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Thermally activated Aux creep in strongly layered high-temperature superconductors
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Thermal activation energies for single vortices and vortex bundles in the presence of a magnetic
field parallel to the layers are calculated. The pinning considered is intrinsic and is due to the
strongly layered structure of high-temperature superconductors. The magnetic field and the current
dependence of the activation energy are studied in detail. The calculation of the activation energy is

used to determine the current-voltage characteristic. It may be possible to observe the effects dis-

cussed in this paper in a pure enough sample.

I. INTRODUCTION

Thermally activated fiux creep plays an important role
in the resistive measurements of high-temperature super-
conductors in a magnetic field. ' As is well known, in
order to maintain a nondissipative transport current it is
necessary to pin the vortices. Most commonly, pinning is
associated with the impurities and defects present in the
sample. However, in strongly layered superconductors
such as Bi2Sr2CaCu208 an intrinsic pinning mechanism
exists for a vortex motion in a direction perpendicular to
the layers. Because the order parameter is strongly
modulated in a direction perpendicular to the layers, the
free energy of the superconductor is minimized when the
vortices are situated in between the layers. In other
words, the strong modulation of the order parameters
acts as pinning centers. Clearly, it costs superconducting
condensation energy for a vortex core to cross a layer.
Because most known high-temperature superconductors
have a pronounced layered structure, it appears to be
both useful and interesting to study the effects of the in-
trinsic pinning.

In the present paper we shall consider temperatures
high enough such that thermal activation of vortices is
possible. The central problem is to calculate the nu-
cleation energy of a critical nucleus that separates the
stability points of a vortex lattice. This nucleation energy
is the activation energy that depends on the transport
current and the magnetic field.

For currents not especially small, more specifically
larger than j„defined in the following, the dominant ac-
tivation process consists of the activation of a single vor-
tex. The nucleus consists of a single deformed vortex
with a segment situated in a neighboring layer. For
smaller currents, the most probable event is the activa-
tion of a vortex bundle. The size of this bundle grows
inversely as the transport current j, as j~0. Intrinsic
pinning, in the context of high-temperature superconduc-
tors, has also been discussed in Refs. 9 and 10; see also
Ref. 11. The activated creep phenomenon in high-
temperature superconductors was also discussed by Tink-
ham' and subsequently by Inui et al. '

The calculation of the activation energy allows us to
determine the exponential factor of the probability of ac-
tivation, but not the preexponential factor. For a calcula-
tion of the preexponential factor it is necessary to know
the dynamics of the vortex motion; thermodynamic con-
siderations alone will not suftice. Such an understanding
of the dynamics is not currently available.

II. THE MODEL

We consider a model of a layered superconductor' '
which consists of a periodic system of planes with
Josephson coupling between the planes. Close to the su-
perconducting transition the Ginzburg-Landau free-
energy functional is given by

F=dy fdxdy—

g2+,', t)„+,exp-
2g2 d2

+ f d r[(V X A) —2H (VX A)],8~

where g,b and g, are the correlation lengths in the plane
and perpendicular to the plane, respectively, and are pro-
portional to (T, —T) 'r . T, is the critical temperature,
d the interlayer separation, and Pp the flux quantum,

I

trtrtc/e. The summation over n in Eq. (l) extends over all
the layers, and the gradient operator is two-dimensional,
acting on a plane. We have also introduced the
Ginzburg-Landau (GL) parameter
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~ab

ab

where A,,b is the London penetration depth when the
magnetic field is perpendicular to the layers, and the
screening current flowing a1ong the layers.

For quantities that depend on distance scales large
compared to the interlayer separation d the layered struc-
ture is not important. In this case we shall use the
simpler London expression for the free energy, FL, which
is given by

FL= fd r[H +A,b(V, XH),b+A, ,(VXH), ],1 FIG. 1. Single vortex activation.

(3)

where k, is the London penetration depth for the mag-
netic field directed along the plane and the screening
currents flowing across the planes. For a strongly layered
superconductor which we consider below, A,, /&, q

=g,&/g, »1. We want to emphasize that the London
expression can be used for all temperatures provided that
A,,b and A,, are taken from experiments.

III. SINGLE VORTEX ACTIVATION

We now consider the expression for the change in ener-
gy, U, due to the activation of a segment of a vortex to
the neighboring interlayer spacing. U has the form,

U=5F„„d+V;„,(R)—(j—j, ) R,

The integral in Eq. (5) can be easily estimated if we take
dx dz-Po/H, u, -d, and 8/Bz-k, -(A,, /A, ,„)k„. We
get

cHdj)=b

Here the numerical coefficient b —1. A precise calcula-
tion when a single vortex moves a distance d along the z
axis and the remaining vortices are considered to be at
rest yields b to be 0.96.

For the first two terms in Eq. (4), we shall calculate
for the two limiting cases: R » d (A,, /A, ,b ) and
R «d(A, , /A, ,„).

For g, b «R «d(A, , /A, ,b), one can set A,, = ~. In this
regime one must use the expression for the free energy
given in Eq. (1). Omitting the magnetic energy we get

where 5F„„dis the loss of the condensation energy due to
the destruction of superconductivity at those two points
on the layer threaded by the vortex, separated by a dis-
tance R; see Fig. 1. V;„,(R) is the interaction energy of
the two vortex kinks. The term proportional to the
transport current j is due to the Lorentz force. The term
proportional to j, is the energy that arises due to the de-
formation of the vortex line and is clearly proportional to
the length R. This contribution represents the tension
energy. We would like to emphasize that this elastic con-
tribution presupposes only strong short-range order. In
particular, this contribution would also be present in me-
lted' or glassy' phases provided that there is suScient
short-range order. However, the dynamics of such melt-
ed phases are expected to be very different.

In order to estimate the current j, we use the expres-
sion for the elastic energy of a vortex lattice. Thus,

. Nod BQ
j, ~ —,

' dx dzC{xz)
C Bz

where the Fourier transform of the nonlocal compression
modulus' C(x,z) is given by

C{k„,k, ) =
4~ 1+g2 k2+g2k2

Here f is the dimensionless superconducting order pa-
rameter. The equations for f and y follow from the
minimization of Eq. (8), and are

ab

(9)

and

(10)

Equations (9) and (10) should be solved with the topo-
logical boundary condition that the phase changes at the
two points separated by a distance R are 2~ and —2~.
After some calculations we find that

Nod R
8m A,,b g, l,

v'2

However, when R »d(A, , /A. ,„),one can use the Lon-
don expression for the free energy. Minimizing the ex-
pression for the free energy given in Eq. (3) we obtain

~FCOnd + Vlnt

2d

fdx dy( ,' f'+ ,'f +$—,~—2l~fe' —I').
32m'~'g, g

(8)
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H +A,,q (VXH)„—A,, (VXH), =go5(x) 5 z+ —6 y — +5 z ——e —y
8 2 8 d 2 R d R 2

'b az " 'Ox 2 4 2 4
(12)

H +A, (VXH) —
A, (VXH) =P 5(x) 5 y+ ——5 y —— 8 —z2 a R R d

z aha y b~ x 0 2 2 4
L

(13)

sin (k R /2)sin (k,d/2)
D

0„+A,, (VXH},—A,,q (VXH) =0 . (14)

The right-hand sides of Eqs. (12}—(14) represent the vortex cores (see Fig. 1): [x=0,z= —d/2, lyl)R/2t,
Ix =0 z =d/2, lyl & R /2I, and [x =0 y =+R /2, zl & d /2]. To find the interaction between the kinks it is sufficient to
consider a single vortex with two kinks as in Eqs. (12)—(14). The solutions of Eqs. (12)—(14) must then be substituted in
the London free-energy functional. The calculations simplify in the Fourier space and we get

5F„„d+V,„,=,f dk„dk dk,
4o

4m

1+A,,q(k„+k, )+A,,k
+

k

1+X,(k„+k }+A.,q k,

k
(15)

where

a=[1+A,,(k„+k )+A,,~k, ][1+A,,~(k„+k +k, )] . (16)

We can obtain 5F„„d from Eq. (15) by taking the limit
R ~00. Thus,

When g, t, «R «d(A, , /A, ,t, ), we get from Eq. (21) us-

ing Eq. (11),

5Fcond &pin (17) R =
C

ab

I (22)

where eo is

Nod

8m' ~,b

The interaction energy has the form

V;„,(R)= — fdao

ab c
(19)

where I is defined to be

2
3v'3

in this case the activation energy, Uo, is given by

1
Uo=eo ln I 2

(23)

(24)

where

f(z}=f dx

'2

e XZ

The Ginzburg-Landau depairing current jor is defined
by

1
z &(1

Z

=2 e ', z))1 .
Z3

(20)

12m &3A,
(25)

The limiting case discussed above should hold in the re-
gime,

J J& «1. (26)
Note that for R -d(A, , /A, ,&), 5F„„d+V;„, given by Eqs.
(17)—(20) is of the same order of magnitude as the expres-
sion given in Eq. (11).

From Eqs. (4) and (7) we can obtain the activation en-
ergy for a vortex to penetrate a superconducting layer us-
ing Eq. (11) and Eqs. (17)—(20). The critical size of the
nucleus is given by the extremum of the free energy given
in Eq. (4). We get

JoL

4A,,b

At smaller currents the size of the critical nucleus, R„
wi11 be larger than d A,, /k, b and one must use Eqs.
(17)—(19). The energy U is given by

r

U= co ln I—d R
(27}

C ab

pd
(j—j, )

a
(5F„„d+ V;„t }lg =g (21)

The size of the critical nucleus, R„can be determined
from Eq. (21). When d(A, , /A, ,~) &&R &&A,„correspond-
ing to the regime
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g, d
&(

Kgb

the size of the critical nucleus is given by

(2g)

L
L

R 2 —2R, =g,b (29)

The activation energy, Up, is therefore

d dI
'"

Up=so ln
C C

(30)

The other limiting case R )&A.„corresponding to the re-
gime, and

FIG. 2. Activation of a vortex bundle.

2

4o A
S, = 0 j (35}

A

~ab JGL

the size of the critical nucleus is given by

d
R, =A,, ln

IA,,b

(31}

(32)

C 0

4m. A,, j
The corresponding activation energy is

'2

(37)

d
Up=Ep ln

C

A,,bI
ln

C

and the activation energy, Up, is

dg,

I
Ik,b. (33)

where 5F„„d is given by Eq. (17). This macroscopic ap-
proximation is valid if the bundle consists of many vor-
tices, i.e., if S, ))po/H or if j ((j,. One should note
that, in order of magnitude, the expressions given in Eqs.
(33) and (37) match at j-j,.

The vortex activation energies in the regime
j, (j (joL are given by Eqs. (24), (30), and (33). Howev-
er, as we shall see, for j & j& the critical nucleus is a bun-
dle of vortices. In the next section we discuss the activa-
tion energy for such bundles.

IV. ACTIVATION OF A VORTEX BUNDLE

For a current j smaller than j& the approximation of a
single vortex activation is not valid; in this case the criti-
cal nucleus consists of a bundle of vortices. It can be seen
from Fig. 2 that the bundle consists of region of length R.
The ratio of its size in the z direction to its size in the x
direction is of the order of g, /g, b.

We can write down the macroscopic energy of such a
bundle as a sum of a volume (Lorentz) energy and a sur-
face energy. Thus the total energy U is

J)dU= — RS+5F„„d S+ (SHpp)' R .
0

(34)

The second term in this equation are the energies of the
right and the left surfaces as shown in Fig. 2. It is
25F,o„d from Eq. (17) multiplied by the number of vor-
tices threading the surfaces which is SH/Pp. The third
term in Eq. (34} represents the energy of the middle sur-
face of the bundle as shown in Fig. 2. This energy is
equal to the elastic energy, (j& dppR }/c, of a single vortex
multiplied by the number of shifted vortices along the
middle surface of the bundle, i.e., (SH /Pp)'~ .

The energy (34) should be minimized with respect to S
and R. We get

V. THE CURRENT-VOLTAGE CHARACTERISTIC

The results already obtained allow us to calculate the
current-voltage characteristic. The resistive mechanism
is related to the activated hopping of segments of vortices
to the neighboring layers and to the subsequent motion of
the vortex kinks along the layers. We shall suppose that
the kinks can reach the sample boundaries before new
bundles are created. In this case the mean value of the
electric field is

E =—8'dLS,0
C

(3g)

%=%exp( —Uo/T) . (39)

We have determined Up for various regimes. However,
the preexponential factor S cannot be determined
without the knowledge of the vortex dynamics; thermo-
dynarnic considerations alone do not suSce.

We now give the expressions for the current-voltage
characteristic for various regimes. Introducing the quan-
tity n, defined by

E()
CX-

T '

we get for j &&j&,

(40)

where L is the length of the sample along the direction of
the magnetic field, S is the cross section of the bundle
determined by Eq. (35). For the case of a single vortex
activation S is simply Po/H. W is the activation proba-
bility per unit volume, per unit time, and is
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2
Nod JiE = L% —. exp

c J

2

d
ln (41)

for g d/g b))j —j&/jGL)0,

Pod d
F. = LX exp. —a ln

C

2 ~ab J Jl JoL d0c
ln

JGL J J& ~b
(42)

«r g, d /~'. b «j —ji /joL «g, /d,

(tod d
F. = LS exp —a ln

c
2 d J J1

JoL

1/2-

(43)

»d for g, /d «j —j, /j««1,
' 3/2

Pod 2 J J&

C 3 JoL

a

(44)

As can be seen, the current j1, plays an important role.
From Eqs. (7) and (25), we obtain, with H in T,

Hd I' TJ1 Nab
10 3H

JoL 0o T, —T

We assumed that d —10 A and that g,b
—30 A

[T,/(T, —T)]'i . Because the depairing current has the
order of magnitude of 10 [(T,—T)/T, ] A/cm, the
current j& is (in A/cm )

(45)

ji —10 H[(T, —T}/T, ] (46}

j1 ~c
U0=2. 5X 10

J Tc
(47)

By contrast, in the regime in which j )j1 the dependence
of the activation energy on the transport current is weak.
Equations (46) and (47) give the dependence of activation
energy on the transport current, magnetic field, and tem-
perature.

In case 4, Eq. (44), the current density is so large that it

If we assume that the magnetic field is larger than
H„-100 G, and that A,,b

—10 g,b, we get for currents

j(j1,inK,

I

can contribute to the magnetic field H if the sample size
is not too small. In this case j in Eq. (44) should be inter-
preted to be the local current density.

VI. CONCLUSION

In conclusion, we have discussed the activation of vor-
tices in the presence of a magnetic field in a strongly lay-
ered superconductor. The pinning considered is intrinsic
to the layered structure. One of the important results is
the magnetic field and temperature dependence of the ac-
tivation energy Uo-H j at small currents. This is due
to the property of a vortex bundle when the magnetic
field is parallel to the layers. In order to observe this
dependence it is necessary to have a pure enough sample.
We would like to emphasize that the power law depen-
dence on the current [cf. Eq. (44)] is valid only if the
current j is suSciently large, i.e., j)jo„(g,/d). This
property is determined by the intrinsic interlayer pinning
when the magnetic field is parallel to the layers.
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