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A theoretical study of superconducting correlations in the two-band Hubbard model, correspond-

ing to a narrow copper d band hybridized with a wide oxygen p band, is presented. Assuming that
direct superconducting correlations have finite amplitude only in the narrow band, we have applied
Hubbard-like decoupling approximations in deriving a generalized superconducting gap function
for indirect singlet pairing in the oxygen band. %'e find this gap to be second order in the hybridiza-

tion. This gap function interpolates between the weak-coupling (BCS) limit and the intermediate-
interaction regime. In the intermediate regime, the gap function scales as the bandwidth of the
correlated narrow copper d band. The magnitude of the gap increases with narrow band filling, and

our analysis indicates a maximum value in the region of half filling.

INTRODUCTION

There exists a wide body of experimental evidence that
indicates that holes induced by doping a high-T, material
are primarily of O(2p) character. ' This seems to suggest
that pairing of oxygen holes may be the dominant mecha-
nism for high-temperature superconductivity. A theoret-
ical framework for the pairing of p holes in the oxygen
band was first proposed by Emery. He invoked a two-
band Hamiltonian in which hybridization between the p
and d bands played the key role and assumed that pairing
was mediated by strong coupling to local spin
configurations on the copper sites. The importance of ox-
ygen bands also has been discussed by Varma et al. ,
who have invoked charge-transfer excitations as the ele-
mentary excitations necessary for superconductivity.
This approach has been emphasized recently by
Chakraverty et al. in a comprehensive review article.
They conclude that the insulating cuprate oxides with a
highly localized network of copper d spins (3d ) are
charge-transfer insu1ators; real-space pairing between ox-
ygen holes leads to high-temperature superconductivity.

The basic model for investigating superconductive
correlations in narrow-band systems is the Hubbard mod-
el. In particular, the one-band Hubbard model with an
on-site attractive interaction has been studied extensively
by a number of authors. Robasckiewicz et al. have ana-
lyzed this model using a Hartree-Fock (HF) mean-field
approach [and assuming a three-dimensional (3D) band
structure] to obtain a phase diagram which is a function
of both an on-site interaction (I) and an intersite interac-
tion {V). They found that the ground state exhibits su-
perconducting order for I &0 and V & 0, independent of
the band filling. (Various other phases also occur de-
pending on the values of I and V. ) Micnas et al. ,

6 as-
surning weak coupling, have demonstrated a similar
dependence for the ground state of the 2D system.
Granted this interest in one-band models, it must be ad-

mitted that more realistic models must address the ex-
istence of two bands in the high-T, materials: a narrow
copper d band hybridized with a wider oxygen p band.
Such a two-band model was first studied by Robasck-
iewicz et al. in an attempt to understand small bipola-
ronic superconductivity in narrow-band systems. In their
model, an attractive on-site interaction (I &0) arises as a
result of the strong coupling between narrow-band elec-
trons and lattice deformations; the phonon coupling to
wide-band electrons is small in comparison and is
neglected. Their model assumes the strong-coupling limit
( ~I ~

much greater than the narrow bandwidth) to achieve
small bipolaron formation; these charged bosons induce
pairings in the wider band through hybridization. De-
tailed phase diagrams have been obtained in this limit.

Electron pairing in the Hubbard narrow-energy-band
model has been considered recently by the present au-
thors. ' In that work, an approximate expression is de-
rived for the generalized energy gap function, 6&„, for a
system of interacting electrons in a narrow s band. This
function has the virtue that it interpolates between the
weak-interaction (BCS) limit and the intermediate-
coupling regime and in doing this tracks the build up of
pairing correlations in the order parameter beyond the
weak-coupling regime.

Our purpose in this paper is to investigate the possibili-
ty of superconductivity in a system consisting of a wide
band hybridized with a narrow band in which attractive
electron {hole) pairing correlations exist. Applied to the
high-T, systems, the relevant bands are the oxygen p
band and the copper d band. That attractive correlations
in a narrow d band can arise by way of several physical
mechanisms (polaronic, excitonic, plasmonic) under-
scores the generality of our starting model. Our principal
aim will be to study the buildup of pairing correlations as
the coupling progresses from weak to intermediate
strength (from ~I~ && 8' to ~I~ = 8', where 8'is the band-
width of the narrow band). Assuming that direct pairing
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correlations have finite amplitude in only the narrow
band and applying Hubbard-like decoupling approxima-
tions, we have derived a generalized gap function for
hybridization-induced pairing of carriers in the wide
band. This gap function reduces to a BCS-like result in
the weak-coupling limit and is proportional to W in the
intermediate-coupling regime.

Park et al. " have performed a local-density approxi-
mation band-structure calculation and find the 0 2p
bandwidth to be about 5 eV. Their estimate is supported
by the analysis of Eskes, Tjeng, and Sawatzky, ' in which
the e6'ects of correlation, multiplet structure, and hybrid-
ization on the electronic structure of the high-T, com-
pounds are considered. Sawatzky, in a recent review, '

has emphasized the narrowness (about 1 eV) of the highly
correlated Cu d band in these materials and has estimated
the t(p —d) matrix element as about 2.5 eV [T~ „(b, ) in

Sawatzky]. Experimental studies like photo electron
spectroscopy, core level x-ray photon spectroscopy,
Auger spectroscopy, and x-ray absorption" ' provide
estimates of the charge-transfer energy and U&& energy of
about 3 and 9 eV, respectively. The large value for U&z

and the relatively small charge-transfer gap make it
reasonable to restrict our attention, in the first analysis,
to a single narrow Cu d subband and a wider 0 2p band.
As a calculational aid, we shall restrict our analysis to
considering the hybridization as a perturbation.

Current experimental estimates' of the parameter
kj, go (kF, the Fermi wave vector; go, the coherence
length) in the high-T, materials support the relevance of
analyses which include intermediate coupling strengths.
For YBazCu307, estimates for kF(0 vary from 5 to 10,
while for La, 85Sro»Cu04 the values range from 10 to 20.
These numbers suggest that the high-T, superconductors
are in the intermediate interaction regime rather than the
Cooper pairing or Bose limits (kFgo«1 and kF(o))1,
respectively). Our investigation of superconducting
correlations in the weak- to intermediate-coupling region
should thus be of considerable interest.

In the preceding equations c; (c;) and p, (p, ) are
operators that create (destroy), respectively, an electron
on copper site i and oxygen site j; cz and c are the
center-of-mass energies of the copper and oxygen bands
and h, is the hybridization overlap integral between Cu
and 0 nearest-neighbor sites. The function V &

represents a Coulomb repulsion between two electrons on
neighboring Cu and 0 sites, and n,~ =p, p, and
n; =c c; are the appropriate number operators.

%'e introduce the d; operators, following Refs. 5 and
18,

=ed +QT n, c +PS, c,
j+ &

—ghj[P(p, c, c, +ct c p, )

J

I, apja f (6)

where

Si+a ,g Tij (Ciacja Cjacia)
J+1

(7)

The analogous Heisenberg equation of motion for p; is

'p(a=eppia+ 2 Tfipi a+2K "~j cj a .
k+I

~a a
dio i, —o io.

where n;+ —n; and n; =1—n;, and a=+.
To obtain a first approximation for the equation of

motion for d; we begin by setting V &
=0. The resulting

equation is

THE HAMILTONIAN AND THE GENERALIZED
GAP FUNCTIONS

Hz=gs„n, +g T,",c; c, +I+ n;&n;&, (2)

We begin by writing a two-band Hubbard Hamiltonian
for electrons (holes) in p and d bands as

H =H~+Hp+Hp~ )

where H& and H are Hamiltonians for electrons in d and

p bands, respectively, and H & is an interaction term.
Specifically,

Solutions of the coupled Eqs. (6) and (8) will lead to gen-
eralized gap functions for pairing in both the p and d
bands. We shall carry out a derivation for the approxi-
mate p-band energy gap LVI, treating the hybridization as
a perturbation. Following this, we obtain the analogous
generalized energy gap function for pairing in the d band,

db I,„,using the same approximation.
We begin our derivation for b,$ by linearizing so as to

keep terms linear in n,-, c, , and p, . In doing this we
neglect all terms involving combinations of these three
operators, thus limiting the heirarchy of the equations of
motion. Doing this we obtain,

and

Hp=+E n;~ +g Ti,'p, p,

Hpd X hij pia j a+ j apia)+ ~p&X Xnianj a' (4) and

j T

Pj —oci —actor Cr —a i pj —ao Pj —aCI —o )CIo

a o'—oPj o = ~ nr, —
, a )Pja

/
Ci —aciapj a — ( Ci—apj —a ) C,a,
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Following the same mean-field approximations for
n.; c; and S; c; ~ given in Refs. 9 and 18, we have in

addition the following:

S, c, =&S, &c, +g &c, c, &T„c,
'

JWl

—g &c, c, &T,,c,
'

In the absence of hybridization, the d-band Hamiltoni-
an leads to two energy levels which in the atomic limit
are separated by I. In the band limit these levels spread
out to form two bands whose centers are separated by en-

ergy I. The preceding approximations introduced
correctly lead to these Hubbard band energies and thus
extend our analysis beyond that obtainable through the
usual Hartree-Fock mean-Geld approach. In using the
preceding approximations, we have not considered spin-
Aip or singlet Kondo-type terms. Further, it should be
noted that we have neglected fluctuations in any of the
order parameters. Inclusion of Auctuations in the spin-
order parameter is straightforward in the weak-coupling
regime. ' However, in the intermediate-coupling region
the equations become quite complicated.

The decoupling approximations just outlined can lead
to erroneous conclusions when applied in the strong in-
teraction limit (~I~ ))W). This is because they do not
represent the case of a Heisenberg antiferromagnet for
the condition of a half-filled band. It can be shown, how-
ever, ' that a more sophisticated decoupling scheme does
lead to a result which is correct to order ( W'/I) in the
strong-coupling regime (for example, in calculating the
energy of the lower Hubbard subband ). This latter
point is amplified by Harris and Lange ' who have dis-
cussed the conditions necessary for ferromagnetism in the
case of a nearly half-filled band. Negative spectral
weights, which can arise from decoupling approximations
such as are used here, again are a problem only in the
strong-coupling limit. Our analysis is limited to the
weak- and intermediate-coupling regions and should thus
be unaffected.

Applying the decoupling approximations, Eq. (6)
reduces to

As Hubbard and Jain' have shown,

id «=E,dk +(n Ek+pZk ~)ck~

P ~el +2eo) —k, — + kpk

+P~hkp -k, —. (13)

whereKo=gk ekA „and A k=&c „ck &. Here h„
is the Fourier transform of the hybridization matrix ele-
ment h;, , and A, = —gk A k. The last two terms on the
right-hand side of Eq. (13) contain the effects of hybridi-
zation in terms of hk. An analogous expression for the
equation of motion for pk is

1Pko CkPkg rck Ck0
P (14)

Equations (13) and (14) form a simultaneous pair of
differential equations.

We now introduce the Hubbard subband destruction
operators Dt,

' (p=1,2) to describe correlation of elec-
trons in the d band. ' As previously defined in terms of

Ek

kaGf

(E„„I) E„„—
where Ek, and Ek2 are the energies of the upper and
lower Hubbard subbands, respectively:

—! (I+Ed )+ I
( 1)@+1[(I ed )2+4nIEd ]1/2

Using the DL. , Eq. (13) becomes

iD k~=Ek„DL~+bk„D "k ~+Nk„hk(sk) pk~

+Nk„(sk) 'Tk„hk~u k, -
where

(16)

&n, &=n +O(6n),

where n+ =n and n =1—n, while &S, & =O(5S).
Here n is defined to be the number of electrons (holes) of
spin o. at site i, assuming the paramagnetic case:
&n, t &=& n;(&=n. Both 6n and 5S are of order h and
thus may be neglected in the first approximation. Fourier
transforming we get

where

+( Z, c, +A.Pg T„c,
'

J

+gh„(&n, &p, +APp, ),
J

A. = —&c, c,

id, =ed, +gT &n, &c +@+Ye,

(10)

and

I
Tk )tcP Ek p(Eku I)—
&k„—&k„+Z~, —

2COk+ „Tk„Nk„ (19)

Y„=T„(&c, .c,.&+&c, .c,.)),
Z, .=&S, .&

—yh„(&p,
' . . .&

—&,
' .p, .&) .

J

with

n 1 —n

(Ekp I ) (Ek~)—
(12) Equation (16), as expressed, neglects the pairing of elec-
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trons in different Hubbard subbands. Similarly, Eq. (14)

gives
1D k (t) —E,„Dt,

' (t) —a„„h,'D" „(t)
Pk~=ekpk~+hk(Dk~+Dk~) . (20)

The approximate solution of the two simultaneous equa-
tions, (16) and (20), is outlined in Appendix A. Using Eq.
(A6) and writing the time dependence of the oxygen band
operators as

= —/t„hk g —pP
l' i l-

e 'D' (P)

E —pPki }t-

pk (t)=exp( i—EPkt)pk (0) (21)

—iE] i —tE~, tig [—hk e '" Dp (0)+i ak h„e ""p„(0)

allows us to give an approximate equation of motion for
the pk (t) which involves only the oxygen band operators
explicitly:

k (t)+1(Ek akhk )Pk (t)+if khkp —k, —

where

—ticp itch'p, (0)+. B„h,e 'p, (0)

EkP =Eke+ [ek. ] Nkph
El„, el,

with

A„=Nk„hk(Eg )

and

(27)

(28)

where

ilskhk—e ""P
k (0)],

p El'p ~l.

(22)

(23)

B„=ANk„T,„hk(ek )

(29)

where

From this we can write an expression for the generalized

gap function for electrons in the d band, modified by the
hybridization:

Nl; Tl
b " = b," + A.h ( e" )

i ~

and

Nk T
~( d) 1~ kP IP

p El' +~l.
(24)

(e ) 'Nk Tk

Ekp+ l;

where the corresponding quasiparticle energies are

(25)

[(eP a h 2 )2+ ( QP )2]1/2 (26)

Equation (22) is the effective equation of motion for p-
band electrons, and it enables us to define a new general-
ized gap equation for p-band superconducting pairing,
due to p-d hybridization, as

E —[(E }2+(gd )2]1/2

are the quasiparticle energies, including the effects of hy-
bridization, as given in Appendix A. Equations (25) and
(29) are the main results of this paper; in the remainder
we will discuss the characteristics of the energy gaps.
Thus far, we have made use of several energies: Ek„, El,„,
and El,„. For clarity we now review their differences.
The energies El,.„, are the Hubbard subband energies;
modifying them so as to include the hybridization pro-
duces the El,„and the related energies El,„. The energies
El,„are the quasiparticle energies due to pairing of elec-
trons (holes) in the d band, including the effects of hy-
bridization. Note that as hl,. ~0 or I~O, then 6k„
reduces to Al, „as expected since the two bands complete-
ly decouple.

Expressing A, in terms of the destruction operators of
the d-band electrons, as shown in Appendix B, allows us
to reexpress the generalized gap in the p band, Eq. (25), as

Looking at Eq. (25) we note that hk ~0 as hk ~0, under-
lining our assumption that pairing in the p band is a re-
sult of p-d hybridization. Furthermore, Nl,.„Tl,„=Ifor
I=O so that b,Pl, ~O as I~O, emphasizing the impor-
tance of correlation in our model. The possibility of su-
perconductivity due to electron-electron correlations in
the p bands is expected to be small due to the weakness of
the correlation and has been neglected.

It is appropriate to point out that by using an analo-
gous method to that adopted in Appendix A in solving
for Dg (t), one can approximately solve Eq. (20) for
pk (t) first. Substituting this result into Eq. (16) gives an
effective equation of motion for electrons in the d band:

d

X (c'„' )
'
Nk, [.f (E-k, } f (

—Ek, )], .
—

(3O)

where the thermal averages have been taken from Appen-
dix 8 and

E =[(E ) +(5" ) ]' (31)
The corresponding gap for electrons (holes) in the d band
IS
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(Ek) 'N/, „Tk„(s/, ) 'Nk. 1 ~/, ,
/ ' ' l «k, )'+( ~k. )') '"—

Epk 2 g„,

The number of electrons (holes) is given by

(32)

N=2n =—g g (Ek ) 2Nk„
1

kgb

+ —g1

1+ " f(E„„)+
Fkp

(s„— .h„)
1+ f(Et,'. )+ 1—

f(
—

&/, „)

(s/ —
u/, h/,') f{ ~k) (33)

Equations (30), (32), and (33) must be solved self-consistently for hp/„b, k„, and N.
The generalized gap function for the p band shows that the pairing of the wide p-band electrons (holes) occurs in-

directly through hybridization with the narrow band (where pairing correlations exist). The basic idea is that narrow-
band electron pairs will induce pairing among wide-band electrons through hybridization; as a consequence, a super-
conducting energy gap appears in the single-particle spectrum of the wide-band electrons. The gap function for the p
band, (30), is directly related to the gap function for the narrow d band, where pairing correlations are assumed to have
finite amplitude. Naturally, this indirect pairing in the p band is second order in the hybridization matrix element.
These gap functions are quite general in that they are representative of any mechanism which can lead to attractive
correlations in the narrow band. Although we have assumed that there is no direct pairing in the p band, it would be
straightforward, however, to introduce a weak phonon-assisted pairing in the p band in our theory.

Modification of the direct d-band pairing amplitude as a result of hybridization leads to the new gap 6 k„. Using the
p-band gap function, we can infer its dependence on the particle number n = n +n&. For a fixed n, increasing n& will

lead to an increase in the magnitude of the p-band gap since more narrow-band electron pairs will be able to induce
pairing in the wide band. For n&=0 or 2, pairing in the p band will be zero since in the first case no pairs exist in the
narrow band while in the second case the narrow band is completely filled.

Until now the interaction V & has been neglected. The simplest mean-field theory approximation to this term is

Vpd P g civic/&Pj &Pj&' Vpd X g (c/&c/z(Pj&Pj& ) + ( c/&c/& )Pj&Pj& c &P/j& ( c(&P/& ) ( c/&Pj z ) c/&Pj & + ( c/0 '/) )

tj cTO' lJ 0't7

(34)

where terms of the form ( c; p ~ ) and ( c; p ) corre-l

sponding to p-d singlet (Kondo-type) superconductivity
have been neglected. The terms corresponding to
(c; c, ) and (p p, ) can be absorbed into a
modification of c,& and c. in the original expression for
the Hamiltonian given in Eqs. (1)—(4). Those of the form
(c; pj ) =(c; pjt ) =O(h;j) when cr'=o; consequently,
they can be amalgamated into the hybridization integral.
The /rAo' terms represent spin-Hip interactions which
have been previously neglected in our approximations.
Therefore, in this approximation all our previous results
can be carried over by an appropriate redefinition of cz,
Ep, and A;~.

I

plicated dependence on hybridization. We note that
LVk ~0, as hk ~0 and as I~0, as expected. In the inter-
mediate interaction regime (I=W), 0&Ek, &O(s/, ) and
—W&E/, 2& —W+O(s/, ), which leads to

hk, = —hk2= —(A, +CO/ek )0( W),

so that

1
" sd )E 2 +(gd )2]l/2+ p

0( W), (36)
)E 2 + ( gd )2]1/2+ p

PROPERTIES OF THE GENERALIZED GAP FUNCTION

Consider the generalized gap function for pairing of
electrons (holes) in the p band as given by Eq. (25). In the
weak interaction limit (I && W), N„, T„,=I and

Nk2T/, 2=0 so that bt, =I( {.+/2 / eo)eaknd b/, 2=0. Sub-
stituting these into Eq. (25) gives

where

Ek„=Fk„+X+Zk (37)

In the dilute limit when the number of electrons (holes),
2n, is small and T/, .„N/, .„=PI,//, where

hkIA, 1

[(E )2+(gd )2]1/2+Ep ed

where in this limit, Ep, =c/, +Z/, using Eq. (18).
Equation (35) consists of a product of two terms: IA,

which is the BCS gap and a prefactor which has a com-

I
1 —I/8

Then, since Ek, =ok and Eke=I and

(3g)
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b, 1,„=( A, +2r DIE 1, )PI,tt,
one gets

b, P1,
= —h (E ) 'A,I,tt

1

[E 2 + (gd )2]l/2+ p

(39)
1

[E 2 +(gd )2]1/2+ p

where Ek, =s"„+O(h) and Ek2=I+O(h).

CONCLUSIONS

The two-band Hubbard model presented here has in-
voked hybridization between a narrow copper d band and
an uncorrelated oxygen p band as a mechanism for super-
conducting pairing between oxygen holes. This analysis
is valid in any general system which hybridizes wide and
narrow bands, and in which direct pairing correlations
have finite amplitude only in the narrow band. Many ex-
periments on high-T, systems, including x-ray absorp-
tion, electron-energy-loss spectroscopy, and photo-
electron spectroscopic studies, ' have shown further that
doping the Cu-0 planes produces essentially no change in
the electronic configuration of the copper ions and that
holes appear in what are principally the 2p levels of oxy-
gen. The appropriateness of including a Cu-0 hybridiza-
tion term has been well borne out by a number of experi-
ments, particularly the photoemission studies on
YBa2Cu3069 by List et al. There is also evidence to
show that doping produces an increase in density of
unoccupied states having d symmetry. This delocaliza-
tion is a consequence of the hybridization of overlapping

p and d bands, which in our model permits pairing in the
less than half-filled Cu d band. We also note that for
weakly coupled systems (~Ii && W}, pairing of holes in
O(2p) states is necessarily weak and the high T, must be
a consequence of strongly correlated d electrons.

In this paper we have derived self-consistent gap and
band-filling equations for the two-band Hubbard model.
We have assumed superconducting pairing correlations
for the narrow Cu d electrons (holes) and have included
the additional interaction of Cu-0 hybridization. In do-
ing this we have been principally interested in obtaining
gap functions which are valid in both the weak- and
intermediate-coupling regimes ( ~I~ && W and ~Ii = W, re-
spectively). The generalized gap functions given in Eqs.
(30) and (32) for s-wave pairing in the p and d bands are
the principal results of the present work. We have de-
tailed the route through which superconducting pairing
correlations in a narrow band indirectly induce pairing in
an uncorrelated wide band via hybridization. The gap
function for the p band reduces to a BCS-like result in the
weak-coupling regime but increases as the correlation
strength ( ~I~ ) is increased. As I becomes larger, pairing
correlations beyond the Hartree-Fock (BCS) mean-field
regime begin to dominate. They significantly affect the
gap structure in the p band through an alteration of the
indirect pairing mechanism. The indirect pairing in the p

band also shows a strong dependence on the narrow-band
filling. The gap increases as the number of narrow-band
electrons increases (starting from zero) and appears to
reach a maximum near half filling. As stated, our
analysis is applicable for any system in which an uncorre-
lated wide band is hybridized with a narrow band of elec-
trons (holes} in which pairing correlations exist (possibly
due to the exchange of plasmons, excitons or medium-
sized bipolarons, for example). Our main aim has been to
consider the behavior of the pairing functions as the in-
teraction in the narrow band is increased beyond the BCS
regime. Recent estimates of the parameter kF(0 (kp, the
Fermi momentum; (0, the coherence length) for high-T,
systems are given as 5 —10 for YBa2Cu307 and about
10—20 for La& 85Sro»Cu04. ' This implies that these
systems are neither in the BCS limit (kF(o»1) nor in
the strong-coupling Bose limit (kF(0«1), but are rather
in an intermediate regime. Since it seems unlikely that
there is any but a negligible direct-pairing amplitude for
0 p holes, we believe that our two-band analysis should
be of some interest in understanding the high-T, super-
conductors. Numerical, self-consistent solutions of the
coupled equations for K k„b, k2, b$, and N [the band
filling, Eq. (33)] are currently underway and are planned
to form the topic of a future report.

APPENDIX A

The simultaneous equations to be solved are

ipk~(t) =Efpp, (t)+hk(D„'~+D„)

and

(Al)

we can write Eq. (A2) as

iD 1,~(t) =E1,.„D 1,.~(t)+ App~(t)+Bp 1, „(t) .
—tE~ t

Multiplying Eq. (A4) by e '", we obtain

(A4)

+Be '"p
1,. (t) . (A5)

iD1", (t)=E„„Dt,' (t)+b, k„D" 1, (t)+ Apk (t)

+Bp „(t} (A2)

using Eqs. (16) and (20), with

A =Ni„hk(sg ) and B =ANk„Tk„h1, (Ek )

We begin our approximate solution by writing

iD Pk (t)=Ek„Df,' (t)+bq„D" 1,. (t) (A3)

and the analogous equation for D"
k (t ). We can solve

this simplified system of equations to obtain the quasipar-
ticle energies

E = [(E )2+ (gd )2]1/2

Writing the time dependence of Dt,
' (t) as
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The aim now is to express Dg (t) in terms of pk (t) and

p k (t). For this purpose we solve Eq. (Al) approxi-
mately by neglecting the inhomogeneous part. Then, us-

ing the solution of the homogeneous part of Eq. (Al) we

have

Using the equation of motion for p„, Eq. (22), Eq. (Bl}
can be written as

1 t
«&p,'.;p,.)&= +«p„'.;p„.))+~~ &&, „.;,„.&&

2m

i
'—[e ""DI,'.(t}l=[~p».(t)+Bp k, -.(t—)]~ '"

dt or

(82)

i(E +pi )t+Be '" "
p „(0). (A6)

Equation (A6) can now be integrated to obtain

QP
+

2m(E —e$) E —eg }

(83}

—tF~ t pi (t)
Dg (t)=e ""Df (0)—A

E
—tFI t —iEJ. E

e '"pk (0) e '"p
k (0)

+A +8
Ekp ~k Ekp+ ~k

P k (t)—8
Ekp+ Ck

In a similar way, pk (t) can also be expressed in terms of
DI,

' (t). The result is

Qp

(&P». ,P,.» . (84)

Now solving Eqs. (83) and (84), we obtain,

(E+e~k)
«P». Pk. » =

2~(E' —~ ~ —
~ S) ~')

A similar equation where c.
p Cp akhk can be de-

rived for ((p k ', pk )). The result is

e '"Dg (0)
p. (t)=e ' p„(0)—hkg

p Ekp clc

and

(86}

e 'Df (0)
+hkg

Ek„—C.k

(A8)

APPENDIX B

In order to calculate the thermal averages (p„p„)
and (p k pk ), we follow Zubarev. For this, we

define double time Greens functions ((pk', pk )) and

((p k
',pk )). The function ((pk ', pk )) satisfies the

following equation of motion:

E « P k rr rP k rr »
2

( [Pk rr r P k rr ] & + (( [Pk rr r +]rP k rr »1

(81)

2~(E' —Z'„—
I haik

I')
In an analogous manner,

(E+Ek„)(ek )'Nki, 8„.
(D„";D„'

2m(E Ek„—b, k—„)
and

(88)»ir,
k~

k ir pv

2n(E' E'„„b., „„)— —

Again following Zubarev the thermal averages, and
hence the particle number, can be calculated in a
straightforward fashion. Using Eqs. (84}—(88), we obtain
for the total number of particles in the system,

N=2n =g g (ek ) 2N»„
k p

1+ f(Ek„)+ 1—
Ek„

f( —Ek„}

1 gp gp
+—g 1+ f(E„)+ 1 — f( —E )

2
(89)

Also, noting that

~=y(DP.D „.),
kpv

and using Eq. (88), we have

Qd
A, = —g( )edk'Nk„" [f(Ek„) f (

—E»„)]-
kp

where f(E) is the Fermi function. This last equation is used in Eq. (29) in the main text.

(810)
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