees of freedom in the wave function lower the energy significantly.
This wave function also allows the crystalization of an equilibrated liquid phase when a crystalline
seed is used. The pair correlation function and structure factor S(k) are determined in the liquid
phase. The condensate fraction is calculated as well. Results are given for the single-particle distri-
bution function around the lattice positions in the solid phase.

I. INTRODUCTION

In a previous paper' we proposed a new class of varia-
tional wave functions for many-body Bose systems. The
aim was to compute the properties of solid and liquid He
at zero temperature. This new wave function takes into
account some important characteristics that have been
neglected in previous variational Monte Carlo calcula-
tions. It is symmetric under particle exchange and
translationally invariant, even in the solid phase (for sys-
tems satisfying periodic boundary conditions, the true
ground state has translational invariance). Also in the
solid phase our wave function does not require the a
priori introduction of a crystal lattice. It is therefore able
to crystallize an initially equilibrated liquid system if an
appropriate crystalline seed is introduced during the
simulation. The new wave function contains to all orders
enhanced correlations among particles when compared
with the standard Jastrow form. Recently, it has been
proved by Reatto and Masserini that our wave function
has a Bose-Einstein condensate in both the liquid and
solid phases.

In the new wave function, the particle coordinates are
coupled to each other by a product of factors of the Jas-
trow form and to an auxiliary set of variables. These new
variables interact among themselves by a model potential
as if they were classical particles in the corresponding
thermodynamic phase, either solid or Quid. Integrating
out these auxiliary variables yields a wave function that
depends only on the coordinates of the real particles.
One may think of each auxiliary variable as the coordi-
nate of a fictitious or "shadow" particle. We refer there-
fore to this class of wave functions as shadow wave func-
tions. In this work we investigate in a systematic way the
characteristics and consequences of the new class of wave
functions as they pertain to the crystalline and liquid

phases of He. We stress that our main concern is in the
improvements due to the introduction of shadow degrees
of freedom. Therefore, the form of the pseudopotential
for the real particles is chosen to be the simple one used
by McMillan, with no attempt to optimize it (see the fol-
lowing section}. Although the pseudopotential functional
form has not been optimized, we compare our results
with other variational calculations in which more ela-
borate pseudopotentials or explicit three-body correla-
tions have been used and also with some Green's-function
Monte Carlo results.

In Sec. II we define the shadow wave function and give
physical motivations for its introduction. Section III
discusses the system under consideration, the form of the
shadow wave function applied, and our method of
analysis. Sections IV and V contain our results for the
liquid and solid phases of He, respectively. Our results
for the crystallization of an equilibrated liquid phase ob-
tained using a crystalline seed are presented in Sec. VI.
In Sec. VII we present a summary and discussion of this
work.

II. THE SHADOW WAVE FUNCTION

The variational shadow wave function %T(R ) for a sys-
tem with N particles, R—:tr„r2, . . . , re } is constructed
by considering a set of auxiliary or shadow variables
S—:(s„s2, . . . , s~ } through

+T(R)= J:-(R,S)dS . (1)

The function "(R,S) used here is the product of three
terms

:-(R,S}=g„(R ) P 8(r„—s„)g,(S) .
k
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where r, =
~ r; —rj ~

is the distance between particles i and

j. As mentioned above, the pseudopotential u (r,") used
here has the McMillan form,

5
bu(r)=
r

with b taken as a variational parameter. The second fac-
tor in Eq. (2), involving 8(ri, —

sl, ), provides a coupling
between the particles and the shadows variables. In this
work 8 is chosen to be a Gaussian:

2—C{rk —
sk }

8(rk —s„)=e

where C is a variational parameter. Finally, P, (s) is a
Jastrow product that couples the shadow variables to
each other and is written as

g, (s)= g e (6)

where s,"= ~s,
—s ~. The model potential U (s, ) selected

for the shadows is
'n

U(s)=

and has two variational parameters b,h and n.
A useful way of writing our trial wave function Eq. (1)

is through the expression

Vr(R ) =g.(R )q(R ) (8)

This equation is obtained through the substitution of Eq.
(2) into Eq. (1) and then by integrating out the shadow
variables, so that

p(R)= f P 8(r„—s„)1t,(S)ds . (9)
k

Inspection of p(R) shows that our trial wave function
goes beyond the pairwise Jastrow form (3).

For boson systems in previous Monte Carlo calcula-
tions without explicit three-body correlations, the model
function q&(R) was taken to be equal to 1 for the ground
state of the liquid phase. In the crystal phase it was tak-
en as a product of Gaussians ' centered about an a priori
chosen lattice. This last procedure, although it yielded
reasonable trial energies, destroyed some of the known
properties of the wave function, viz. , translational invari-
ance and symmetry under particle exchange. The wave
function used in the present work restores these proper-
ties.

The role of the model function y(R) can be elucidated
by the following arguments. The first involves interpret-
ing the sum over all paths in imaginary time for quantum
systems. Here it is useful to reinterpet the system's
(low-temperature) partition function in Feynman's for-
mulation as a classical system of X interacting poly-

The factors g are of the Jastrow form; thus, for the real
particles it is given by

—{1/2)u{r, }P„(R)= g e

mers. ' The action is a sum of the average potential
and kinetic energies along the path, the latter being
represented by an intrapolymer harmonic interaction be-
tween adjacent monomers. The path of any particle may
be decomposed into the center of mass (or average posi-
tion) and Iluctuations about this point. The Auctuation
may be thought of as due to quantum uncertainty. Some
of the properties of these centers of mass have been stud-
ied" in quantum Yukawa systems. In path-integral
Monte Carlo investigations' of the hard-sphere system
we have found that monitoring the structural properties
of the centers of mass aids in the interpretation of the
simulation results. In the shadow wave function, one can
think of each shadow coordinate sk as the "center of
mass" of the path corresponding to particle k. Further-
more, the average in the path integral over fluctuations
about the center of mass results in a "dressed" interac-
tion between the centers. This interaction should be
reflected in a rather large repulsion at short distances be-
tween centers of mass and therefore its correlation should
have more structure than the real particles. Thus the
centers of mass behave more like classical particles. Our
results support this view. The particle-shadow interac-
tion, 8(r, —s, ), in our wave function may be thought of as
a model for the fluctuations of the coordinate along the
path with respect to their center of mass. As a first ap-
proxirnation it may be taken as a Gaussian since the in-
trapolymer interaction in the path integral is harmonic.

Secondly, because a squared product of the Jastrow
form can be formally identified with the Boltzmann fac-
tor of some classical system, the Jastrow product should
correspond to a solid when the correlation between the
particles in the wave function is increased sufficiently.
However, if a trial wave function of this form is used for
a quantum crystal, it is well known that, although a solid
is formed, the energy is much too high and the pair
correlation function is unacceptable. These poor results
are due to the conflict between the necessity of solving
the quantum two-body problem for small pair separations
r, and the requirement of low "effective temperatures"
for crystallization. A phenomenological way to reconcile
these two different aspects of the problem is by the use of
the shadow wave function. The part of the wave func-
tion, P„associated with the shadow particles provides
the interaction necessary for solidification, while the part,
1(„, associated with real particles, allows for the correct
behavior at small r.

The final motivation for the shadow wave function is
found by considering the Green's-function Monte Carlo
(GFMC) method. ' ' In this method, the integral form
of the Schrodinger equation,

q(R)=E fG(R,S)q(s)ds, (10)

is solved for the ground state by iteration, where G(R, S)
is the operator corresponding to the inverse of the system
Hamiltonian H. In this context the shadow wave func-
tion can be thought of as a first iteration of a system de-
scribed by a single Jastrow product of two-body correla-
tion fo(s; —s~). To see how this interpretation can be
made let us assume the following approximation for the
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Green's function. G(R, S) is taken as the free-particle
Boltzmann Green's function of an effective temperature
"dressed" by Jastrow factors, f, (R) and f, (S), to model
the correlations of the interacting system: as

III. METHOD OF ANALYSIS

The Hamiltonian of X He atoms with mass m is taken

—C(r —s )

G(R,S)" g f, (r; r, —
) pe

g2 N
H= — g V,'+ g V(r,, ) .

i=1 i (j
(12)

Xgf(s/ —s ).
l (m

This expression for G(R,S) has the correct symmetry
properties in R and S. Also it should approximately
satisfy the Green's-function relation fH(R)G(R, S)dS
=const. From the substitution of this approximate form
for G (R,S) into Eq. (10}one can see that a wave function
of the shadow form results.

fdR fr% r
&o ~&z-= (13)

This equation can be rewritten in terms of Eqs. (1) and (2)
so that it reads

The two-body potential V(r, ) used here is the accurate
one proposed by Aziz et al. ' This potential has been ex-
tensively used and has yielded excellent results. '

The true ground-state energy has an upper bound
given by

& =f f f dR dS dS'p(R, S,S') Hp(R) g &(r —s' ) ll(R) g &(r —s' ) (14)

where p (R,S,S') is given by

p (R,S,S')= :-(R,S):-(R,S' )

f f f dR dS dS':-(R,S):-(R,S')
(15)

The 9N dimensional integral in Eq. (14) is evaluated by
the Metropolis Monte Carlo algorithm. ' In this method
the probability density function p(R, S,S') is sampled
and the estimator

J new
' p(R, S,S') (16}

Hq(R) g &(r/, —
s/, ) y(R) g &(r/, —

r/, )

k k

is averaged using the configurations generated in the ran-
dom walk. To sample p(R, S,S'), the Metropolis steps
are subdivided in two parts. In the first, one attempts to
move real coordinates at random inside cubical boxes of
side length h. In the second, analogous attempts to move
shadow coordinates are made inside cubical boxes of side
length h,z. The moves are accepted with the probability

The angular brackets denote an average with respect to
~ %r ~

. The Fourier transform of g (r} is the structure fac-
tor S(k) and is given by

S(k)=1+ fe'"'[g(r) —1]dr .
2

(18)

This quantity is also related to fluctuations with wave
vector k about the average particle density—ikr
p/=X e

(19)

l

function p(r) for displacements from a lattice site have
been computed. These quantities are spherical averages
and have been computed for both the real particles and
the shadow coordinates. The condensate fraction no has

been computed as well.
The two-body distribution function is defined by

g(r}= g (5(~r, —r, —r))) .1

Np, .~ .

where p„,„ is the new value of the probability density
function in Eq. (15) with one of its coordinates displaced.
Details of the modifications of the Metropolis Monte
Carlo algorithm necessary to deal with the shadow wave
function can be found elsewhere. ' The parameters b,
and A,z are adjusted so that the acceptance is about 50%.

In addition to the ground-state variational energy, the
radial distribution function g(r), its Fourier transform,
the structure factor S(k), and single-particle distribution

The computation of the condensate fraction no, a mea-
sure of the off-diagonal long-range order (ODLRO), is of
special interest. Following Penrose and Onsager, ' it
measures the extent to which a type of Bose-Einstein con-
densation happens below T&, the temperature for the
lambda transition. It characterizes the macroscopic oc-
cupation of the zero-momentum state of the superfluid
phase of a Bose system. The single-particle density ma-
trix n (r) at r = ~r,

' —r, ~
is defined as

(20)



42 SHADOW WAVE-FUNCTION VARIATIONAL CALCULATIONS OF. . . 231

no= lim n(r) .
fico

(21)

Clearly n(0)=1. The fraction of particles in the zero-
momentum state is given by

TABLE I. Variational energies in K per atom obtained with

the shadow wave function for the liquid phase at the equilibri-
um and freezing densities. The b and C parameters are given in

0
units of cr and a, respectively (0 =2.556 A).

Vr(r„rr, . . . , r, +r, . . . , r„)
~

n(r)=
+z(r„r2, . . . , r, , . . . , r~}

(22)

The standard way of computing n(r) is to consider
equilibrated configurations of the diagonal density matrix
and then take the average

PG'

0.365
0.365
0.365
0.438

—6.061+0.025
—6.24120.035
—6.133%0.048
—5.360%0.035

1.13
1.13
1.13
1.12

1.40
1.20
1.16
1.55

5
9

12
5

Parameters
b,h n

4.0
4.0
4.0
4.0

where r, +r could be any point inside the system.
In the solid phase an important quantity is the single-

particle distribution function for displacements from a
lattice site,

(23)

where I, is the coordinate of the ith lattice site corrected
for the drift in the center of mass that occurs during the
course of the simulation. Recall that these calculations
do not rely on a lattice introduced a priori. We discuss
the results for the liquid and solid phases in the following
sections.

IV. THK FLUID PHASE

We have investigated the properties discussed above of
He in the fluid phase at the equilibrium density

per =0.365 and at per =0.437 (a =2.556 A). The latter
is the freezing density computed by the GFMC
method. ' Our calculations started from a fcc lattice, for
both the real and the shadow particles. The equilibrium
state of the system as liquid was quickly obtained for the
particles and shadows at both densities. This behavior is
readily seen by observing the evolution of S(k). Al-

though we have allowed much longer equilibrations, as
few as 100 "passes" for the small system were enough to
obtain a typical liquid value of S ( k) (cf. Fig. 7). The vari-
ational energies per atom for a system of 108 particles at
the two densities are shown in Table I. At the lower den-

sity the power law of the shadow coordinates' Jastrow
factor has been varied; cf. Eq. (7). One sees that there is a

slight improvement in the energy when n=9 in that
equation. In the second column of Table II we display
the variational energy per atom computed at po =0.365
for the pure Jastrow wave function. The only variational
parameter in this calculation is b; cf. Eq. (4). Its op-
timum value is given by b =1.20cr. As we can see the
shadow wave function provides a 0.4 K reduction in the
variational energy when compared with a function of a
pure Jastrow form. Also in Table II, we quote results
from variational calculations obtained with other trial
functions, and results using the GFMC method.

In the third column of Table II we quote results from
the literature, ' and in the last one we give unpublished
results of P. Whitlock. The variational computations
were performed using three diff'erent trial wave functions.
The first of such calculations considered a functional op-
timization of the Jastrow factors by the paired-photon
analysis (PPA) method as described by Pinski and Camp-
bell. 2o This is followed by the variational energy per
atom computed with a trial function of a pure Jastrow
form together with explicit triple correlations as suggest-
ed by Schmidt et al. The next line shows the same
quantity obtained by the optimization of the Jastrow fac-
tor using PPA plus an explicit triplet term. In this case,
the parameters of the triplet term have not been opti-
mized; the parameters were the same as in the previous
trial function. All the terms that did not include a func-
tional optimization by PPA used the McMillan form, Eq.
(4), for the Jastrow factors. In the two last lines we give a
results obtained by the GFMC method. The one quoted

TABLE II. Results for liquid He at the equilibration density, po'=0. 365, determined using a pure
Jastrow (J) trial wave function, a functional optimization of the Jastrow factor by paired-phonon

analysis [J(PPA)], Jastrow together with explicit three-body correlations (J+T), and a Jastrow in

which the correlation factor is optimized by paired-phonon analysis and explicit triplet correlations
[1(PPA)+ T] Besides these .variational results we give, in the last two lines, the "mixed" energy esti-

mator obtained by the Green's-function Monte Carlo (GFMC). The calculations have been performed

for systems of 108 particles, except the ones using J(PPA) where 64 particles were considered. Units

are the same as those of Table I.
Trial or

importance function

J
J(PPA)
J+T

J(PPA)+ T

J(PPA)
J+T

This work

—5.717+0.021

Energies
Ref. 16

Variational

—5.87

GFMC
—7. 120+0.024

Ref. 28

—5.93+0.01
—6.674+0.007
—6.741+0.008

—7. 110+0.040
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o R 8+OR dR

fVo(R)%0(R}dR
(25)

and the mixed expectation value. T t h
suit w

oex ract t eexactre-

round-sta
su t, we assume that the trial function 4 differ f
groun -state wave function by a small amount e4 so that
we can write

%0=+T+e% .

SUubstituting this expression (26) f 4 '
(25),or 0 in ), expanding

on e and neglecting terms of the order of O(e we get
the extrapolated expectation

&F&,=2&F& -&F&, ,

where (F )I is defined in Eq. (24) and (F ) r is the varia-
tional expectation computed with %T.

An insight of how well the shadow wave function de-
scribes the real system can be a h' d b k'c ieve yma ingacom-
parison between Tables I and II If

3=
we compare our best

energy at p~ =0.356 with the GFMC result we see that
our trial function gives an energy 0.9 K hi her. At
same time we see that the shadow wave funct' d
better th

~ ~

unc ion oes

0 timiz
han the variational calculation with fwi a unctional

op imization of the Jastrow factors b
' d- hy palre -phonon

na ysis. e results obtained with explicit three-body

licit
interactions show that our new trial f tunc ion contains im-

p icit y part of these important correlations. Our wave
unction is not quite as good in that it 1

b onl 0.5 Ky on y . relative to the pure Jastrow while the wave
function with ex licit hexp icit three-body correlations achieves a
1.0 K decrease.

The pair correlation functions g (r}at th f
si y, per =0.438, for both real and shadow particles are
plotted in Fig. 1. The maximum of (r) f h
ic es, .396+0.004, obtained at r =1.38 0.14

an the value determined usin the GFMC
or r =1.30o.. The comparison between the pair

(27)

from the literature uses as importance function a fa unc-

PPA
na optimization of the Jastrow wave functio b th

PA method. Whitlock's unpublished result has been

obtained using an important function that included expli-

cit triple correlations for the first time. Note that this
new GFMC result is in excellent agreement with the one

previously published.
In this paper we will be quoting results obtained with

the GFMC method using "mixed" d "
tat

'xe an extrapolated"
expectations. The meaning of these averages can be
easily understood. In an importance sampled GFMC cal-
culation with a trial function 4 (R)

'
th, in t e asymptotic

regime one obtains configurations drawn from the distri-
bution VT+0, where %0(R) is the lowest energy eigen-

function that is not orthogonal to +T. For an operator I'
the mixed expectation is defined as

f +o(R )F+T(R }dR

f%'0(R }VT(R)dR
(24)

It is possible to determine an approximate relation be-
tween

i I f t I I 1 I I I I I I I II I I I I I I I I I I I I

1.5—

0.5—

Q Q
I I i

Q

FIG. 1. Two-bod y correlation function for the liquid at the
freezing density po =0.438 for the real particles, solid line. The

shows the pair correlation function for the shadow
coordinates at the same density.

correlation functions for the shadow particles obtained at
three different densities (one in the 11'

ma e in ig. 2. It is interesting to note that as we go to
o e s a ow particles in-higher densities the structure of the shadow

The structurere &unction has been computed at the equi-
s. n t e rst, one simplylibrium density by two methods. In th fi

measures S(k) directly as is given b E . (19)
orn-von Karman wave vector consistent with the

periodicity of the simulation cell. Here S(k) is obtained
on a discrete set of k's. In the second th d,
ai o g(r) to a sum of (one to three) dam ed o 'll

of the form A r
mpe osci ations

m ( /r)e cos(ar+b) as discussed by Ceper-
ley and Chester. With L the width of the simulation

[ I I I i I I I I I I II I I I I I I t I I I I t

Q
j I I I I I I I I j I

r/0

FIG. 2. Com arisp
'

on between pair correlation functions for

solid lin
the sha ow coordinates in the cry t ll' h
so s line; the freezing density, pu'=0. 438, dashed hne; and at
the equilibrium density, po =0.365, dotted line. At the hi h

, p —. , t e crystal structure in g (r) is apparent.
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cell, one then uses the Monte Carlo results for g (r) when
r & L /2 along with the damped oscillation fit when
r &L/2 to perform a numerical Fourier transform of
g (r) as in Eq. (18). We show the results of both methods
for the real particles in Fig. 3 and for the shadows in Fig.
4. In both cases the po~er law for the pseudopotential
for the shadow coordinates is taken equal to 9, as in Eq.
(7).

Our value for S (k) at its maximum value in ko =5.06,
as obtained from the Fourier transform of g (r), is in ex-
cellent agreement with the GFMC result. ' Variationally
we obtained the value 1.356 for its maximum. The num-
ber obtained from GFMC calculations is 1.35. Both of
these values are in agreement with the experimental data.
In neutron difFraction experiments at saturated vapor
pressure at 1 K, which presumably gives results very near
those at T=O, the maximum of S(k) is 1.387 at
kcr=5. 24. Determination of this maximum by x-ray
scattering at 1.16 K at a density close to saturated vapor
pressure gives the value 1.3394 at ktr =5.28.

As mentioned above, the structure of both the real and
shadow coordinates increases with increasing density.
We find at the freezing density (po =0.438) that the
maximum in S(k) is 1.55 for the real particles and 2.1 for
the shadow particles. In classical systems it has been ob-
served that freezing occurs when the maximum in S(k)
reaches 2.85+0. 1. Although the structure in the sha-
dow coordinates at freezing is not this high it is substan-
tially closer than the corresponding value for the real
coordinates. Further investigation is necessary to explore
whether the correlations between the shadow particles
contain a counterpart in quantum systems of the precur-
sors associated with the freezing of classical liquids.

To compute the single-particle density matrix n (r), we
first used Eq. (22), As expected, this equation gives reli-

1.5

1.0

0.5

I I l I I i I i I I I I I I I I

1.0

0.5

0.0
10
ko

15 20

FIG. 4. The structure factor S(k) of the shadow coordinates
at the equilibrium density. The data with error bars are ob-
tained from the shadow configurations; the Fourier transform of
their pair correlation function is shown by the solid line.

able values only for small values of r, up to 1o.. This re-
sults from the Gaussian interaction of the real particles
with the shadow ones; cf. Eqs. (1), (2), and (5). In the cal-
culation of n (r), elements of the density matrix enter that
are increasingly far from the diagonal, so that this Gauss-
ian factor rapidly decreases the ratio in Eq. (22). A prop-
er way of doing this calculation for any r should include a
mechanism to allow the relaxation of the shadow parti-
cles. For small values of r, the coupled real and shadow
particles will usually be near to each other, so that
reasonable results will be obtained.

At first glance, one possible solution should be to com-
pute the same ratio of Eq. (22) but now displacing the
shadow particles by the same amount that the real ones
had being moved. It is a simple exercise to change vari-
ables in Eq. (1) and to see that this is a correct procedure.
One can show, however, that this calculation has an
infinite variance so that even a simple estimation of n (r)
is very difficult to make.

Because we have a more elaborate trial function than
those previously studied, a more sophisticated technique,
such as the one used by Ceperley and Pollack in the
context of path-integral calculations, is needed. The idea
is to allow an extra atom ofF the diagonal, that is to per-
form a simulation where the integrand of Eq. (20) itself is
sampled; the unnormalized probability distribution func-
tion (PDF)

0.0
10
ko

I I i I i i I T(rl r2 ''' ri ''' rN)+T(rl r2 ''' ri '' N)

FIG. 3. Structure factor S(k) for the real particles at
pe'=0. 365. The solid line is obtained by the Fourier transform
of gt,'r). The data with error bars is obtained directly from the
configurations, cf. Eq. (19).

is sampled by an independent random walk following the
Metropolis prescription; r,

' and r, are now independent,
so the sampling has three extra dimensions. By using a
binning procedure, one can then tabulate
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n'(r) = (5( [r,
' —r; —r[) ) .

Finally, noting that n(0) =1, one may recover

n (r) =JVn'(r),

(29)

(30)

0 80

0.15
The normalization factor JV' is obtained by extrapolation
of the unnormalized n '( r ) to r =0.

In fact, to improve the statistical resolution of the algo-
rithm, so that all the important points in the
configuration space are taken into account regardless of
the size of r = ~r,' —r;~, we followed a further suggestion
of Ceperley and Pollock and sampled instead

1
pr(r], r2, .. . . , r;, . . . , r]v )

r n, (r}

X'Pr(r], rp, . . . , r;, . . . , r]v), (31)

where n, (r} is an approximation to the single-particle
density matrix that we take to be a Gaussian plus a con-
stant. Of course in Eq. (29) the 5 function must be multi-
plied by the same factor r n, (r) so that we still compute
the same quantity. That is, the estimator for n (r) is

n(r)=IV(r n, (r)5(~r,' —r; —r~)), (32)

Without considering the normalization factor JV our
results for the single-particle density matrix are shown in
Fig. 5. Although there is a long autocorrelation time in
this calculation and we have to divide the whole curve by
n (0), the correct magnitude of the condensate fraction
can be obtained directly from Fig. 5. A crude calculation
could give a condensate fraction of approximately 4.6%.

To estimate the condensate fraction in a more precise
way, the normalization factor JV may be obtained in the
following manner. As we mentioned before, Eq. (22}
gives reliable results for r &10. and so the results ob-
tained through it can be smoothly matched with the one
displayed in Fig. 5. Taking into account this fact, we
computed a normalization constant using the data of
both curves, one calculated by Eq. (22) and the other ob-
tained considering Eq. (32), in the range 0.3o & r &0.7]r.
Our determination of the normalization constant gives
JV=5.551+0.016. This result does not depend critically
on the range. Finally, considering the data of Fig. 5 from
r =2, 34cr to the side of the simulation box at r =3.34o.
we compute the condensate fraction as no =0.0451
+0.0003.

0.10

0.05

ooo
0 1

I I I I I I I I I I ] ] I I

FIG. 5. The unnormalized single-particle density matrix
computed at the equilibrium density with n=9 as the power law
for the shadow model potential.

It is interesting to compare this variational result with
the others obtained using different trial functions. For
completeness, a comparison with GFMC is worthwhile.
This is shown in Table III. Here again we have a further
hint that our trial function implicitly includes enhanced
three-body correlations. Although the condensate frac-
tion measured with a wave function of the Jastrow form
plus explicit three-body interactions gives results that are
higher than the ones obtained with the shadow wave
function, both results are substantially lower than the
values determined from trial functions having a simple
Jastrow form. From this we conclude that in achieving
lower energies than the simple Jastrow form, both the
shadow wave function and the wave function with expli-
cit three-body correlations yield less accurate descrip-
tions of the off-diagonal long-range order in the true
ground-state wave function: both results are about a fac-
tor of 2 smaller than the established value from GFMC of
no =0.0935+0.0005. According to Whitlock the re-
sults of Ref. 27 shown as the last row of Table III are in

TABLE III. Fraction of atoms condensed in the zero-momentum state at the equilibrium density,
po'=0. 365. The trial functions indicated for GFMC results are the ones used as importance functions.
The notation is the same as the one in Table II. The first line shows the result obtained with a shadow
trial function {SH). All the calculations have been performed for systems of 108 particles.

Variational

np

Green's-function Monte Carlo
m&xed extrapolated

np np

SH
J

J{PPA)'
J+T'

0.0451+0.0003
0.0932+0.0003
0.1069+0.0002
0.0562+0.0005

0.1002+0.0003
0.0680+0.0004

0.0935+0.0005
0.0798+0.0008

'Reference 27.
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fact less reliable because of a less than optimal choice of
trial function. Much longer Monte Carlo runs than were
made would have been required to achieve a reliable con-
vergence for no.

V. THE SOLID PHASE

In this work, we used the shadow wave function to
study for the first time the recrystallization of a
configuration of He atoms half of which had been melted
to a liquidlike state (see Sec. VI). From this we infer that
one could start from any reasonable configuration, say a
liquid, and if the right values of the variational parame-
ters were used, then by waiting long enough, one would
eventually reach an equilibrated crystalline state. Of
course if we start from a perfect crystalline structure the
equilibrium state of the system as a solid will be obtained
much more rapidly. As a matter of convenience we have
begun the simulations reported in this section from the
same fcc lattice that was used at the beginning of the
simulations in the liquid phase. Using this procedure, the
equilibrium state was quickly obtained.

For the crystal phase of He the variational energy was
computed using 108 particles at the densities po =0.55
and 0.491. The latter is the melting density determined'
by GFMC. At po. =0.55 three different power laws have
been tested for the model potential v (s), Eq. (7). The re-
sults are shown in Table IV, and they are less sensitive to
the exact form of the model potential of the shadow coor-
dinates than those obtained for the fluid phase.

Using the Aziz potential and a standard Nosanow-
Jastrow (N J) wave function —a Jastrow factor multiplied
by a product of Gaussian localization factors that bind
the atoms to fcc lattice sites —we have computed the
variational energy and it is presented in Table V. The op-
timization of this wave function requires the variation of
the parameters b and C, cf. Eqs. (4) and (5). In this last
equation, for the NJ trial function, the value sk are just
the fcc lattice sites. Our best variational energy for this
trial function is obtained for b =1.10o and C =4.8o
It is also useful to quote results determined with a more
elaborate trial function and by the GFMC method.

If we compare the energies obtained with the shadow
wave function with that found from Nosanow-Jastrow,
we see that the first trial function gives significantly lower
values. Now let us consider the difference between
GFMC and variational results determined in the liquid
and in the solid phase. If we do this first with a trial
function of the Jastrow form plus explicit three-body
correlations we see that this difference is constant at

TABLE V. Results for the crystalline phase obtained at
pa'=0. 55 for He. In the first column we give the trial or im-

portance junction used. The Nosanow-Jastrow wave function is
indicated by NJ, and a Nosanow-Jastrow function plus explicit
triplet correlations by NJ+T. In the following columns we

show, respectively, the variational energies, the variational Lin-
demann ratio, and finally the mixed-energy estimator for the
GFMC calculation. The GFMC result has been interpolated
using the equation of state of Ref. 16; although we do not give
an error, it should not exceed 2%. All the calculations have
been performed for systems for 108 particles. The energies are
presented in K per atom.

NJ
NJ+Tb

'Reference 16.
Reference 28.

Evar
T

—3.322+0.019
—3.786+0.014

Lindemann
ratio

(variational)

0.22

Emixed a

—4.23

about 0.4 K. Making the same calculation for the sha-
dow wave function we see that although in the liquid
phase this difference is 0.9 K it is lowered to 0.7 K in the
solid phase. This fact suggests that this description of the
actual system by the shadow wave function is improved
when we go from the liquid to the solid phase.

In the crystal phase we have computed Lindemann's
ratio. This quantity is defined as the quotient of the
square root of the second moment of the single-particle
distribution function divided by the nearest-neighbor dis-
tance. Results are shown in Tables IV and V, with Table
V containing the values obtained from a NJ wave func-
tion. The Lindemann ratios of the shadow particles are
given in Table IV. Here the I; in Eq. (23) are the lattice
positions shifted by the distance by which the center of
mass of the shadows has diffused. The values for the Lin-
demann ratio of the actual quantum system, described by
the real particles, has a value around 0.23, that is charac-
teristic of quantum solids at these densities. ' As one ex-
pects, the shadow coordinates have a much smaller value,
one typical of a classical solid. For example, the classical
Lennard-Jones system near melting has Lindemann ratio
near 0. 14.

The wave function discussed here has been shown
analytically to have a Bose-Einstein condensation in the
solid phase. The condensate is positive although it could
be very small. Our calculations did not show evidence of
such a condensate. One possible reason for this result is

TABLE IV. Variational energies and Lindemann ratios obtained with the shadow wave function for
the crystalline phases at two densities. The same units of Table I are used.

PcT

Lindemann ratio
Real Shadow

Parameters
bsh n

0.491
0.55
0.55
0.55

—5.004+0.055
—3.521+0.032
—3.529+0.027
—3.563+0.031

0.25
0.23
0.23
0.22

0.18
0.16
0.13
0.13

1.10
1.10
1.10
1.09

1.70
1.67
1.35
1.28

5

5

9
12

4.8
5.7
5.7
5.7
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that it takes a very long simulation to allow exchange be-
tween the shadows and thus to get a positive condensate.
Perhaps if one rewrites the wave function in a way in
which each of the real particles is explicitly coupled to al/
the shadows it would be possible to measure the conden-
sate fraction in a shorter amount of computer time. We
have not yet explored this possibility.

Our failure to see a condensate does not imply that in
calculating properties of the crystal we are in fact violat-
ing the symmetry of the original trial function as it is
considered in Sec. II. If we take into account the cry-
stallization experiments of the next section we can make
the following remarks. During the evolution from a
liquidlike configuration to one of a solid, all
configurations could be sampled. In this process the sys-
tem will choose the most important configurations, and
finally reach, as we want, equilibrium as a solid.
Specifically we want the shadow particles, the part of the
wave function that provides the interaction for
solidification, to reach and then remain in a crystal struc-
ture. Besides there is no constraint that prevents ex-
change between the shadow particles, even though the ex-
changes are likely to be infrequent. In another words,
during the simulations the system can be in any of its
configurations, and so we can say that the symmetry of
the wave function, as well as its independence of an a
priori lattice, has been probed.

The single-particle density p(r) about a lattice site is of
interest since in our wave function we do not have any
explicitly prescribed lattice sites. The spherical average
of this single-particle density p(r) has been computed for
the real particles and the shadow coordinates using Eq.
(23). Figure 6 presents both p(r) on a semilog plot at the
density pcs =0.55. The behavior of both curves are near-
ly Gaussian. This conclusion can also be drawn from
Table VI, where we give the first three moments of p(r),
the ratios (r ) I—', (r ) and (r )I'~,'(r ) for two
difFerent densities. These ratios are unity for a perfect
Gaussian distribution. Results for the angular depen-
dence of p(r) are desirable since in classical hard-sphere
systems considerable anisotropy is present ' and we ex-
pect the shadows to behave like classical particles. We
are presently performing such simulations in an effort to
compare with recent experiments attempting to measure
the anisotropy in solid helium.

The results at pu =0.55 from the NJ wave function,
the shadow wave function, and path-integral Monte Car-
lo are compared in Table VII. %'e performed the path-
integral Monte-Carlo (PIMC) simulation at a tempera-
ture of 4 K along the lines of Pollock and Ceperley's
work. The PIMC method gives essentially exact results
within statistical error and so may be used to test the rel-
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FIG. 6. Spherical average of the single-particle density func-
tion for displacements from a lattice site at density po =0.55
for the real particles, solid line. For the shadow coordinates
this quantity is shown by the dashed line.

ative merits of the various trial wave functions. PIMC is
inapplicable at zero temperature, but does not involve the
use of a trial or importance function. It is thus comple-
mentary to variational and to GFMC when it can be used
at a low enough temperature so that results may be extra-
polated reliably to zero. From Table VII one sees that
the optimal shadow wave function does better than the
optimal NJ wave function in predicting the three mo-
ments (r ), (r ), and (r ). The NJ wave function un-
derestimates (r ) by about 20% whereas the shadow
wave function is only off by 10%. We estimate' that the
effect of finite temperature in the PIMC calculation raises
( r ) by about 5% above the actual T=O value. Thus the
correlation for this fact brings the shadow wave function
results into even closer agreement with the exact values.
A similar improvement should occur in the higher mo-
ments as well. The three calculations shown in Table VII
predict small but statistically significant deviations from
Gaussian behavior in the moments (r ) and (r ). This
is indicated by the difference from unity of the ratios in
the last two columns. The NJ and shadow wave func-
tions give nearly the same values for the ratios, both un-
derestimating the PIMC results. From the results dis-
cussed in this paragraph, we conclude that the shadow
wave function more accurately describes the single-
particle distribution about a lattice site than does the
standard NJ wave function.

TABLE VI. Moments of the single-particle distribution p(r) and the indicated ratios of these moments at the given densities po.
obtained with the shadow wave function. The lengths are in units of a. The ratios are unity for a Gaussian distribution.

0.491
0.55

0. 126+0.009
0.0997+0.007

0.0267+0.002
0.0168+0.001

0.0081+0.0006
0.0040+0.0003

(r')
5 (r2)2
3

1.017%0.0016
1.01420.0017

(r')
105 ( r2)3

1.053+0.006
1.042+0.005
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(r')
105 ( i2)3
27

TABLE VII. Values obtained using the Nosanow-Jastrow (NJ) wave function, the shadow wave function (SH), and the path-
integral Monte Carlo method (PIMC) for the moments of the single-particle distribution p(r) and the two indicated ratios of these
moments at po'=0. 55. The lengths are in units of cr. The ratios are unity for a Gaussian distribution.

4
(r'& (r')

3

NJ
SH

PIMC

0.0903+0.006
0.0997+0.007
0. 10920.001

0.0138+0.0010
0.0168+0.0010
0.020420.0005

0.0030+0.0002
0.0040%0.0003
0.0055+0.0001

1.016+0.0016
1.014+0.0017
1.025+0.0005

1.051+0.006
1.042+0.005
1.080+0.001

VI. CRYSTALLIZATION

Using the shadow wave function, we have conducted
several simulations starting from an equilibrated liquid
configuration of the system in order to see whether the
system would eventually crystallize. In these runs we
have considered systems with 108, 324, and 864 particles.
The final results were drawn mostly from experiments on
the larger system in order to diminish the role played by
periodic boundary conditions. We watched the evolution
of the system by tabulating at every Metropolis "pass'
the structure function S(k), computed from Eq. (19),
near the its first maximum.

The simulations were started from a fcc lattice. Then,
a fraction of the system was "melted. " That is, a subset
of the particles were allowed to equilibrate as a liquid us-

ing an appropriate set of parameters in the shadow trial
function. The remainder of the system was kept fixed, so
it retained its perfect lattice structure. This part consti-
tuted the seed for the crystallization process. The struc-
ture function normalization is such that at the first max-
imum for the perfect lattice, S(k) is equal to the number
of fixed particles. Prior to the equilibration towards the
liquid phase, the corresponding value of S(k) for the
fraction of the system that melted was also equal to the
number of particles involved. The value of S(k) was
computed for k in the plane parallel to the surface that
separates the two phases.

Now we will describe in detail one simulation per-
formed with 864 particles at po =0.55. Half of the sys-
tem was equilibrated as a liquid using 500 passes. In Fig.
7 we present the evolution of this half as indicated by
S(k) near its fixed maximum; the first few passes are not
shown in the figure. In the other part, the particles were
kept fixed so that if this same calculation were made, we
would obtain the constant value of S(k+=5.66)=432.
After these 500 passes, the whole system was allowed to
evolve with the parameters of Table IV for n=5. The
same analysis was started again for the particles in the
liquidlike configuration in equilibrium. The result is
displayed in Fig. 8. From this figure, it is evident that the
system recovered its structure, reaching a saturation
point after 4500 passes.

To learn if the system actually crystallized, we made a
control run of 1000 passes where the whole system was
allowed to equilibrate starting from an fcc lattice. This
control run was performed at the same density po =0.55
and using the same set of parameters for the solid phase.
We recorded the structure function S(k) near its first
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FIG. 7. The evolution of the structure function for 432 parti-
cles during the period of equilibration towards a liquidlike
configuration. The first few passes are not shown.

maximum for half of the simulation box. The results of
the analysis of the control run are shown in Fig. 9 togeth-
er with the last 1000 passes displayed in Fig. 8. In the
control run, first we have an equilibration of the perfect
lattice, so that the initial value of S(ko =5.66)=432
drops. If we examine Fig. 9, we can see that the mean
equilibrated value of S(ko =5.66) in the control run is
the same as the average value in the run that starts from
the liquidlike configuration. To gain a quantitative
confirmation of this result we adopted the following pro-
cedure. In the control run we blocked the value of
S(ko =5.66) in the last 500 passes into five blocks and
computed the average value and its error. We obtained
the result 102+2. The same procedure was done in the
run where we achieved crystallization. The mean value
of S(kyar =5.66) in this case was 10122, in agreement
with the control run.

In the systems with 108 and 864 particles the size of
the crystallization seed was varied in our experiments.
When we began with —', of the system equilibrated as a
liquid, we were not able to see crystallization during the
runs we made. Monitoring the particles that form the
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0.491, respectively) differ by about 10'j/o and our varia-

tional parameters change by roughly the same amount.
Further experimentation is necessary to determine
whether the optimal shadow wave function is actually
continuous through the coexistence region.

We believe that wave functions of the shadow type can
be used to explore some additional important low-
temperature phenomena. In collaboration with Luciano
Reatto we plan to use them to study defects in quantum
crystals as well as to compute the excitation spectrum of
the liquid phase. It appears to be possible to construct an
analog of Penrose's finite-temperature density matrix
based upon shadow wave functions. One can also devise
a shadow wave function with a net angular momentum
that describes a quantum vortex while permitting a
nonzero density of atoms on the vortex core.

Finally, we note that we are dealing with a new ansatz
to treat many-boson systems. We expect that new in-

sights on the nature of these and related quantum sys-
tems will be realized through the shadow wave function.
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