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SuperAuid dynamics of the fractional quantum Hall state
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The fractional quantum Ha11 effect is due to a novel state of matter with properties reminiscent of
superfluidity. I derive the Euler equation and the quantum constraint that together determine the
dynamics of the superfluid. I then use these equations to explain the incompressibility of the liquid,
to describe the magnetophonon excitations, and to study the forces acting on vortices whose pinning
is responsible for the plateaus in the Hall resistance.

I. INTRODUCTION

A neutral substance like He owes the existence of its
superfluid phase to subtle quantum-mechanical effects.
Its bulk properties, however, are still those of a classical
fluid: it may be poured, shaken, and stirred like any oth-
er liquid and its magical superflow properties are simply
a consequence of the fact that the superflow is irrotation-
al, i.e., to d'Alembert's paradox. Below the critical veloc-
ity for creating phonons dissipation is due to energy ab-
sorbed in the manufacture of quantized vortex lines
which behave almost classically.

Superconductors behave similarly' except the phonons,
being turned into plasmons by the electric charge of the
condensate, are even harder to create and all resistive dis-
sipation comes from the depinning and motion of Abri-
kosov vortices. In the Bardeen-Stephens theory, the
magnetic field of a moving vortex induces an electric field
which drives a normal, dissipative, current through the
vortex core. The forces causing the vortex to move are
best understood via a fluid-dynamics analysis: The su-
perconducting condensate behaves as charged superfluid
and the Abrikosov vortex has an inner core, of radius ap-
proximately equal to the coherence length, about which
there is quantized circulation. This core vortex is sur-
rounded by a screening antivortex (whose radius is ap-
proximately equal to the the magnetic penetration depth)
with vorticity proportional to the magnetic field and total
circulation equal and opposite to that of the core; there is
thus no circulation at large distances. The force felt by a
stationary core vortex embedded in a bulk flow is a
Magnus force due to the interaction of the circulation
and the uniform flow. The Magnus pressure on the core
is in turn balanced by the Lorentz force on the current
through the surrounding antivortex. "

The novel state of matter found in a two-dimensional
electron gas (2D EG) at low-temperature and high mag-
netic fields has many properties in common with
superfluid phases, ' including long-range order, no dissi-
pation, and vortex soliton excitations. The vortices con-
tain the deviations of the charge density from uniform,
rational fraction, filling of the Landau levels and, presum-
ably, " it is the pinning of the vortices by impurities

that yields plateaus in the Hall conductance. Since this
"two-fluid picture" of the fractional quantum Hall effect
(FQHE) depends crucially on vortex pinning it would be
useful to have the same kind of intuitive picture of the
forces on a vortex that we have for the other superfluids.
It is the intention of this paper to provide that picture.
In addition to plateau formation FQHE vortices have
another essentially quantum role: when they are free to
move they behave as solitonic quasiparticles with frac-
tional charge and, it is believed, fractional statistics.
They may in their turn undergo Bose condensation and
give rise to the hierarchy of FQHE states. '2

The flow properties of superfluids are determined by
classical Euler equations —with an additional constraint
on the vorticity which embodies the quantum mechanics.
These Euler equations, being an expression of the laws of
conservation of mass and momentum, have greater valid-
ity than any particular model used to derive them and
can be applied over a wide range of conditions. In the
FQHE case we could start from either the microscopic
wave function of Laughlin' or the more phenomenologi-
cal Landau-Ginsburg approaches based on Chem-Simons
(CS) Lagrangians6 and should arrive at the same equa-
tions. In this paper I will take the second route and
motivate the Euler equations for the FQHE state from
the mean-field Landau-Ginsburg model which I will re-
view in Sec. II. In Sec. III I obtain the Euler equations
by the methods used for conventional superfluids and, in
Sec. IV, I examine the consequences of the fluid dynamics
equations for the properties of the FQHE and more gen-
eral anyons in a magnetic field.

II. MEAN-FIELD THEORY OF THE FRACTIONAL
QUANTUM HALL EFFECT

The need for a Landau-Ginsburg picture of the FQHE
was stressed by Girvin in the summary of Ref. 5 and he
there indicated the necessary ingredients including a
Chem-Simons term in the action. A more complete mod-
el, based on a mean-field treatment of the Chem-Simons
Lagrangian, was introduced by Zhang, Hansen and
Kivelson and by Read. In the approach of Zhang
et al. one begins with a path integral
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Z =f1[P]d[P']1[a„]expi

X f d x P'HP+ e" a„h~ (2.1)

involving a commuting P field representing the electrons,
and a "statistics" field a„. 0 is an action for a nonrela-
tivistic particle with effective mass m, e.g.,

H=, (8; i—a; i A—; ) i (B—, ia—o i A—O)m'
'2

(2.2)

and 80 is the statistics parameter' ' which, taking one
of the values (2n + 1)n, ensures that the bosonic P field
describes particles with Fermi statistics.

In the mean-field approximation to the path integral
the CS statistics field is determined by the electron densi-

ty p through

28~ =28olkl'= V Xa . (2.3)

If the density is uniform the curl of the CS mean field will

be constant. When the external magnetic field is also uni-
form the density may be such that the gauge fields in (2.2)
cancel This r. equires

28op =2m(2n + 1)p= lBl (2.4)

or

2m 2n +1 (2.5)

corresponding to a lowest Landau-level filling fraction of
v= 1/(2n +1). In this case the P field has a smooth clas-
sical solution, /=const, which will dominate the path in-

tegral at low temperature. The Fermi statistics of the
electrons has been nullified by the magnetic field, allow-
ing the electrons to Bose condense. The resultant FQHE
state is a novel kind of charged superfluid. It is easy to
see that the ground state has Hall conductivity

1 e

2n+1 h
(2.6)

and has an energy gap resulting in dissipationless flow
with cr„„=0.

The solution appears to depend on the choice of n in
the statistics parameter, a choice that should effect no
physics, but it is best to regard the picture as being sim-

plest for our choice of n rather than depending on it.
This theory is very appealing —but there is some

sleight of hand in the derivation implicit in writing down
(2.1) as if it were obvious. The "effective mass, " m',
should not be thought of as being the effective mass of the
electrons in the 2D EG. As pointed out in Ref. 6, the
magnetic field is so large that it has suppressed all the
zero-point motion of the electrons and nowhere in the
wave functions does any mass m occur. Reference 7 pro-
vides a less intuitive derivation of the mode1 but shows
clearly that the coefticient of the condensate stiffness,
1/2m *, is really a parameter depending on the Coulomb

repulsion between the electrons [but see the discussion
after Eq. (4.6)].

Including short-wavelength P-field fiuctuations in the
calculation of the low-energy effective action will induce
terms like (VXa) and d . The former has the effect of
smearing out the 5 function source each particle provides
for the statistics field while preserving the essential Qux-

density relationship. The latter will modify higher fre-
quency motion of the system but should not effect the
slower motions that are our primary interests.

In addition to the uniform ground state it is clear by
analogy with Abrikosov vortex lines in a conventional su-
perconductor that there will be localized vortex solutions.
These will have f (a + A )„dx"=+2m. . Since the currents
in the thin sample are tiny they will not effect the distri-
bution of the external lBl field and this integral is really
$5a„dx" So., from (2.3), the vortices have a deviation
from uniform charge with

q= f Spd'x=~ (2.7)

III. KULKR EQUATIONS

In this section the external magnetic field will be uni-
form unless variations are explicitly introduced. Bold
symbols such as j wi11 denote two component vectors in

the plane of the 2D EG. Vectors in the perpendicular
direction such as the 8 field and the vorticity co will not
be bold —their appearance in vector products such as
vXco should not cause confusion. I will use the symbol

There are two distinct kinds of vortex: the quasihole vor-
tices have p=lPl reduced on average, while the quasi-
particle excitations will have it enhanced. In both cases P
winds through 2m. as we circle the vortex and for finite

energy P must vanish at the center: so the hole and parti-
cle solutions will have quite distinct charge profiles and
cannot be simply related. The Laughlin wave-function
picture has excitations with similar properties except
there is no vanishing of the charge profile in the center of
the quasiparticle.

These excitations cost energy and this energy gap is
part of the origin of the stability of the odd-denominator
filling-fraction states. Presumably, they are also the ori-
gin of plateau formation: any mismatch between the
electron density and the magnetic-field strength will lead
to the excess or deficit of charge being used to form vor-
tices. If these vortices are pinned by impurities the
charge sequestered by them will be immobile and only the
"superfluid fraction" will flow and contribute to the ob-
served FQHE. There is therefore a kind of two-fiuid
model for the FQHE.

Vortices are also anyons with true fractional statistics;
the coinbination of fractional charge and 2m. fiux gives
them a statistics paraineter 8, /m. =2p, +n. /8o where p,
is an arbitrary integer. These excitations themselves will
condense when their density is correctly chosen and there
will be vortices in their condensate which have statistics
parameter 8&In =2pz+m/8„etc. In this way we see
the explanation for the heircharchy of FQHE states with
a continued fraction of allowed condensate densities. '
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A,- for the combination, a, + A;, of the statistics and elec-
trornagnetic fields. With this notation the equation of
motion for P is

i(a, i—A )p= — (a, t'—A, )'/+2&plpl' p—p .1

sibility of the 2D EG: Any local change in density im-
plies a net vorticity, and in two dimensions an isolated
vortex has logarithmically divergent kinetic energy.

By writing j=pv, and replacing 28~ by m *~+Bwe
reexpress (3.7) as

(3.1)
m "[v—(vXtu)]=E+vXB —V( —,'m "u +p), (3.9)

The A, field is determined by the density, current, and
external electromagnetic field by the equations

(a,A, —a~, ) = —28~+B,
(a~,—a~, ) = —28~, +E, ,

(avAi —aiAU)= 28rJ—2 Ei —.
(3.2)

These are consistent with current conservation provided

B+a,E aE, =—0, (3.3}

i.e., if the Maxwell equation B+V XE=O is satisfied.
To obtain the Euler equations we write /=&pe' and,

for the moment, assume p to be sufficiently slowly vary-
ing that we can ignore its derivatives. Equation (3.1) be-
comes

The nonlinear terms are bundled into the variable p, (x).
In ordinary hydrodynamics p(x} would be the specific
enthalpy but here it will be interpreted as a local chemi-
cal potential. At T=O the specific enthalpy and the
chemical potential coincide, and in the hydrodynamics of
superfluids it is the chemical potential that appears in the
Bernoulli equation for the superfluid fraction. Defining
a flow velocity field by

u, = (ae —A, ),1

m* (3.5)

we see that the imaginary part of (3.4) asserts that
V v=0, while taking the gradient of the real part yields

1m'a, u, =+280pv2+E, —a, , v +)tt
2m

—(0—A, )=-,'m'(a, e—A, )' — '
a, (a, e—A, )+l .

m

(3.4)

a, (m'to+B)+V v(m'tu+B)=0 (3.10)

This equation shows that even in the absence of quantum
mechanics a perfect two-dimensional charged fluid can
only gain or lose vorticity via a change in the magnetic
field. The anyonic statistics field ties the combination
(m'co+B) to the density p and then (3.10) becomes the
charge conservation equation

28o[p+V (pv)]=0 . (3.11)

A consequence of (3.11) is the equations we obtained by
assuming p essentially constant are actually more general
and may be consistently used in situations where the den-
sity varies. As is the case of ordinary superfluids the
keeping track of density variation terms will add a "quan-
tum pressure" term into p(x). '

IV. WAVES AND VORTICES

The simplest solutions to Eqs. (3.8) and (3.9) are obvi-
ously the steady uniform Hall flows where, e.g.,
280pv, =E2. Next easiest to study are the density waves
obtained by linearization of the equations of motion. For
these we try

u, = A, cos( kx Qt ), —

u2 = A&sin(kx Qt)— (4.1)

which is a form of the Euler equation for a fluid of parti-
cles of mass m * and unit charge. By comparison with or-
dinary fluid dynamics we see that p is related to the pres-
sure P by VP=pVp Eq.uations (3.8) and (3.9) are the
principle results of this section.

The equation of motion (3.9) is compatable with the
quantum vorticity condition (3.8) since taking the curl of
(3.9) and using V XE+B=0, gives

1
m 'a, u2 = —28vpv 2+E2 —a2, v +p

2m

(3.6) corresponding to motion in ellipses, reminiscent of gravi-
ty waves in water. With this ansatz we find from,
p+V pv, that

We can recast these equations in a more familiar form
by noting that the vorticity is given by

1 2e0 1
cu —a)up aalu) (a)A2 a2A)) p Bm'

(3.7)

k
p=pv 1+ A

&

—cos(kx Qt }—
This is consistent with the constraint (3.8) provided

m ' A 2kcos(kx Qt )+B—
(4.2)

i.e.,

m'co+8 =2e(p . (3.8)

k=28op 1+A —cos(kx Qt ) . (4.3)—'n
Since B=260p0, this is equivalently

While Eq. (3.8) is an almost trivial extension of the
m*co+e'B=0 relation for a superconductor, it is this
vorticity relation which is responsible for the incompres-

, nm* —=
B A2

(4.4)
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If we now substitute (4.1) into either of equations (3.6}
and use @=2'.p, we find the dispersion relation

To investigate vortex motion we must extend the quan-
tum constraint (3.8) to take into account point defects in
the P field. Such point vortices modify (3.8) to

(m*) 0 =B +2' k (4.5)
m *co(r)+B(r)=28op(r)+g a;5 (r —r;), (3.8a)

In this fluid-flow picture of the magnetophonon modes
we see that it is the intrinsic vorticity of the 2D EG
which, because its long-range influence is governed by the
same equations as the 2D Coulomb interaction, plays a
role identical to that of the charge in superconducting
condensate and opens a gap in the phonon dispersion re-
lation. In this analysis I have ignored the genuine E field
generated by the nonuniform density —but because it can
escape from the plane of the 2D EG it cannot generate a
plasmon gap.

The trajectories of the "particles" in the density wave
become circular at long wavelength and evolve into con-
ventional longitudinal sound waves as the wavelength de-
creases. In the k =0 mode the whole system of charge
moves together in circles and this motion raises some in-
teresting questions. According to Kohn's theorem'
there is a bulk mode where the particles orbit as a rigid
mode at the free particle cyclotron frequency,

pul =8+,
pU2 = B)p .

With v=0 and E= —V V, (3.6}can be now be written

(4.7)

where ~; =+2m. . To produce a low-energy configuration,
each of these point vortices is surrounded by an opposite-
ly oriented antivortex and its associated charge density.
It is this composite object that is the analog of the quasi-
particle and quasihole excitations of the Laughlin ground
state.

The forces acting on a vortex held stationary in a
steady uniform flow are a combination of electromagnetic
forces, hydrodynamic Magnus forces, and the external
force provided by the pinning center. To analyze them it
is useful to use a version of Bernoulli's theorem that fol-
lows most directly from (3.6): assume a steady flow so
V-pv=0, then we can introduce a stream function y with

0, =Blm, (4.6)
V(p, +28~+ V+ ,'m 'u—)=0 (4.8)

independent of interactions. If the present k =0 mode is
identified with this "Kohn theorem" mode then, the re-
marks in Sec. II notwithstanding, m * is the effective mass
of the individual electrons. This mode, however, is the
zero-momentutn limit of the magnetoplasmon or inter-
Landau level branch of excitations. These, in the absence
of interactions or at large k, evolve into excitons with a
particle in the n =1 Landau level and a hole in the n =0
level. We are interested in the lower energy intra-Landau
level magnetophonon modes and do not wish to make this
identification —so we will remain with the interpretation
of m* as a Coulomb derived effective mass and its effects
should be regarded only as an "analogue" of inertia.

Because I ignored the quantum pressure in deriving the
quasihydrodynamic approximation we do not see any of
the larger k phenomena such as the k term, characteris-
tic of the weakly interacting Bose gas model of a
superfluid —but then the pressure density relationship in
the real system is presumably not the same as in the
weakly interacting system. Also, unless we rather
artificially take A, negative, we see no sign the magnetoro-
ton dip' which occurs at the reciprocal of the mean in-
terparticle spacing and presages the low-density collapse
of the FICHE ground state into a Wigner crystal. At the
largest momenta the magnetophonon density-wave pic-
ture is expected to break down entirely and the excita-
tions are expected, by analogy with the magneto-
plasmons, to become vortex antivortex quasiexci ton
pairs. ' The two vortices in a pair will be separated by a
distance proportional to k and will move, each with the
flow velocity induced by the other, in parallel rather like
a two-dimensional smoke ring. This change of interpre-
tation cannot possibly be described by any quasiclassical
model. Despite these deficiencies I think there is some
merit in this picture of the phononlike elementary excita-
tion.

so the combination

go= @+28~+V+ —,'m 'u (4.9)

F= jXB+pE x — Prj S .
n an

(4.11)

Using the Bernoulli theorem (4.9) and the relation
VP =pVp to find P along the boundary, we find

F=f Epd x

By+p (28—(g+ V+ ,'m*u ) n—dS .

(4.12)

Since m *co+8=2eop we see that force reduces to

F=f E(p —p„)d x+ f (p„—,'m*u )ndS . (4.13)
n an

At large distances the flow is uniform and without circu-
lation. The integral of u is zero and so

is constant everywhere —not just along streamlines.
The stream function is also useful for evaluating the to-

tal Lorentz force F due to a uniform magnetic field act-
ing on an arbitrary steady flow in a region Q. We can use
Stokes theorem and find

F = f jXBd x= Bf yndS—,
n an

where n is the outward normal. The force depends only
on asymptotic properties of the flow.

With this information we can evaluate the total force F
on a region 0, containing a stationary vortex. I will as-
sume that we are in a region where the density takes its
asymptotic value p„=B/280. The force is the sum of
the body force and the external pressure
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F„=f E(p —p„)d x . (4.14)

f PndS= f ppndS f pV'pd —x, (4.15)

i.e., use the Bernoulli result throughout the region and
not just on the boundary. We find after various applica-
tions of Eqs. (3.8), (4.9), the identity

v Vv=V —'U —vXco
2

and V.pv=O, etc. , that

F= f m "pv(v n)dS
an

(4.16)

(4.17)

so that the total force, including pinning forces, on any
region between two streamlines must vanish.

Suppose now the velocity field near the vortex
comprises three parts: the flow at infinity, v„equal to
the Hall flow ~ E„/8, the vortex flow itself, v,«, and the
backflow vb. Close to, but not in, the core of a quasipar-
ticle vortex the streamlines are closed and in a region of
slowly varying density so we can write the force on the
region within the streamline as

F=f pEd x+ f —,'m "pv ndS . (4.18)
n an'

The integral of U yields the Magnus force equal to the
circulation within the contour times the flow past the
core (see the Appendix). Because of the relationship be-
tween the charge of the vortex q and its circulation given
by Eq. (2.7) and because of the relation between the flow
v„and the electric field, this force is Eq. By Eq. (4.17)
the force is independent of the streamline we use: If we
evaluate the integral about a closed streamline further
out we would find a smaller Magnus force, because the
circulation is reduced by the enclosed part of the antivor-
tex, but the reduction in the Magnus force is exactly
compensated by the extra electric body force on the en-

Since there is no net flux of momentum across the bound-
ary the calculated force F must be balanced by a pinning
force on the vortex.

When the E field is constant the force (4.14) is just the
electric buoyancy force on the vortex due to the deviation
of the charge density from that of the surrounding fluid.
The magnetic forces cancel. The derivation of (4.14) pro-
vides a rather convoluted route to the discovery that the
force on an isolated stationary vortex is E times its
charge q —but leads naturally into a discussion of where
on the vortex does the pinning force act. A reasonable
assumption is that there are additional conservative
forces, due to charged impurities or other inhomo-
geneities in the interface where the 2D EG resides, acting
on the individual electrons. Since such forces can be
written as F; = —pVW, I can, without loss of generali-

ty, add them into the E field and, after including them,
the integral (4.14) will be zero. I will now argue that such
forces cannot hold a vortex stationary in a background
flow.

Firstly we establish another momentum conservation
result. Suppose that we perform the computation of the
net force on a region around an arbitrary contour but this
time use

closed fiuid due to the uniform part of the electric field.
We see that the whole of the pinning force Eq must be
borne by the vortex core. This is exactly what happens in
a type-II superconductor where it is quite reasonable
that the normal core sustains the force. In the present
case the core is hollow: There are no electrons there to
be acted on by the pinning force —the Magnus force
must therefore be zero and the vortex has no recourse but
to follow the flow.

Is this a disaster for pinning? Not really —since in list-
ing the flow components near the vortex I have omitted
the flow v

p produced by the pinning force itself. Let us
consider the nature of the flow near a charged impurity
in the absence of the vortex. As an approximation imag-
ine that the electric field produced by the impurity varies
slowly enough that we can use the uniform Hall current
formula v; XB=—E; . We see that there is a vortici-
ty given by

1a)= —V E8 (4.19)

V. CONCLUSION

Motivated by the Landau-Ginsburg theory I have
made a quasihydrodynamical model of the FQHE. As
with the derivation of hydrodynamic equations from the
Landau-Ginsburg theory of conventional superfluids it
seems reasonable to suppose that such equations will
have greater generality than their derivation. A further
merit of the classical fluid-flow paradigm is that it enables
a direct application of mechanical intuition in any first
attempt at understanding new phenomena —although it
will in no way substitute for serious quantum-mechanical

implying an induced 5p proportional to V E. Since the
electric field of the impurity is not confined to the plane
of the 2D EG, the E field falls off more rapidly than the
solutions of V V=O and the in-plane flux of the E field
falls rapidly to zero as we move away. This means that
although there will be an induced charge at the impurity
this charge will come from nearby and there is no net
charge pulled in by the impurity —this is an example of
the incompressibility of the FICHE ground state.

Near the impurity there will be closed streamlines and
any particular line will remain closed up to a maximum
background current. Since the induced charge is not sim-

ply related to the impurity charge it will be energetically
favorable for vortices to accumulate near the impurity.
Their cores will move with the local flow field but they
will orbit the impurity until the background flow is
strong enough that their streamline is no longer closed.
In particular, there will be a stable point at which the
flow velocity is zero until the Hall electric field exceeds
the maximum force produced by the impurity potential.
A vortex can remain at rest at this point there until this
happens. The energetics of this depinning are clearly
identical to those of a charge q particle acted on by only
the Hall field and the local pinning field. This may give
one a slight sense of nascetur mus but it must be remem-
bered that the actual situation is more complicated than
the conclusion suggests.
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computation of the relevant parameters and constitutive
relations. The fluid picture leads naturally to the
effective incompressibility of the FQHE ground state and
to the gap in the magneto phonon spectrum. It thus cap-
tures the essential physics.

My motivation for the examination of the fluid-flow
picture of the FQHE was to seek a model for vortex pin-
ning and unpinning. It is easy to perform a force balance
analysis of the FQHE vortices by using slight
modifications of the discussion in (Ref. 4), but since there
is no "normal core" it seems most likely, as suggested in
Sec. IV, that the vortex localization and charge seques-
tration occur via a slightly different mechanism than pin-
ning in a superconductor.

In studying the vortex dynamics one must be aware
that the vortices in the FQHE involve far fewer de-
grees of freedom and are therefore much more quan-
tum mechanical objects than in some of the other
superfluids —but it seems worthwhile to understand the
classical behavior before attempting to discuss zero-point
fluctuations, quantum delocalization, condensation, and
consequent hierarchy of FQHE states at other rational
filling factors.

APPENDIX

For completeness I will describe here the theory of the
Magnus effect in the case of incompressible, irrotational
flow where it is simplest. In such a case the velocity field
is described by an analytic stream function f(z) such that

U lU1 2 (Al)

F2+tF) = —
—,'P

an dz
(A2)

Here p is the mass density Clo. se to the cylinder there
will be backflow and the stream function will be a compli-
cated function of the boundary shape —but at large dis-
tance all the complications are irrelevant and the stream
function will have the simple form

Suppose there is a cylinder with arbitrary shaped bound-
ary t)Q about which the fiuid has circulation. We can use
the conventional Bernoulli theorem to write the force on
the cylinder as a contour integral round the boundary
streamline
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and the circulation is a =2miC. Because of the analyticity
the contour integral may be evaluated at infinity where
the asymptotic data may be used to express the in-
tegrand. The force turns out to be

F, = —p~U2, F, —p~U~ . (A5)

There is no drag (d'Alembert's paradox) but only a lift
force. In the absence of any outside force to hold the
cylinder in place it will have to move with the flow.
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