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The ground-state properties of particles obeying fractional statistics, on lattices with spherical to-
pology, are studied numerically. The possible existence of superfluidity in semion systems is exam-
ined by studies of pairing energies, flux quantization, and the effects of applied magnetic fields. Evi-
dence of superfluidity is observed, in agreement with previous numerical studies on cylindrical topo-
logies. Comparison of the results for these different topologies allows some conclusions to be made
about finite-size and boundary effects. In particular, we argue that there is no constant shift in the

flux-quantization values.

I. INTRODUCTION

The discovery of high-temperature oxide superconduc-
tors has stimulated interest in the study of superconduc-
tivity in quasi-two-dimensional systems, since the con-
duction electrons in these oxides are essentially con-
strained to move in two-dimensional sheets. A unique
feature of two-dimensional systems is that they can sup-
port quasiparticles obeying fractional statistics (referred
to as anyons)! while only Fermi and Bose statistics are al-
lowed in three dimensions.> Fractional statistics can be
parametrized by a continuous variable a such that the
anyon wave function acquires a phase factor ¢'*” from in-
terchange of two identical anyons. Thus, fractional
statistics interpolate between Bose (a¢=0) and Fermi
(a=1) statistics.

Quantum statistics have profound consequences for
condensed matter systems at low temperatures, giving
rise to the concepts of a Fermi surface for fermions and a
condensate for bosons. It is pedagogically very interest-
ing to study the consequences of fractional statistics at
low temperatures in physical systems where the dynamics
of the particles are constrained to two dimensions. The
electrons in an inversion layer at low temperatures pro-
vide an example of such a system, and in a large trans-
verse magnetic field under certain conditions, are expect-
ed to have quasiparticle excitations which obey fractional
statistics.” High-temperature oxide superconductors also
appear to be highly two dimensional, and Laughlin* has
proposed a theory of two-dimensional superconductivity
which is driven completely by the fractional statistical
nature of the charge cariers. In this theory, the charged
carriers obey fractional statistics with a=1. Such parti-
cles are referred to as semions.

There is in fact strong evidence that certain anyon sys-
tems may form a superfluid ground state at low tempera-
tures. Anyons may be described as charged bosons or
fermions with a magnetic flux tube attached to each parti-
cle.® When particles move around each other, each parti-
cle acquires a Bohm-Ahoronov phase due to the other
particles, which is precisely the phase that would be ac-
quired due to the fractional statistics. Therefore, bosons

)

(fermions) carrying flux a (1—a) correspond to a statis-
tics. Arovas et al.® calculated the second virial
coefficient of a free-anyon gas and found that when
anyons are treated as fermions with a gauge interaction,
the second virial coefficient is reduced from that of free
fermions. This suggests that there are some similarities
between free anyons and fermions with attractive interac-
tions. This similarity can also be seen by considering the
anyon propagator. When an anyon moves around other
anyons its propagator will acquire a path-dependent
phase which leads to interference between different paths.
However, the energy will be lower if anyons correlate
their motion to form bosonic quasiparticles and hence
avoid the destructive interference. In particular, a pair of
semions form a boson and hence it is possible that
semions may pair to form a charge 2e superfluid due to
their statistical correlations as proposed by Laughlin* on
the basis of a Hartree-Fock calculation for semions.
Furthermore, Fetter, Laughlin, and Hanna’ calculated
the collective excitations of a semion gas in the random
phase approximation and found a linear mode corre-
sponding to a compressible sound mode suggesting that
the system behaves like a superfluid. Canright, Girvin,
and Brass® also found numerical evidence for semion
pairing from exact diagonalization studies of semions on
a square lattice with cylindrical symmetry (i.e., periodic
boundary conditions were applied in one direction).

In this paper, we report numerical results which we
have obtained for semions on lattices superimposed on a
sphere. The spherical topology was chosen in order to
eliminate edge effects associated with an open topology.
Edge effects, or effects of boundary conditions in general,
may be large for a finite system of anyons due to the
long-range gauge interactions. Also, since the infinite
systems are expected to be compressible the sensitivity to
boundary conditions will be much larger, for example,
than that found in numerical studies of the fractional
quantum Hall effect.” Therefore, it is desirable to com-
pare results with different boundary conditions imposed
and, where possible, our results are compared to those of
Canright, Girvin, and Brass.® A torus, or periodic bound-
ary conditions in both directions, is the usual choice for
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eliminating edge effects in numerical studies. However,
there are some subtleties in applying two-dimensional
periodic boundary conditions to a system of particles
obeying fractional statistics.!® On the other hand, the
sphere is particularly simple in this regard."!

The remainder of this paper is organized as follows:
The numerical technique for finding the low-lying energy
states of anyons on a lattice with a spherical topology is
described in Sec. II. In Sec. IIl, we identify and check
various signatures for superfluidity such as the pairing
energy, flux quantization, and critical field by studying
systems of hard-core bosons and of fermions with attrac-
tive interactions. The case of semions is discussed in Sec.
IV. Section V contains a discussion of all of the numeri-
cal results.

II. NUMERICAL TECHNIQUE

Following Wilzcek,” we treat anyons with a statistics
as hard-core bosons with flux tubes of strength a¢,,
where ¢,=hc /e is the flux quantum. Thus the Hamil-
tonian is
2

+ 3 Vi —r;),

j<i

e

1
2m 4 j<i

where V is the interparticle interaction which is zero for
free anyons and the gauge interaction is

i . 12

A =a,Ve,; . (2.2)

lf,‘ I ‘2
Here 0, is the angle between particles labeled by / and j
with respect to some fixed coordinate system. Since A,
is a total derivative, the gauge interaction exerts no forces
on anyons but provides the phase correlations between
them as dictated by their statistics. Thus, we can always
choose a gauge in which A;; is zero everywhere except
along the branch cut of §;;. In such a gauge, each anyon
can be thought of as having a string attached to it. This
“string gauge” is a convenient gauge for numerical calcu-
lations and is the gauge chosen for this work. It is clear
from the Hamiltonian that even the problem of free
anyons is intrinsically a many-body problem. This makes
it difficult to obtain analytic solutions and, in fact, exact
solutions exist only for the case of two anyons and for a
few special cases of three anyons.®1?

We study the problem of anyons on a finite lattice since
this results in a finite Hilbert space which can be studied
numerically. At low densities the results should be simi-
lar to those of the continuum problem but near half filling
there typically will be noticeable lattice effects.!* For
anyons confined to lattice sites the Hamiltonian becomes

H=—t 3 ei¢ma,Tam+V > mn, ,

<Im > <Im>

(2.3)

where a;r creates a boson plus string on lattice site / if the
site is initially empty, n,=a1ta,, and we have specialized
to the case of nearest-neighbor interactions of strength V.
The statistical phase associated with hopping from site /
to m is
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Sm=ad, [ Al (2.4)
where A is the statistical vector potential due to all the
other particles. Without loss of generality we take ¢t =1.
As explained previously we study lattices with spherical
topology. There are five regular polyhedra whose ver-
tices lie on the surface of a sphere. The two largest are of
interest: the icosahedron with 12 vertices which are tak-
en to be the lattice sites and the dodecahedron with 20
vertices or sites. Thus, we can study up to 11 anyons on
the icosahedron and up to 19 anyons on the dodecahed-
ron. The largest Hilbert space is for ten anyons on 20
sites which has 184 756 states. Using the fivefold rota-
tional symmetry we are able to diagonalize # even for
this largest manifold of states. The diagonalization is
performed using a modified Lanczos method on the
Cray-MP/24 at the Ontario Centre for Large Scale Com-
putation in Toronto.

The advantages to working on a regular polyhedron
are that each site is equivalent and fractional statistics are
particularly simple to formulate in this topology. How-
ever, on the sphere there is a constraint on the allowed
values of the statistical parameter o

alN—1)=1I, (2.5)

where N is the total number of anyons and [ is an integer.
This constraint is easily seen to arise from considering a
path where one particle encircles the other N —1 parti-
cles. On the surface of a sphere, this path can also be
considered to enclose no particles and hence must give
rise to a phase which is simply a multiple of 2, as hap-
pens if Eq. (2.5) is satisfied. This constraint can also be
thought of as arising from the monopole constraint for
the total flux through a closed surface, keeping in mind
that each particle sees only the flux attached to the other
particles and does not see its own flux.

In the thermodynamic limit N — o this constraint is
insignificant. However, it does restrict the statistics one
may consider for a finite system. In particular, for the
case of semions, only odd numbers of semions are al-
lowed. In order to study the possible pairing of semions
it is also necessary to study even numbers of semions.
This can still be done in the spherical geometry in two
different ways. One way is to introduce a small uniform
magnetic field. In the presence of a magnetic field the
constraint becomes

a(N—1)+¢/¢g=1, (2.6)
where ¢ is the total flux due to the external field. Thus,
one may study an even number of semions in a field of
strength ¢,/2. One may think of this as the particle in-
teracting with its own flux tube in a mean-field sense. For
a large system this field is very small since ¢ is the total
flux over the entire surface. Alternatively, one can study
an odd number of semions but with the position of one
semion fixed at the north pole, for example, so that it has
no dynamics. This is equivalent to an even number of
semions in the presence of a defect which restores the
monopole constraint. We will use both of these pro-
cedures in order to interpret the results for even numbers
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bers of semions.
For anyons confined to the surface of a sphere the vec-
tor potential in the string guage may be written as

A, =add(¢;—¢;,)[0(6,—6,)—1/2]

M «a
+3 %8(¢i—27rm /M), 2.7)

where O is the heaviside theta function. The first term
corresponds to a string emanating from each particle and
terminating at the south pole. Every time a particle
crosses another particle’s string the wave function, and
hence the hopping matrix element, picks up a phase of
+amw. The second term corresponds to M strings each of
weight (N, —1)a¢,/2M emanating from the north pole
and terminating at the south pole and which must be
present to ensure that all closed loops give the correct
statistical phase. M is an integer chosen to preserve the
azimuthal symmetry which we use to block diagonalize
the Hamiltonian matrix.

III. SIGNATURES OF SUPERFLUIDITY

The main purpose of this study is to investigate the
correlations due to statistics in systems of semions and, in
particular, to investigate the possible pairing of semions.
The questions we focus on are (i) is the statistical interac-
tion alone enough to pair semions and (ii) if so, do these
pairs form a coherent state and hence a superfluid? We
discuss the following four signatures of a superfluid state
consisting of pairs of particles in a finite system.

(1) Pairing Energy: As a first check on whether there
are correlations which tend to pair the particles, one can
calculate the pairing energy defined as

AyN)=E(N+2)+E(N)—2E(N+1), (3.1

where E (N) is the total ground-state energy of a system
of N particles. If the particles are paired one finds that
A,(N)<O0 for even N and A,(N)>0 for odd N. In the
thermodynamic limit, A(N 4q)= — A(N¢yen )-

While a negative A,(N) is a necessary condition for
particles to form pairs, it is not sufficient for those pairs
may cluster further into still larger clusters. Therefore,
one also needs to demonstrate that the effective interac-
tions between pairs are repulsive. This can be done by
calculating the quadrupling energy defined as

Ay N)=E(N+4)+E(N)—2E(N+2)

=A,(N+2)+A,(N)+2A,(N+1) . (3.2)

For repulsive effective interaction between pairs A, (N)
would be positive for a paired state and no clustering
should occur.

(2) Periodicity of E(¢): Assuming that the dimension
of a plaquette is larger than the coherence length, one can
pass a thin solenoid through the north and south poles of
the sphere and vary the flux through the solenoid con-
tinuously. Then, in the thermodynamic limit all physical
quantities including the energy E(¢) must be periodic in
the flux ¢ with period ¢,. However, if the particles are
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paired as are the electrons in a BCS superconductor, then
the energy will be periodic with period ¢,/2—i.e., the
flux quantum for a paired state is ¢,/2. The periodicity
in E(#) is a measure of the charge of the carriers. In a
finite system the energy will not be precisely periodic.
However, if pairing exists the energy will exhibit minima
at integer multiples of ¢,/2 and the difference in energy
between the minima at odd-integer multiples and the
minima at even-integer multiples will vanish in the ther-
modynamic limit.

(3) Flux Quantization: If a coherent, paired state exists
with off-diagonal long-range order (ODLRO), then the
flux through the solenoid is quantized in integer multiples
of ¢,/2. Thus, in the thermodynamic limit the energy
barrier between two adjacent minima in E(¢) is in-
finite. In a finite system this energy barrier
[E peak = E max(9) = E 1,0 (¢)] scales as the number of parti-
cles N if there is ODLRO.

(4) Critical Field: If there is ODLRO flux quantization
will persist in the presence of a small, uniform magnetic
field but will be destroyed by a sufficiently strong field.
For the case of semions, even in the absence of an exter-
nal magnetic field the system does not have time-reversal
symmetry. Therefore, the critical field which destroys
the ODLRO will, in general, be different for the two
different orientations of the field.

The first two signatures are indications of pairing while
the last two are indications of coherence or ODLRO. In
order to distinguish between those signatures resulting
from finite-size effects and those that will survive in the
thermodynamic limit, we simultaneously search for all
four signatures described above and check for consisten-
cy. These signatures have the advantage that they only
depend on energies and not on wave functions. The
singular gauge transformation that allows one to treat
anyons as bosons plus flux tubes does not leave the wave
functions invariant and, in particular, does not leave the
one- or two-body density matrices invariant. This makes
it difficult to study ODLRO directly in the density ma-
trices.

In order to check that the systems we can study nu-
merically are large enough to give rise to clear signatures
of ODLRO, we first study the case of fermions with at-
tractive interactions. We use the Hamiltonian given by
Eqgs. (2.3) and (2.7) with a=1 and with the interaction V'
negative. Since we are considering spinless fermions for
sufficiently strong attractive interactions the fermions are
expected to pair and form a triplet superconductor.

Figure 1 shows the results for six fermions on an
icosahedron (12 sites). With no nearest-neighbor interac-
tion ¥V there is no indication of a second minimum in
E(¢) at ¢,/2 [Fig. 1(a)]. With a sufficiently strong attrac-
tive interaction V= V,, a second minimum develops at
¢o/2 [Fig. 1(b)]. These two minima persist in a small
magnetic field [Fig. 1(c)] and the second minimum is des-
troyed by a field of B = 5¢, [Fig. 1(d)] as expected. Fig-
ure 2 presents similar results for eight fermions. In this
case, the pairing is very stable in the sense that it persists
up to the largest magnetic field one can apply to the sys-
tem which is 10 ¢, [see Fig. 2(c)]. On a lattice the
ground-state energy is a periodic function of external
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FIG. 1. Ground-state energy as a function of flux for six fer-
mions on an icosahedral lattice: (a) V=0, B=0; (b) V= —15,
B=0; (c) V=—15, B=¢,; (d) V=—15, B=5¢,. The curves
shown in (b) and (c) display the two minima at ¢ =0 and ¢,/2
expected for a charge 2e superconductor.

magnetic field with a period of one flux quantum per pla-
quette. Furthermore, the time-reversal symmetry which
fermions obey implies that E(B)=E(— B) and hence, the
maximum field is a half flux quantum per plaquette. It
should be mentioned that in some cases pairing of fer-
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FIG. 2. Ground-state energy of eight fermions on an
icosahedron: (a) ¥=0, B=0; (b) V=—15, B=0; (c) V=—15,
B =104¢,.

mions was not observed. The reason is that one typically
needs large attractive interactions to pair spinless fer-
mions. If the interaction V is increased sufficiently, the
fermions will form a cluster rather than a coherent paired
state and other minima in the energy develop.

We have also studied hard-core bosons since this is one
of the simplest systems that displays ODLRO. Figure 3
shows the total ground-state energies as functions of flux
¢ for different numbers of particles on a dodecahedral lat-
tice. These are charge e superfluids and hence E (¢) has
periodicity ¢, as expected. The most noticeable feature
in Fig. 3 is that the energy barrier E,, scales as the
number of particles N. This energy barrier is plotted in
Fig. 4 as a function of N for bosons on both dodecahedral
and icosahedral lattices. For the lattices considered,
there is particle-hole symmetry for boson systems.
Therefore, for the dodecahedral lattice, E ., (N) is only
plotted up to half filling. Figure 4 clearly shows scaling
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FIG. 3. Ground-state energy as a function of flux for bosons
on a dodecahedron. The curves have been shifted so as to coin-
cide at zero flux.

behavior except at half filling. This scaling behavior is a
clear signature of ODLRO. The deviation from scaling
at half filling is attributed to lattice effects.'?

The above results for fermions and bosons show that
the lattices considered are large enough to display clear
signatures of ODLRO.

IV. PAIRING OF SEMIONS

Next we consider semion systems. We have studied
many semion systems on icosahedral and dodecahedral
lattices. Here, we present the numerical results for free
semion systems.

We first consider the semion pairing energy A,(N) as
defined in Eq. (3.1). In Fig. 5, the pairing energy is plot-
ted as a function of particle number N, where the circles
are data on a dodecahedron and the squares are those on
an icosahedron. The open cirlces and squares are those
for even N while the solid ones are those for odd N. It
can be clearly seen from Fig. 5 that there is a distinct
correlation in the pairing energy. Namely, A,(N) is nega-
tive for all even N, except for those systems with a very
small Hilbert space, and is positive for all odd N, as ex-
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0.5 ¢ -

0.0

FIG. 4. Energy barrier in E(¢) as a function of particle num-
ber for bosons. The circles are those on a dodecahedral lattice
and squares are those on an icosahedral lattice. Due to
particle-hole symmetry, only points up to half filling are shown
here for the dodecahedral lattice. This barrier is proportional
to N in a system with ODLRO. Lattice effects are responsible
for the deviation from linear behavior near half filling.

2 4 6 8 10 12 14 16
N

FIG. 5. Pairing energy as a function of particle number for
semions on both lattices. The circles are for the dodecahedron
and the squares are for the icosahedron. The open circles and
squares are for odd N and solid ones are for even N. Note that
this energy is negative for even N and positive for odd N if the
particles are paired.

pected for paired states. This correlation in the pairing
energy is strong evidence that there are effective attrac-
tive interactions between free semions. In order to make
sure that those attractive interactions will not lead to
clustering of semions, we also calculate the quadrupling
energy A,(N) as defined in Eq. (3.3). For the cases of
pairing states (even-number semion systems), we find that
all the quadrupling energies are positive indicating that
the effective interactions between semion pairs are repul-
sive. Therefore, we can conclude that the fractional
statistics provides a pairing mechanism for the free-
semion systems and it is conceivable that this pairing
mechanism will lead to a condensate at low temperatures.

We have also studied flux quantization for semion sys-
tems. In Figs. 6-8, we present the results for the two
largest systems, excluding the cases of half filling, on the
dodecahedron (20 sites) and the icosahedron (12 sites).
Figure 6 shows the energy as a function of flux (in units
of ¢,) for 12 free semions on a dodecahedral lattice. Fig-
ure 6(a) clearly shows a second minimum in the energy at
¢y/2, a signature of pairing. Figure 6(b) shows the same
system in the presence of a uniform external magnetic
field with total flux equal to one flux quantum. In this
case, the two energy minima persist. However, when the
magnetic field is increased to 3 flux quanta only one
minimum remains [see Fig. 6(c)]. The critical field de-
pends on the orientation of the field. If the field orienta-
tion is reversed, the critical field changes [see Fig. 6(d)].
This signature of pairing is stable with respect to small
perturbations in the system. Figure 7 shows that the
pairing features persist in the presence of small repulsive
or attractive interactions between semions. Figure 8
displays the results for four free semions on an
icosahedral lattice which also display signatures of
ODLRO.

Curves similar to those shown in Figs. 68 were found
for all cases of even numbers of semions with N =4 ex-
cept for the two cases of half filling (N=6 on the
icosahedron and N =10 on the dodecahedron) and for
N=8 and N =14 on the dodecahedron. At half filling,
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FIG. 6. Ground-state energy as a function of flux for 12
semions on a dodecahedral lattice: (a) ¥=0, B=0; (b) V=0,
B=¢y, (c) V=0, B=3¢g; (d) V=0, B= —¢,.

additional minima were observed. These results are con-
sistent with those found by Canright et al.? and with an-
alytic results of Fradkin'’® which suggest a competing
quantum Hall state at half filling. We note that this ab-
sence of pairing at half filling accounts for the small pair-
ing energy for N=8 on the dodecahedron (see Fig. 5).
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FIG. 7. Ground-state energy as a function of flux for 12
semions on a dodecahedral lattice: (a) V=1, B=0; (b)
V=-0.2, B=0.

The absence of a clear signature of pairing for the cases
of N=8,14 suggests significant finite-size effects. We
note that semion pairing was also not observed in Ref. 8
for the case of 14 semions on 20 sites, suggesting that lat-
tice commensuration effects may also be playing a role.

For odd numbers of semions no pairing was observed.
Figure 9, for example, shows the energy flux curve for
five semions on the icosahedron and 11 semions on the
dodecahedron. This is a finite-size effect which one
would expect to disappear in sufficiently large systems.
However, it clearly points out the need to look for multi-
ple signatures of pairing and ideally to study the signa-
tures as a function of system size.

In all of the curves presented, the boundary conditions
for even numbers of semions were treated by localizing an
extra ‘“‘semion” at the north pole. The observed second
minimum is deeper in this case than it is when a small
external field is added. One reason for this is that for a
finite system a field with total flux ¢,/2 is not a very
small field, and hence it may weaken the coherence in the
system.

An important symmetry emerges from our calcula-
tions. Namely, the semion ground state energy as func-
tion of flux ¢ always satisfies

E(¢)=E(—9¢) . 4.1)

In particular, ¢=0 is always a energy minimum for all
the paired semion systems. This symmetry would be re-
quired for any systems with time-reversal symmetry
(T)—such as boson and fermion systems. However, T is



2228 WEIKANG WU, C. KALLIN, AND A. BRASS 42
T T T T

-11.10 (a) | -13.60
-11.20 | 1 -13.80
-11.30 . -14.00

S -11.40 s

& -11.50 1420
-11.60 -14.40
-11.70 -14.60
-11.80

-10.70
-10.80
-10.90
S -11.00
-11.10
-11.20
-11.30
-11.40

-9.50

-10.00
S -10.50
[€a]

-11.00

] 1
1150 0T 0.2 0.2 06 08 1.0

-11.00 . — I
-11.50 |
-12.00

-12.50

E(¢)

-13.00

-13.50

-14.00 1 1 L .
0.0 0.2 04 06 08 1.0

¢/ %o

FIG. 8. Ground-state energy as a function of flux for 4
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broken in anyon systems and it is not obvious that Eq.
(4.1) should be satisfied.'* From their numerical results
Canright, Girvin, and Brass® concluded that the minima
in E(¢) are located at odd-integer multiples of +¢,, and
hence E(¢)#E(—¢). They attributed this to broken
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FIG. 9. Ground-state energy as a function of flux for (a) 11
semions on a dodecahedral lattice; (b) 5 semions on an
icosahedral lattice.

time-reversal symmetry. Since the positions of the energy
minima are experimentally measurable, a shift away from
¢ =0 could be one signature of anyon superconductivity.
If the energy minimum is at 70, then in the flux quanti-
zation experiment one would observe a sudden appear-
ance of a nonzero net flux when the system is cooled
below T, under zero external field. Such a phenomenon,
if it occurred, would be quite strange indeed. Our results
show that ¢=0 is a energy minimum for the spherical
geometry and that the above mentioned anomaly does
not appear.

The position of the minimum of the E(¢) curve is
dependent on the boundary conditions applied. For
anyon systems with cylindrical topology the phases asso-
ciated with all closed loops, except for two on the open
edges, are well defined. Let the phases associated with
the two-edge loops be ¢, and ¢, respectively. Then the
fractional statistics require that

é6,—¢,=2ma(N—1) . 4.2)
Therefore, one of the phases, say @, is still undefined.
The choice of this phase will directly affect the position of
the minimum of the E(¢) curve.

A natural way to choose the boundary conditions (in
this case ¢,) is that they should respect the symmetries of
the inifinte system. The Hamiltonian (2.1) possesses TP
symmetry but T and P are broken individually. There is
also two-dimensional spatial inversion symmetry, i.e.,
x — —x and y — —y. For the case of a cylinder this in-
version symmetry requires that
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6 =—¢,=ma(N—1), (4.3)
when the external flux is zero. Eq. (4.3) tells us that for
semions (a= 1), one can choose ¢;=0 mod() only when
the number of semions is odd. For an even number of
semions, which is the case of interest, one must choose
¢,=(7/2) mod(7). This is exactly the shift which Can-
right et al. have observed in Ref. (8), since they set ¢, =0
for even N. Therefore, for anyon systems with cylindrical
topology the ground-state energy E(¢) is always an even
function of ¢ if inversion symmetry is imposed.

On a spherical lattice with zero test flux there are no
edges and the phases associated with any closed loops are
well defined. Thus, there are no ambiguities in the origin
of E(¢), and we have found that E(¢) is always a even
function of ¢. Although the boundary problem does not
occur in the spherical topology, there is a closely related
phenomena—namely, the constraint on the allowed
statistics.

For the disk geometry discussed in Ref. (8), there is no
obvious symmetry that would require that the boundary
condition satisfies Eq. (4.3). However, we believe that the
shift in the minimum of E(¢) would not survive in the
thermodynamic limit. First, the shift is nonzero only for
an even number of semions. Second, one can eliminate
the shift by adding an external magnetic field with total
flux {¢,. In the thermodynamic limit such a field is

negligible.

V. CONCLUSIONS AND DISCUSSIONS

We have studied semions on finite lattices with spheri-
cal topology by numerically diagonalizing the Hamiltoni-
an matrix focusing on the possible superfluid correlations
in such systems. The cases of fermions with attractive in-
teractions and hard-core bosons were studied for the pur-
poses of testing our numerical procedures and confirming
that the lattices under study are large enough to display
various signatures of a superfluid state. (Note that com-
paring the results for fermions treated as bosons plus flux
tubes with the sum of single-particle energy levels pro-
vides a nontrivial check of the numerical calculations.)
In order to distinguish genuine features of superfluidity
from artifacts due to finite system effects, we believe it is
necessary to study several different signatures simultane-
ously in different size systems. Therefore, we have stud-
ied pairing energies, flux quantization, and critical fields
in semion systems and have checked the consistency
among these signatures. From our numerical results we
draw two conclusions:

(1) There is a clear correlation in the pairing energy,
i.e., there are effective pairing interactions between
semions and the effective interactions between pairs are
repulsive. Furthermore, flux-quantization calculations
also reveal that the charge carriers in the systems have
charge 2e, further evidence that semions pair due to their
statistical correlations.

(2) The pairing features persist in small external mag-
netic fields but disappear when the external field exceeds
a critical value. This indicates that the semion pairs form
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FIG. 10. Level crossings mimicking pairing features for two
filled Landau levels. The case of eight fermions on an
icosahedral lattice is shown: (a) V=0, B=2¢, (b) V=0,
B =¢,. Note the sensitivity to magnetic field in this case.
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FIG. 11. Ground-state energy as function of flux for eight
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sponds to the case of two filled Landau levels: (a) V=0, B=0;

(b) V=0, B=4¢,.



2230

a coherent state, and hence a superfluid.

The coexistence of several signatures of a coherent
pairing state which we have discovered in our numerical
investigations strongly supports the hypothesis that
semions pair and form a superfluid due to the effective
statistical interactions between them. Thus, it seems like-
ly that in the thermodynamic limit charged semion sys-
tems will form a superconducting state at low tempera-
tures. Such a superconductor is expected to exhibit vari-
ous exotic properties. For example, because the time-
reversal symmetry is broken in a system with fractional
statistics the magnetization curve for a semion supercon-
ductor will generally depend on the orientation of the
external field. On the other hand, we have also argued
that in flux quantization measurements the ground-state
energy of a semion gas E(¢) is an even function of ¢, as is
the case for an ordinary BCS superconductor.

Due to the limitation of computer resources, the larg-
est system we could study on a Cray-MP/24 was ten par-
ticles on a 20-site lattice. Finite-size effects are still rela-
tively large for such a system as evidenced by the fact
that signatures of pairing are not seen in any systems
with odd numbers of particles. Therefore, it is necessary
to study several signatures simultaneously. For example,
the discrete energy levels in a finite system undergo level
crossings which accidently mimic pairing in the flux
quantization. We have found that the possibility of such
undesirable resemblances is larger than one might expect.
In fact, we have found that for free fermions in a uniform
magnetic field, level crossings always lead to accidental
pairing features when exactly two Landau levels are
filled. An example of this is shown in Fig. 10. Figure
10(a) shows eight free fermions in a uniform magnetic
field with total flux equal to 2 flux quanta, which corre-
sponds to two filled Landau levels. It shows an acciden-
tal pairing feature. However, this feature does not sur-
vive if the magnetic field is changed slightly as shown in
Fig. 10(b). We have also calculated the Hofstadter spec-
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trum for both icosahedral and dodecahedral lattices, and
have found that for all cases of two-filled Landau level,
the energy flux curves always show accidental pairing
features due to level crossing. This illustrates the impor-
tance of consistency checks among different signatures in
order to identify the genuine features of a superfluid
state.

Other systems may also mimic the flux quantization
curves identified with a paired state. Figure 11 shows the
case of eight anyons with a=23. Figure 10 is the mean-
field counterpart of this case. If the anyons are treated in
the mean-field approximation by replacing the flux tubes
with a uniform magnetic field, the ground state corre-
sponds to two filled Landau levels. Figure 11 is very
similar to Fig. 10, indicating that mean-field theory may
be a good approximation for anyon systems provided an
integer number of Landau levels are filled.

Although we have observed consistent signatures of a
superfluid state in semion systems, we do not have
enough data points to test the scaling behavior in flux
quantization in either the semion or the fermion systems.
Although scaling behavior was seen clearly in the case of
bosons, it appears that one would need to study even
larger systems in order to study scaling behavior in sys-
tems involving pairs of particles.
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