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Superconductivity in a two-band Hubbard model

Hideo Aoki and Kazuhiko Kuroki
Department of Physics, University of Tokyo, Hongo, Tokyo 113, Japan

(Received 3 January 1990; revised manuscript received 28 March 1990)

As a model for high-T, superconductors, a two-band Hubbard model is proposed. When the
Coulomb interactions are introduced between the a and P orbitals, an effective attraction of carriers
in the P (doped) band is shown to arise in an appropriate condition. The quantum Monte Carlo
method is used to confirm the occurrence of Cooper pairing in finite two-band Hubbard systems.
The attraction, which also appears in the density-density correlation, enhances the on-site singlet

Cooper pair-pair correlation in the P band and suppresses the antiferromagnetic spin-spin correla-
tion in the a band. The criterion for the pairing and the nature of the pairing are discussed. Thus
we provide a mechanism of superconductivity specific to strongly correlated two-band systems.

I. INTRODUCTION

The mechanism of high-T, superconductivity has be-

come one of the most challenging problems in solid-state
physics, since the high-T, copper oxides were discovered

by Bednorz and Miiller. A body of experimental indica-
tions suggests electronic mechanisms for the occurrence
of the superconductivity arising from strong electron
correlation.

After a pioneering suggestion to this effect by Ander-
son, the Hubbard model, a prototype of the strongly
correlated electron system, has been a subject of intensive
theoretical study. Experimental results show that the
superconductivity appears just after the antiferromagnet-
ic spin ordering is suppressed in the phase diagram versus
the doping level, and this is considered to be an indica-
tion that strong electron correlation is a key factor.

Since the simple, single-band Hubbard model seems to
suffice for the mechanism in terms of the resonating-
valence-bond picture, numerical studies for the model
have been performed by a number of authors with the
direct diagonalization method for small systems or the
conventional quantum Monte Carlo method at finite tem-
peratures in one dimension (1D) and two dimensions
(2D). Recently Sorella et al. have proposed a novel
quantum Monte Carlo method that enables us to obtain
the ground state for systems of a size intractable by direct
diagonalization. The method has been applied to the
Hubbard model by Sorella et al. and also by Imada and
Hatsugai and White et al. These results do not support
unambiguously the occurrence of superconductivity, or
more precisely, the tendency towards Cooper pairing, in
the single-band Hubbard model. In simplified models
such as the t-J model, some enhanced pairing has been
obtained. However, this has been explained' as an essen-
tial difference between the t-J and the original Hubbard
models. The carrier-carrier attraction is overestimated in
the t-J model as compared with the Hubbard model.

From the early stage of the theoretical study of high-

T, copper oxides, on the other hand, several theories sug-

gest that the existence of more than one orbital per CuO
unit is essential for superconductivity. The existence of

0 2p orbitals has been explicitly considered in various
models. " Numerical studies for models including 0
2p (the d-p model) indicate that there is a slight enhance-
ment of superconducting susceptibility, but the results
have not been conclusive. The problem of superconduc-
tivity is also ambiguous for other models such as the
"coupled spin-fermion model, " in which one of the bands
has degenerated into a spin system or Kondo centers
rather than a fermion system.

In this paper we propose a new mechanism of Cooper
pairing specific to a strongly correlated ttvo band syst-em

Our study is motivated by an observation that a two-band
model in its original Hubbard form should be required
for the electronic structure, especially for doped bands, as
is indeed shown from the present results. The idea is nu-

merically confirmed by the Sorella quantum Monte Carlo
method. A brief account of the present work has been
published elsewhere. The present study also gives an
insight for the long-standing question of whether super-
conductivity can arise from purely repulsive interactions.
Muttalib and Emery have addressed this problem using a
two-band Luttinger model for spinless fermions as a mod-
el for fauctuating-valence systems, organic superconduc-
tors, and heavy-electron superconductors. They have
concluded that superconductivity can exist in the Lut-
tinger model with only repulsive interactions. The
present work shows that superconductivity can exist in
the Hubbard model.

II. FORMULATION

Usually the term "multiband Hubbard model" is used
in a loose sense, in which models considering oxygen 2p
orbitals in addition to copper 3d orbitals are also called
multiband models. When the coupling among different
orbitals is hybridization alone, introduction of multiple
orbitals amounts to taking molecular-orbital basis func-
tions.

Instead, we consider here a two-band model in which
there are two orthogonal (molecular) orbitals on each site
with inter-orbital as well as intra-orbital electron-electron
interactions. A typical model along this line proposed by
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single-band Hubbard model by Imada and Hatsugai. To
apply the method to the two-band Hubbard model, we
must perform the Hubbard-Stratonovich transformation
for the interorbita1 interaction terms such as

FIG. 1. The two-band Hubbard-model Hamiltonian.

Aoki and Kamimura' considers hybridized Cu 3d —0 2p
orbitals of different symmetries such as a, and b, . The
model Hamiltonian is given, in the standard notation, by

H= g g gt"(c c~' +H. c. )
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where (i,j ) are nearest-neighbor Cu-0 units, a,p label
orbitals, and cr is the spin. Here t (t~) is the transfer en-

ergy in the a (p) band, U &
is the on-site Coulomb repul-

sion between the a and p orbitals, and J is the intra-
atomic exchange energy.

To simplify the model to some extent, here we neglect
the exchange processes to obtain

H= g g g t"(c," c,
' +H. c. )

v=ap(i j ) a

+ g (Un;&n, & +Fng&n, ~~ )

(2)

in which the interaction terms only contain number
operators. Here U (F) is the repulsion within the a (p)
orbital and V (W) is the inter-orbital repulsion for the
parallel (antiparallel) spins with V= 8'—J (Fig. 1). We
assume no hybridization (transfer) between the molecular
orbitals on different sites. Thus the number of electrons
in each band remains constant, and the difference in the
energy levels of orbitals is only implicitly taken into ac-
count in that we assume the a band is (half) filled, while
the doped carriers go into the p band.

From theoretical estimates, magnitudes of parame-
ters for individual atomic orbitals are transfer energy

~
t

~

—1 eV, on-site Hubbard repulsions —10 eU for copper
3d and -5 eV for oxygen 2p orbitals, and intra-atomic
exchange interaction J-1.5 eV. Since we are consider-
ing interaction among electrons in molecular orbitals, in-
teraction parameters should be modified from these
atomic values. Specifically, different molecular orbitals
with different symmetries and spatial extensions should
have different Coulomb repulsions (FWU, etc. ) in gen-
eral. We have studied this model for various values of
parameters to explore the possibility of superconductivi-
ty.

III. METHOD

We have adopted the quantum Monte Carlo method
for the ground state as described and applied to the

exp( A—~Vn, n, )

2~v
exp 2as(n, —

n~. ) — (n, +n, .)

6~V
a = tanh ' tanh

4

1/2

in addition to the transformation for the intra-orbital in-

teraction terms. Thus the number of Stratonovich vari-
ables, which is six per site in the present case, increases as
the number of bands increases. The ground state of the
free-electron system is employed as the trial state.
Periodic boundary conditions are imposed.

Here we study one-dimensional systems. This is
motivated by two reasons: First, the negative sign prob-
lem in the quantum Monte Carlo algorithm, which be-
comes serious for two-dimensional systems, is not en-
countered in 1D as far as we consider the closed-she11
electron number (4N+2) (N stands for integer) in each
band. Second, the nature of superconductivity in 1D has
been established as will be described, so that we can
readily study the occurrence of Cooper pairing in 1D as
far as we consider mechanisms that do not require two
dimensionality.

In 1D no true long-range order exists. However, as is
pointed out by Popov, we can look at the correlation of
order parameters to identify the ordering such as super-
conductivity even in 1D. This can be illustrated for the
one-dimensional attractive Hubbard model with attrac-
tive ( U (0) on-site interactions. There exists supercon-
ductivity in this system, and correlation as a function of
r=r, —r evolvesas

free electron~interacting electron

(c c ) —1/r -e (4a)

(c,&c, &c, &c, &) —1/r —1/rr (Cooper pairing),
(4b)

(( n (n, ) )(n —(n ) )) -1/r ~ —1/r'~r (CDW),
(4c)

as is rigorously shown from the conformal field theory by
Bogoliubov and Korepin, where y =1 for the half-filled

band. For UWO, the pairing correlation has a slow,
power-law decay, while (c; c ) damps exponentially.
This implies that the electron pair of size g has a long-

range correlation, hallmarking superconductivity in 1D.
For the less-than-half-filled case, —,

' & y & 1 with y —1 be-

ing a function of doping, i.e., the decay of the pairing
correlation becomes slower, while that of the charge-
density wave (CDW} becomes more rapid.

In this study, we have also looked at the following
correlation functions in real space for each band to iden-

tify the magnetic and pairing properties: the Green's
function,
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(c,t.c,.&,

the density-density correlation,

((n, {+n;t)(n t+nj()&,

spin-spin correlation,

(S,'S;& =
—,'((n, t n,—{}(n,t n—,{)&,

and the correlation of the Cooper pairing,

( (C, tc, +s J C(ic, +st &(CJ+ s{CJt CJ+s{CJ$ ) & )

for the on-site pairing (5=0) and nearest-neighbor pair-

ing (5=1). For the pair-pair correlation, (c, tc, ic, (c, t&

differs from (c;tc;ic~(cjoy & only at r;=rj by
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where n, =n;&+n;&. For r=0, the density-density corre-
lation function becomes
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In plotting these correlation functions at r =0, only the
value of the terms proportional to (n; tn, t & are shown in

the figures for clarity. For the nearest-neighbor pairing,
a similar convention is employed also for r; —r =1. Lat-
tice constant is taken to be unity in plotting correlation
functions in real space.

IV. RESULTS FOR THE TWO-BAND
HUBBARD MODEL

Before performing the simulation, we have considered
whether there exists a mechanism, specific to the two-
band Hubbard model, favoring effective attractions

among carriers. Here we propose such a mechanism as is
intuitively illustrated in Fig. 2. We consider doped car-
riers in the p band on top of the a band, which is as-
sumed to be half filled or nearly half filled. When two
carriers are apart, the total interaction energy is u;+u
(u, = U, V, or W) in each configuration, so that the in-
teraction energy becomes at least 2V (with V & W & U).
When the two carriers are on the same site, on the other
hand, the cost of energy is U+F if we deplete electrons
in the a band from the site. Thus, when 2V& U+F, the
two carriers have the lowest interaction energy when they
are on the same site, so that an effective on-site attraction
of carriers arises. The effect of kinetic energies will be
discussed in the next section.

From this consideration, we have performed the quan-
tum Monte Carlo study for U ~ 8'~ V ~ F with
U+F~2V. Unless otherwise indicated, we consider a
22-site system with 22 electrons in the a band (half filled)
and 6 electrons in the p band (doped), and t = t~= —1 is
assumed.

We have first checked the validity of the quantum
Monte Carlo method for the two-band Hubbard model
by comparing the Monte-Carlo result with the exact diag-
onalization result for a four-site (eight-orbital) system
with two electrons in each band. The two results, shown

FIG. 2. (a) For two carriers in the p band apart, interaction
energy is u, +u, (u, = U, V, or W) in any configuration. (b) For
the two carriers on the same site, the cost of energy is U+F if
electrons in the a band is depleted from the site. (c) Shows the
situation in which inter-orbital transfer is allowed.

TABLE I. Comparison of the exact and quantum Monte

Carlo (QMC) results for a four-site (eight-orbital) two-band

Hubbard system with two electrons in each band for U=3.0,
W= V=2. 5, F =0.5. The errors due to Monte Carlo sampling

(statistical errors) are shown. Results also have systematic er-

rors of few percent due to Trotter decomposition. F=0.5.

P-band
density-density correlation

li —jl =o
li —jl=1
li —jl =2
P-band

on-site pairing correlation

1 I
=o-

li j l
=1-

li —jl=2

Exact

0.641
0.1249
0.109

0.282
0.233
0.210

QMC

0.641+0.001
0.1241+0.0003
0.110+0.001

0.282+0.002
0.233+0.002
0.212+0.003

in Table I, coincide within numerical accuracy. We have
then simulated the 22-site two-band Hubbard model in

1D, in which the convergence is confirmed by varying
Trotter decomposition. The computation takes 7 h on
the Hitac S820 for U= V= 8'=3. Simulation for larger
U, V, W requires finer Trotter decomposition, and thus a
longer computer time.

The result for the p-band density-density correlation,
the p-band pairing correlation, and the a-band spin-spin
correlation are shown for the extreme case of U= V= 8'
in Fig. 3 and for general U) V, W in Fig. 4. The result
shows the following.
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(i) The density-density correlation is enhanced around

r =0. This indicates effective attraction of carriers in the

P band.
(ii) The amplitude of the spin-singlet, on-site (within

the same molecular orbital) Cooper pairing in the P band

is enhanced over the value for the free-electron system,
and the enhancement has a long tail in real space. The
attractive density-density correlation and the enhanced

Cooper pairing increase when the condition 2V & U+I' is
better satisfied. More precisely, the enhancement, which
is large for the extreme case of U= V= 8', is consider-
able even when Vand 8'are reduced to U/2.

(iii) In these situations, the antiferromagnetic spin-spin
correlation in the a band is drastically suppressed and
only a short-range (nearest-neighbor) antiferromagnetic
correlation survives.
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U=3.0 SINGLE-BAND HUBBARD
U=V=W=3. 0, F=O.O (a band)
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FIG. 3. The quantum Monte Carlo result for the density-density correlation in the P band (a), correlation of the singlet, on-site
Cooper pairing amplitude in the P band (b), the spin-spin correlation in the a band (c) for a 22-site two-band Hubbard model in 1D
with 22 electrons in the a band and 6 electrons in p. Here the interaction is U= W= V=2(h) or 3(o ) with F=0, and t = ta= —l.
The solid curve represents the free-electron result. The spin-spin correlation in the single-band Hubbard model with U=3 is shown

by for comparison in (c). Error bars in the QMC result are indicated when they are larger than the size of the symbols. The error
is mainly the statistical error from Monte Carlo sampling. The error due to the Trotter decomposition is —O((P/LT) U), for which
we have taken (P/LT) U =0 Ol g with )t3= 17, LT=220 for U= 3. Inset for (b) shows the behavior around r =0.
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with a -O(t), b -O(t). First note that Uin Fig. 2 should
correspond to an energy, U*, required to put an electron
in the (N —1)-site system rather than onto a single site,
so that we first have to replace U with U*=U —a
[a -O(t)]. Similar correction is required for the energy
of two separate carriers in its lowest configuration, which
is reduced to 2 V —b due to the motion of electrons in the
a band with b —

~
t

~
for V = U. When V ( U*, an electron

in the a orbital does not gain interaction energy by hop-
ping to other occupied sites, so b should be smaller. In
the extreme case in which intra- and inter-orbital interac-
tions coincide ( U= V= W), the gain from the kinetic en-

ergy is larger, and the criterion reduces to 2U' & U*+F,
i.e., b=2a. Thus the correction terms such as b are
dependent on U, V, W in general. For the two carriers on
the same site, on the other hand, the energy is estimated
to be U*+F in any situation. From the Bethe-ansatz ex-
act solution by Lieb and Wu we have

I I I I I I I I I I I

(b)

U*=U 2~t~ —4—g ( —1)"[(r + ,'n U )—'~ ,'nU]——
n=1

(6)

0.0
5
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FIG. 4. The quantum Monte Carlo result for the density-
density correlation in the P band (a), and correlation of the sing-

let, on-site Cooper pairing amplitude in the P band (b) for
U=3.0, V=2.0, 8'=2. 5 (O), and U=3.0, V= W=1.5 (6).

V. DISCUSSION

A. Pairing criterion

l. Eject of kinetic energies and energy level offsets

2V —b) U+F —a (5)

We have shown clear evidence for enhanced Cooper
pairing with a systematic dependence on U, V, and W in
which correlated motions of electron in the P and a orbit-
als are essential. The condition, 2V& U+F, for the ap-
pearance of effective attraction only considers interaction
energies. If we include the kinetic energies, the condition
should be corrected as

for the half-filled one-dimensional single-band Hubbard
model. We can see that a = U —U* is an increasing func-
tion of Uwith a=1.2~t~ for U=3.

For the case of U=3, V= W=1.5, F=0, an enhanced
Cooper pairing occurs (Fig. 4). This result confirms the
preceding argument, since the corrected criterion, Eq. (5),
may be satisfied in this case even though 2V& U+F is
not. Equation (5) also explains the result that the behav-
ior of density-density and enhanced pairing correlation is
similar for U= V= W=2 (Fig. 3) and for U=3, W=2. 5,
V=2 (Fig. 4). While 2V —(U+F) is different for these
two cases, (2V b) —

( U+—F a) can be sim—ilar.
We have also studied the case in which FAO. For a

fixed 2V —(U+F), the case of U) V, W favors the pair-
ing over the U= V= W case from the preceding discus-
sion. If we look at the result (Fig. 5) for two cases with
(U, V, W, F)=(2,2, 2, 0.5) and (3,2.5,2.5,0.5) with the
same 2 V —( U+ F ), the latter case has more enhanced
pairing, which confirms the foregoing argument. The
enhancement, however, occurs only around ~r;

—rj ~

-0 in
these two cases. This subtlety is discussed in Sec. V A 3
following.

For atomic orbitals in a single atom such as the fivefold
d orbitals, the matrix elements of the Coulomb and ex-
change interactions satisfy a certain relation. ' For
molecular orbitals, however, these interactions must be
calculated for each configuration of the molecular orbital
unit. For two spatially extended molecular orbitals with
large mutual overlap, for instance, V is expected to be
large and criterion (5) is favored. A detailed study for the
molecular orbitals in cuprates is planned to be published
elsewhere.

When we introduce hybridization between different or-
bitals, we must consider inter-orbital transfer processes
with the energy difference, hE, of the two orbitals. In
this case we can shift the a electron onto a P orbital in
the neighboring site [Fig. 2(c)] at the cost of b,E[—1 eV
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FIG. 5. The quantum Monte Carlo result for the correlation
of the singlet, on-site Cooper pairing amplitude in the P band
for ( U, V, O', F)=(2,2, 2,0.5) (A) and (3,2.5,2.5,0.5) (0 ).

FIG. 6. The two-band Hubbard model with

( U, V, 8',F)=(2,2, 2, 0) (A ), for which (2V—b ) —( U+F —a )

—1.0, is compared with the attractive Hubbard model with
U= —0.5 and —1.0. Here the QMC result for the on-site
spin-singlet pairing correlation is plotted.

(Ref. 33)] plus the interband interaction V if that is ener-
getically favorable. Equation (5) now reads

min[2 V —d, 2( V+ hE ) —e ])F+min( U*, V+ b E—c ),
where c,d, e depend on the strength of hybridization as
well as on t, t, and we can make a similar observation
for the pairing. The quantum Monte Carlo study can in
principle be extended to these hybridized models.

2. Magnitude of the effective attraction

From the preceding discussion, it might be tempting to
define an effective attraction,

U„=(2V b) —(U+F —a) . —

However, we should like to stress that the present two-
band model naturally differs considerably from the at-
tractive Hubbard model with U= —U~ due to quantum
processes involving the two bands. To show this quanti-
tatively, we compare in Fig. 6 the attractive Hubbard
model with U= —1 and the two-band Hubbard model
for U = V= W=2, I' =0 for which a —2b -2 ( U„= 1 ).
The pair-pair correlation in the latter model, although it
resembles that of the former around r =0, starts to devi-
ate for larger r and approaches the result for the attrac-
tive Hubbard model with a smaller attraction
(U= —0.5).

3. Dependence on the bandglling

A Cooper pair has, in general, a finite spatial extent,
which is determined by the many-body processes involv-
ing both charge and spin degrees of freedom. In deriving
the attraction in an intuitive picture in Fig. 2, we have
neglected the effect of overlapping of pairs, so that, for

finite concentrations of carriers, the pairing criterion [Eq.
(5)] should depend on the doping. Another way of saying
this is that since the pairing of carriers in the P band is
highly correlated with the motion of a carriers through
the inter-orbital interactions, a finite concentration of P
carriers necessarily causes modification of the a band,
which in turn modifies the P band properties.

To explore the dependence on the band filling, we have
varied the filling of the P band. For 10 electrons in 22
sites for the P band on top of 22 electrons in 22 sites for
the a, in which the number of P carriers are increased
from 6 (previous figures), the case of U= V= W=2, F=0
still exhibits a strongly enhanced pairing. Rather, the
effect of doping is best illustrated for the most subtle case
studied so far, in which U=3.0, V= &=2.5, F=0.5. In
this case, we have seen that the result for 6 electrons in
22 sites (Fig. 5) shows an enhancement around r =0 but
suppression for r ~3. This can be interpreted as the
above-mentioned effect of overlapping of pairs. The re-
sult for various band fillings (Fig. 7) indeed shows that, as
the filling of the g band is decreased from 10 electrons in
22 sites to 6 electrons in 26 sites, the enhancement in the
pairing correlation is recovered.

4. T,

An electronic mechanism of high-T, superconductivity
must explain why T, —100 K is so low in real materials,
given electronic energies of order of eV. We envisage the
following.

(i) As seen in Sec. V A 1 the present pairing mechanism
reflects a balance of interaction and kinetic energies (and
energy-level offset). In real high-T, materials, subtle en-

ergy differences may be realized.
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FIG. 8. The correlation function for the nearest-neighbor
spin-singlet pairing for U = V = 8'= 3, F=0.

FIG. 7. The result for various fillings for U =3.0,
V= W=2. 5, F=0.5.

(ii) The pairing energy and T, do not necessarily coin-
cide, especially when the Bar deen-Cooper-Schrieffer
(BCS) picture is not guaranteed as in the superconductors
with electronic mechanisms. T, in the three-dimensional
attractive Hubbard model has been estimated only in the

U
~

~ ae limit. For the one-dimensional attractive
Hubbard model, the Bethe-ansatz solution by Bogoliubov
and Korepin gives the exact expression for the super-
conductivity energy gap at T=O as

b, =2[(t '+ U')' "—
~

t
~ ]

for small densities of carriers. For
~
t

~

—1 eV and
U- —0. 1 eV, for instance, 6, which is a measure of T„
becomes -0. 1~ U~ —100 K. If we naively combine (i) and
(ii), an efFective attraction

(2V b) —(U+F—a)-0. 1 eV—

and 4. Detailed discussion of the pairing correlation
would require the study of the spatial extension of the
pair.

In the analysis of the attractive Hubbard model, the
fast (exponential) decay rate of the Green's function in
real space [Eq. (4a)] is related to the size of the pairing,
while the pairing correlation has a power-law decay. The
result for the Green's function in the present case (Fig. 9)
also exhibits a fast decay.

2. Interband correlation

Another point is, despite the correlated motion of P
and a orbital carriers, the Cooper pair considered here is

... FREE ELECTRON

0.1

could give T, —100 K, but the situation may not be so
straightforward, since the two-band model can consider-
ably differ from the attractive Hubbard model as we have
emphasized. b

B. Pairing correlation

1. Intraband correlation

We have seen a clear enhancement of the on-site pair-
ing in Fig. 3. If we turn to the nearest-neighbor pairing
correlation (Fig. 8), there is some enhancement over the
free-electron value. This is reasonable if we note that the
carrier-carrier attraction in the P band envisaged in Fig.
2 extends to nearest neighbors due to quantum effect as is
also reAected in the density-density correlation in Figs. 3

Q.O

FIG. 9. The Green's function, (c," c, ), for U= V= W=3,
F=0.
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companies both unoccupied and doubly occupied sites in
the a band. Thus the destruction has a different physical
origin from that in the single-band Hubbard model.

D. Necessity of two bands

The two-band pairing mechanism proposed in this pa-
per provides a clear example of the essential difference
between the two-band Hubbard model and simplified
models such as a coupled spin-fermion model. The mech-
anism proposed here rests only upon the introduction of
two bands in the Hubbard model, and does not require,
per se, two dimensionality either, except that the effect of
kinetic energy differs in 2D.

The present mechanism does not even require a direct
spin-spin coupling of different orbitals such as the Hund s
coupling as is shown from the enhanced pairing for the
situation in which V = W (vanishing intra-atomic ex-
change with inter-orbital interactions being independent
of spin). For comparison, we have also studied the strong
Hund's coupling case,

U-W, F=V=O,

where electrons in the P orbital are free unless they meet
an a electron of opposite spin on a same site. In this
case, P electrons experience an effective repulsion mediat-
ed by the a band, which is easily shown by comparing the
energies of electron configurations with a diagram similar
to Fig. 2. The repulsion is confirmed by the density-
density correlation [inset of Fig. 13(a)], and the Cooper
pairing (on-site and nearest-neighbor) is suppressed ac-
cordingly [Figs. 13(a) and 13(b)]. The spin-spin correla-
tion in the a band tends to be destroyed when the 13 band
is doped [Fig. 13(c)]. This is because, in the presence of a
strong Hund's coupling, the P electrons can gain kinetic
energy when the antiferromagnetic correlation in the a
band becomes weaker [inset of Fig. 13(c)].

An effect of two bands on the usual phonon-mediated
superconductor has been studied within the BCS formal-
ism by several authors. For instance, Kondo shows
that, in a BCS pairing Hamiltonian in which the P band
has a positive BCS b, parameter for iEk

—p ~
(RcoD as well

as a negative 6 for the a band and a negative interband
(a-f3) transfer of Cooper pairs, the BCS estimate for T,
increases with the interband transfer. By contrast, the
present model is remarkable in that the superconductivi-
ty itself comes from purely repulsive, electron-electron
interactions in the original Hamiltonian.

As mentioned in the Introduction, Muttalib and Em-
ery have examined the two-band extension of the one-
dimensional Luttinger model, in which only the electrons
around the Fermi energy are considered. From the g-
ology (for various coupling constants between the elec-
trons at EF) for spinless fermions, they have shown that
the model can be mapped into a system of bosons when
backward scattering involving the two bands are neglect-
ed. When a certain condition is met, spin and charge de-
grees of freedom decouple in the boson system, and the
model is solvable. From this it is shown that the cri-
terion in terms of the g-ology for superconductivity with
intraband pairing can be satisfied for entirely repulsive in-

I I I I I I I I I I

0.1

TRON
(j band)

in the n band

in the 0 band

0.0
0 5 10

FIG. 14. The eAect of changing the a-band filling from half
filling with 22 electrons in 22 sites (O ) to 26 electrons in 22 sites
(x).

teractions. The present study shows unambiguously that
a two-band Hubbard model can embody superconductivi-
ty. It is interesting, especially for two-band systems, to
ask whether the Luttinger model and the Hubbard model
are of the same universality class, where the effects of
backward scattering, etc. , are subtle in comparing the
two models. The criterion for superconductivity ob-
tained for the Luttinger model has quite a different form
from the criterion for the Hubbard model given here, and
it would be an interesting future problem to probe their
relation.

An interesting point about two-band models is the
effect of hybridization. We can study the problem also by
the quantum Monte Carlo method, which accommodates
models with hybridization. One indication that the intro-
duction of hybridization may not incur drastic suppres-
sion of superconductivity is the following. When hybridi-
zation is turned on, the band filling of each band will
change. We have looked into the case in which the band
filling of the a band rather than the P band is varied. The
Monte Carlo result (Fig. 14) shows that even when the
a-band filling deviates from half-filling to 26 electrons per
22 sites, the Cooper pairing correlation does not change
appreciably.

In the normal phase of highly correlated electrons, the
problem of whether the Fermi-liquid picture applies has
been a central issue. Both the g-ology and numerical
results indicate a power-law singularity in the momentum
distribution. Here we show the result (Fig. 15) for the
momentum distribution for the case in which the Cooper
pairing is enhanced. As for the a band, we can see that
the distribution at EF becomes steeper when the inter-
band interactions are turned on. This is consistent with
the picture shown in Fig. 2, since producing unoccupied
sites in the a band may be viewed as a deviation from the
half filling, which then enhances the singularity at EF. If
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in the superconducting phase resembles the Fermi distri-
bution for T= T, . ' Here /&=san

—(tt. It is an interesting
problem to identify the nature of the condensate occur-
ring in electron models such as the attractive Hubbard or
present two-band Hubbard models. There is also a possi-
bility that a two-band Hubbard model can explain
temperature-dependent Hall conductivity, which is ex-
perimentally observed. These serve as future problems.

In summary, we have proposed a two-band Hubbard
model, which is shown to embody a novel mechanism for
an enhanced Cooper pairing as confirmed by the quan-
tum Monte Carlo result.
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