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The problem of an elastic system in the presence of a random pinning potential is investigated us-

ing weak-disorder perturbation theory. The occurrence of a restoring pinning force is derived from

first principles. A quantitative estimate of the pinning force is obtained and agrees with the collec-
tive pinning theory of Larkin and Ovchinnikov. The renormalization of the elastic properties is cal-

culated. Contribution from the anharmonicity of the lattice can have both possible signs whereas

contribution from the pinning force always reduces the effective shear modulus.

INTRODUCTION

The pinning of an elastic system by an external poten-
tial has its origin in the breaking of translational invari-
ance. Many physical systems exhibit this stick-slip be-
havior, for example, depinning of charge-density waves,
Wigner crystals, Bloch walls, Aux lattices in type-II su-
perconductors, etc. Two extreme limits of this very gen-
eral problem have been considered: The first one occurs
when both the elastic system and the pinning potential
are periodic but incommensurate as in the Frenkel-
Kontorova model extensively studied by Aubry. ' The
second one occurs when the elastic system is periodic and
the underlying pinning potential is random. For two
physical situations, this question has been raised—
namely by Lee and Rice for charge-density waves and
Larkin and Ovchinnikov for Aux pinning. The main
concept in these latter cases is that the random potential
breaks the lattice into "correlated volumes" that behave
elastically independently and are pinned individually.
The concept of "correlated volume" circumvents the
problem of identifying the elastic and plastic instabilities
that are responsible for the pinning force. Recent corn-
puter simulations addressed the nature of these instabili-
ties for a model system of relevance to the Aux pinning
problem and the following picture has emerged: depend-
ing on the strength of the random potential, the lattice is
either deformed purely elastically, or undergoes elastic
instabilities, or is plastically deformed. In the elastic re-
gime (which disappears as the inverse square root of the
system size) there is no pinning force. Both the elastic in-
stabilities and the plastic instabilities lead to a finite pin-
ning force. The crossover between these two regimes de-
creases logarithmically with the system size. In this pa-

per we discuss the elastic instability regime, i.e., before
plastic deformation occurs. Even though this regime is
absent for an infinite system, it might still be of physical
relevance to systems studied experimentally. For in-
stance, typical experimental fiux-line lattices contain
about 10 vortices.

Another interesting result shown by computer simula-
tions in the elastic instability regime concerns the
effective elastic constants of the lattice in the random po-
tential: It has been observed that the effective shear
modulus depends on the strength of the pinning poten-
tial. The effective shear modulus measured as a response
to an imposed periodic shear deformation can either in-
crease or decrease depending on the range of the vortex-
vortex potential. In contrast the effective shear modulus
measured as a response to imposed displacements of the
boundaries of the lattice (the exact equivalent of a macro-
scopic shear test in solid mechanics), always decreases as
the strength of the random potential increases. The latter
effect produces a "softening" of the lattice that is likely to
be important for the physical behavior of the Aux lattice:
pinning force, nucleation of dislocations, onset of
diffusion, nonlinearity of the I - V characteristics.

This paper is organized as follows. In Sec. I, we intro-
duce our model and calculate the average elastic response
to a given displacement: This allows us to give an esti-
mate for the total pinning force which is compared to the
collective pinning theory by Larkin and Ovchinnikov.
In Sec. II, we show that the interplay between the ran-
dom potential and the anharmonic elasticity of the per-
fect lattice leads to a renormalization of the elastic modu-
li. This is relevant to the situation of an imposed dis-
placement field. In Sec. III, we address the Cauchy prob-
lem where displacements are imposed only at the bound-
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ary. In this situation, we find that the effective shear
modulus always decreases in the presence of the pinning
potential, in agreement with previous computer simula-
tions.

I. AVERAGE ELASTIC RESPONSE
TO A DISPLACEMENT

In this paper we consider a two-dimensional hexagonal
lattice. The energy of the system is given by the interac-
tion between vortices:

U„, = —,
' g u„,(r; —r, ),

l, J

The method we use applies to any dimension. We restrict
ourselves in this paper to the two-dimensional case in or-
der to compare our results to computer simulations. This
treatment is relevant to several physical systems, among
them superconducting films.

At this stage, it should be stressed that this perturba-
tive treatment is valid if the system size is smaller than
the correlated volume introduced by Larkin and Ovchin-
nikov. They have calculated the displacement correla-
tion functions g (r). In the case of the Gaussian potential
one obtains

where u„„ is a two-body potential. For specific calcula-
tions, we assume a Gaussian form

'2

A2 +l 1

P U P 2
p p

2

r ln
L
a

u„,(r) = A, exp
r

R„

V(r)= —A exp
r

R
(4)

The interaction of the lattice with the random set of pin-
ning centers is also described by a two-body potential

N„ N„

U„= g g u„~(r; —R, )= g V(r, ),
i=1 j=1

where r; denotes the coordinates of lattice sites and R
the random positions of the otherwise identical pinning
centers. Again, for specific calculations, we assume for
u, the Gaussian form:

'2

where n is the density of pinning centers, n, the density
of vortices, L the linear size of the system, and a the lat-
tice spacing. When this g (r) becomes of the order of R,
elastic instabilities occur and perturbation theory breaks
down. However, within each correlated volume V,
defined by the condition g(r)(R~, perturbation theory
remains valid. We now expand the total energy in
powers of the displacement field: This corresponds to a
weak-disorder limit where we assume small displace-
ments. In this expansion, we keep terms up to fourth or-
der in the strength of pinning potential which amounts to
fourth order in displacement in the elastic energy and
third-order displacements in the vortex-pinning centers
energy: We Fourier transform the total energy and take
the continuum limit in q space. This leads to

U=U„+U, = ,' fS (—q)C& P~( —q) + ,' f qi'q—~z'q('S (q, )s~(qz)sr(q&)A g'r'5(q, +qz+q&)

2 2 2 2
I pl

I Ql p $ Ipl i/I d q, d qzd q3d q4+ —,', qi qz q(q4S (qi)S (qz)S (q3)S (q4)B p $ 5(q +iq +zq +zq4)
(2ir )'

dzq n„d
+n V' qS —

q + V p
—

q1
—q2S q1S q2 4

(2m )' 2 (2~)"

n„ d q, d qzd qz+ V"p —
q1

—
q2

—
q3 S q1 S q2 S q3

(2m )

The notation is as follows:

S (q)= fS (x)e'~"d x,
where S (x) is the continuum version of the a coordinate of the displacement field S.

4 &(q) is related to the Lame coefficients by

4 p(q)=(A, +p)q q~+pq 5 ~ .

Indeed in the case of an hexagonal lattice, the elasticity is isotropic and therefore can be described by only two elastic
coefficients A, and p. The inverse matrix of 4 is

~a@(q )
—

( q)
—i

)
aP 1 ~p A+p q

pq k+2p q

A g~r is the tensor of third-order anharmonicity, and B g~g is the tensor of fourth-order anharmonicity.
In all those elastic coefficients we have taken the q =0 limit, which amounts to local elasticity. By definition
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V' (q)= f V(r)e'~'d r,
Br

a2V" (q)= f V(r)e'i'd r,
ar or~

03V"' (q)= f V(r)e'i "d r .
ar Vr~ar~

In order to calculate the average elastic coefficients, we first have to solve the equation of equilibrium of the lattice in
the presence of the random potential, then to take the second derivative of the total energy around this new equilibrium
configuration. Finally, we average over the random positions of pinning centers.

By definition, the elastic matrix 4d;, (q) of the disordered system is obtained from

8 U

&S (q)&S~(q')

From Eq. (6) we get

@d~(q)5(q +q') .
4m

(10)

@d~(q)5(q+q')=4 ~(q)5(q+q')+ q q'~ ( —
q q')r —A Irr Sr( —

q
—q')

+fq q' k (
—

q
—q' —k) B g S(k)S(—

q
—q' —k)~Br (2 )4

n, d k+ V" ( —q
—q')+n„ f V"'

(
—

q
—q' —k)Sr(k)

(2n } (2m)

where S is the new equilibrium configuration.
In the weak-disorder limit, the first corrections to 4 ~ will come from averaging terms which are quadratic in V. As

a result we need to expand S to second order in V. However the second-order contribution to S is involved only in the
AS term coming from third-order anharmonicity. After averaging, this term vanishes as we show in detail in Appendix
A. Hence we need to expand S only to first order in V, namely

S (q)= —n, y'~(q)V&(q) .

From Eqs. (10) and (11), we obtain the average elastic matrix,

(4f(q) )5(q +q') =4 ~(q)5(q +q')
J 2

+B ~g q q'~n f kr'( q q k) '&r (k)& u( q q k)(V'(k)V'( q q k))
IM (2~)

d k—n„ f~r (k)(V"' ( q q k)Vs(k))

(12)

(13)

where ( ) stands for the averaging over the random posi-
tions of the pinning centers.

In order to proceed, the form of the correlations of the
random potential is needed. They will be very different
depending on the range of the pinning potential. If this
range is long compared to the lattice spacing, the global
effect is to couple the pinning centers to compressions or
dilations of the lattice. By contrast, if the range of the
pinning potential is small compared to the lattice spac-
ing, shear deformations at the scale of the lattice spacing
will take place. The explicit calculation for both cases is
described in Appendix B. To treat the case of short-
range potential, the correlation function is truncated so
that forces seen by two different sites are completely un-
correlated. The corrections to +d~(q) are of two types
[Eq. (13)].

(1}The terms coming from anharmonicity of the lattice
vanishes for q =0: they amount to the renormalization
of the elastic constants, which will be discussed in Sec. II.

(2) The terms coming from the anharmonicity of the
pinning potential gives a finite contribution for q =0,
which shows explicitly the breaking of translation invari-
ance, and the appearance of a restoring force given by

F =+~(q =0)S~(q =0)—:aIS (14)

The large distance cutoff L is defined as
L =min( V'; V,

' ), V being the system size and V, a
correlated volume. From Eq. (15) one can derive an esti-
mate for the pinning force F assuming that the max-
imum restoring force is obtained when the correlated
volume has been translated by a distance of the order of

at defined by Eq. (14) is the so-called "Labush
coefficient. " In the special case of the Gaussian poten-
tial (see Appendix B), one gets

/+3' np ~pn
0!L— ln

2p(A. +2@) g 2 a
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R at which point elastic instabilities occur. Thus the
pinning force per unit surface is

2
A, +3@ p Apno LF = ln

2p(A+ 2p) R a
(16)

Noticing that

A+3@ 1 1 1

2'(A+2@) 2 C), Css

and if moreover C» &&C«, one finds

2
72~ lip Ap j'2C«R, '"

~
(18)

This has the same dependencies on the model parameters
as in the two-dimensional Larkin-Ovchinnikov theory3
except for the exponent of the logarithmic dependence.
This similarity may seem surprising since the two ap-
proaches are different. Our method is a perturbation
theory in the limit of weak disorder. In this the Labush
coeScient appears as the fundamental quantity and fol-
lows directly from the calculation. In comparison Larkin
and Ovchinnikov obtain the pinning force directly from
the statistics of individual random forces over a correlat-
ed volume. It is worth noticing that the Labush

I

II. RENORMALIZATION OF THE ELASTIC MODULI

The q corrections to the elastic matrix has, according
to Eq. (13) (for the special case of the Gaussian pinning
potential} the following form:

hP ~(q}=2' n n„A q q~ B;gP J s,s, ,

where

(19)

coemcient is related to the nonharmonic nature of the
vortex-pinning centers potential (through the presence of
V'"): such anharmonicity allows for the existence of
elastic instabilities which is a necessary condition for a
nonzero pinning force. ' Moreover it appears that, pro-
vided that this anharmonicity is present, there is a
nonzero pinning force for arbitrary small values of the
strength A of the pinning centers. The Labush
coefFicient we have derived is of the order of magnitude of
the slope of the force displacement curve found in com-
puter simulations. "

However, it should be pointed out that our expression
for the Labush parameter would lead to an A depen-
dence for the pinning force in any dimension. By con-
trast, in three dimensions for instance, Larkin and
Ovchinnikov predict an A dependence. We will come
back to this point in Sec. III.

1 1 L 1 (A, +p, )(A, +3@,)J s s=,ln — 5rs5rs (5 s5 .s+5 s5 s+5 5ss }
2p (2n ) & 4 (A, +2p}

In the limit k &&p this can be rewritten
r

IP ~(q)= n„n~ A~in —A g q q~
8 2 p p

(20)

(21)

with

A:g =&:gF [5,s5, s ,'(5,s5,—s —+5,s 5r s+5rr 5ss )] (22)

For the case of the hexagonal lattice, it can be shown that the renormalized elasticity remains isotropic (i.e.,
2A"„=A„""„—A„„). Therefore, it is meaningful to introduce renormalized Lame coefficients A, and }u (see Appendix C),

hp=A —'n A ln2 1
xx8 p p

p

b, A, =(2A"„~—AP )—,'n~ A lnp 1 L
(24)

p

The tensor A g is calculated (see Appendix C) for an hexagonal lattice. With the approximation of keeping nearest-
neighbor interactions, one finds

p a
(25)

p a
(26)

where the values of u„'„, u„'„', u,',", and u,',
"' are to be taken at the lattice spacing a. Specializing to the Gaussian vortex-

vortex potential one gets

hp= —,'n A n, A, 1n
p a

315
16

225
4

a
R„

+18
R,

4 4

exp
a

R,

'2

(27)
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6k= —,'n A n, A, ln
p Q

75
16

213
4

'2

+18
R,

4 4

exp

'2

(28)

III. ELASTIC PROPERTIES: THE CAUCHY PROBLEM

This calculation has been motivated by a numerical
shear experiment. ' Imposing the displacements in the y
direction at the boundary of the sample, the increase in
elastic energy AU„, is measured and an effective shear
modulus p( A ) is defined by

'2
as~

b, U„„=—,'p(A )f dx dy . (29)

One striking feature of this equation is that the sign of
the correction depends on the range R, of the vortex-
vortex potential, namely,

Ap &0 for 0.63 « 1.65 and bp&0 otherwise;
a

R„

5k&0 for 0.30« 1.69 and AA, &0 otherwise .
a

R„
The exact values of a»'R„ for which the corrections b,p

and b, A, change signs depend on the approximation used
to compute A I . Nevertheless the qualitative behavior
remains when one includes more and more neighbors.
We have observed this cross over between hardening and
softening in computer simulations. One must notice that
the sign of the corrections to the elastic moduli depends
crucially on the shape of the vortex-vortex interaction
(whether the fourth derivative can change sign or not). It
should be emphasized that the case studied in this section
corresponds to a prescribed displacement of all lattice
points. By contrast in many physical situations, the dis-
placement field is imposed only at boundaries. This is the
case in a macroscopic shear experiment, where we impose
the displacements at the boundaries of the sample. This
is also the case for a dislocation where discontinuity of
the displacement field is imposed along the dislocation
line. It strongly suggests that we consider Cauchy-type
problems in a random pinning potential.

We look for a solution S (r) which minimizes U. The
system is restricted to the region 0 ~ x ~ L. When we im-

pose on the boundary a displacement b, i.e., a shear de-
formation 6/L, in the absence of pinning centers the dis-
placernent field would be

S (r)=h 5—» .
L

In the presence of pinning centers, we look for a solution
of the form

x 5'»
S'(r) =So (r)+b, +S, (r) +6 S~ (r), (31)

S OS, ,Sz are chosen with vanishing boundary condi-
tions. Here So is the displacement coming from the re-
laxation of the lattice to the pinning potential before the
shear is applied.

We solve the minimization problem by using the real-
space Green's function of the 4 operator, which is
defined by

and with vanishing boundary conditions.
Then one gets

S (r)= n„ fy —~(r, r')[V&(r')+ V&»(r')Sr(r')

+ ,' Vs's(r—')S»(r')S (r')]

Xdr'+6 —5 ~ .
L

(33)

Here we have used the fact that 4 operating on the bare
shear profile (b,x/L)6 is zero. The elastic energy of the
relaxed sheared state is

—(A, +p) g~r(r, r') pV, y r(—r, r')=5 r(r r')—
Br Brfj

(32)

It was found that p(A ) decreases with increasing pin-
ning strength A (see Fig. 1). The result was only weakly
dependent on the specific configuration of pinning
centers. Moreover, this decrease is found for any range
in the vortex-vortex potential we could reach. This sug-
gests that the effect does not depend crucially on the
anharmonicity of the vortex-vortex potential. The physi-
cal origin of this softening is the same as the pinning
force—namely the nonlinear coupling to the pinning po-
tential. For this reason we will consider only harmonic
elasticity and nonlinear coupling to the pinning potential:

U= ,' f fS (r—)4~(r, r')S~(r')dr dr'

+n, f V' (r)S (r)dr+ ' f V"&(r)S (r)S~(r)dr
2

E =Eo+AE& + 26 E2

We are interested in the term quadratic in 6,

(34)

I

E =f f @»»(r, r') dr d—r'
L L

+ f fS, (r)4 ~(r, r')S~~(r')dr dr'

+2f fSo(r)4 ~(r, r')S~z(r')dr dr' . (35)

We have used again the stationarity of the elastic energy
for the linear profile to eliminate first-order terms in S, .

We want to average E2 over the disorder: The first
nonzero contribution will be second order in V so that
SO,S„S2 have to be expanded to first order in V. This
gives

n,+ f V"& {r)S (r)S~(r)S "(r)dr . (30) So = —n, fy ~(r, r')V&(r')dr', (36)
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nU

S, = — y ~(r, r'}Vp (r')x'dr',

S2 = — " fy ~(r, r')V&' (r'}(x') dr' .

(37)

(38)

This system is composed of stiff regions (correlated
volumes) separated by soft regions (boundary layers)
which are bounded to deform in a coherent way. The
effective shear modulus which results is

Therefore, after averaging one gets

n
&E2 & =p+ ' f (G ii +2H

& )y ~(r, r)x dr,
L2

where we have defined

(39)

I,~=f1 b+(1 f}I—

if pb ((p, one gets

a +L
p = 1 — p= 1 —aeff

C

' 1/2

(47)

(48)

& V",( ) V",( ')
& =G, 8( —'),

&
V' ( r) V&~~ (r') &

=H &~~5(r r') . — (41)

For any impurity potential, we have H~&~~
= —

G~@~, so
that

n 2

&Ez&=p, — f G & y ~(r, r)x dr .
L2

(42)

For a spherically symmetric potential G
&~

and H
&

are zero for aAP. Since the elastic energy is positive
definite, the diagonal Green's function y (r, r) is posi-
tive. Therefore, for any vortex-pin potential of spherical
symmetry, &Ez & is less than p corresponding to a soften-

ing of the lattice. One must notice that the quantity G,
which governs this softening, is the same as the one that
enters into the Labush coefficient.

Specializing to the Gaussian potential, we have

from Eq. (15) one obtains (for X »p),

(n n, )'

R, v'2 a

1/2

A (49)

&E2&=p —const' L (50)

It appears that elasticity breaks down for volumes of the
size:

This expression has the linear dependence on A ob-
served in computer simulations (see Fig. 1). The
coefficient of A for the parameters considered in Fig. 1

is 4.0, which is of the right order of magnitude. This
linear behavior in A is difficult to get in weak-disorder
expansions since they produce even powers of A .

We want to close this section by a discussion of the be-
havior in three dimensions. The same procedure we have
already applied leads to a correction of the elastic shear
modulus of the form:

n„~n A2 2

&E2 & =p — " —' ' f [y""(r,r)+3g~i'(r, r)]xidr .
2 2 g2

P
L

A
(51)

(43)

From dimensional analysis it follows that the integral in

Eq. (43) is proportional to L, the proportionality con-
stant can be estimated in the case of periodic boundary
conditions by the use of Eq. (8). One finally gets

A 1 g+3 L
&E, &=I ,'I. ' ' " ' ———"ln— . (44)g2 p g+2p a

Using Eq. (15) for the Labush coefficient al, one finds

For small values of A this volume is much smaller than
the correlated volume derived by Larkin and Ovchinni-
kov which behaves as I/Az. Their derivation makes ex-
plicit use of elasticity theory [see Eq. (5)].

In three dimensions the displacement-displacement

0.3

&E, & =I ,'a, L'. —— (45)

a V1/2
C

V,

a
y 1/2

C

(46)

Although this formula gives the right trend that the elas-
tic shear modulus decreases with increasing pinning po-
tential, it is clear that this expression can apply only if
(p/aL) is much larger than the system size. When

(JM/al ) = V, the correlated volume [see Eq. (5)] becomes
smaller than the system size, and the effective shear
modulus can rather be estimated in the following way. '

Assume that the system breaks into correlated volumes of
size V, separated by thin boundary regions of thickness a.
The respective volume fractions of the boundary regions
and of the correlated volumes, are f and (1 f ) where—

0.2—

0.1—

0
0 0.04.

Ap
0.08

FIG. 1. The effective shear modulus measured numerically
by use of Eq. (29). The theoretical ideal lattice shear modulus is

p =0.27. The system parameters are W„, = 1020, R„=O.6,
Xp =438, Rp =0.25.
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correlation function g (r) behaves as

g (r) —A~r, (52)

(53)

which leads to the 1/A dependence for the correlated
volume. Note that this scaling gives A dependence for
the force as already mentioned at the end of Sec. I.

It has been suggested from experiments' ' that plastic
deformations make the correlated volume much smaller
than the estimate given by Larkin and Ovchinnikov. We
may speculate that in three dimensions the actual corre-
lated volume corresponds to vanishing shear modulus
and occurrence of plastic deformation. Using Larkin-
Ovchinnikov expression for the pinning force,

1/2
n A

y

We find that the shear modulus is always smaller than its
value for the pure system. However, the explicit depen-
dence of this softening on the pinning potential amplitude

shows that it cannot be described by simple perturba-
tion theory. Instead we have shown that the numerical
results of shear experiments can be described by the as-
sumption of a mixture of elastic correlated volumes
separated by soft boundary regions.

The discussion in the present paper is limited to the
elastic and elastic instability regimes. Elastic instabilities
occur when the correlated volume becomes smaller than
the system size. Further increase in the pinning potential
eventually leads to plastic deformation characterized by a
finite density of dislocations. Natural extension of this
work would be a treatment of dislocations in the presence
of a random pinning potential.

and Eq. (51) for the correlated volume, one gets that the
pinning force scales as A and is thus proportional to the
Labush coefficient obtained from perturbation theory.

CONCLUSIONS

In this paper we have shown how to set up a first-
principles approach to pinning problems. By explicit cal-
culations we have shown that the crucial ingredient is the
nonlinearity of the vortex-pinning centers interaction.
This nonlinearity is at the origin of elastic instabilities
that break the system into finite correlated volumes. In-
side those correlated volumes one can perform weak-
disorder expansions. This treatment leads explicitly to
broken translation invariance, namely a finite Labush
coefficient. This leads to pinning if the size of the system
is larger than the correlated volume and our estimate for
the pinning force agrees with Larkin and Ovchinnikov's
in two dimensions. In three dimensions our calculation
suggests that the softening of the lattice by the random
potential leads to breakdown of elasticity on length scales
shorter than the ones estimated by Larkin and Ovchinni-
kov. We develop a systematic treatment of the Cauchy
problem in the presence of a random pinning potential.
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q q}= J(r( q q)V ( q q) J&r( q q)&P(k)&w( q q k)(q+q

Xk~ ( —q q' k) V' (—k)V—' (
—

q q' k) A'P— —
p,

(2n )

+yr ( —q q') fy—~ (k) V" ( —q
—q' —k) V' (k)aP

(2m )' (A2)

Averaging S over the disorder (see Appendix B) will
make first-order terms in V disappear. The averaging
of second-order terms will give a contribution to
(5( —

q
—q')) proportional to 5( —

q
—q'). But, on the

other hand,

normalization of elastic constants the expansion of S in
powers of V is needed to first order only, and only the
fourth-order anharmonicity will give a nonzero contribu-
tion.

(
—

q
—q')5( —

q
—q') =0 . (A3)

APPENDIX 8: CORRELATIONS
OF THE RANDOM POTENTIAL

Therefore, the contribution to 4 ~ coming from third-
order anharmonicity vanishes. Consequently, in the re-

Let us consider correlation functions of the type

( G(q)H(q') ),
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where

G (r) = g g (r —R» ), (Bl)

APPENDIX C: CALCULATION
OF THE FOURTH-ORDER

ANHARMONIC COEFFICIENTS B

H(r)= gh (r —R») .

From these definitions it follows that

(B2) We have to expand the elastic energy to fourth order in
the displacements.

g elastic ) y
( G(q)H(q') )

=f dr dr'e'« "e '«" g g (g(r —R )h(r' R,—)}
R R,

(B3)

Two possible situations can be considered.
(1) If the range of the pinning potential is much larger

than the intervortex spacing, the pinning potential can be
considered as smooth and correlations on different sites
of the lattice can exist. In this case, one obtains,

(G(q)H(q') )LRp=np(2«r) 5(q+q')g(q)h(q'), (B4)

where g and h denote the Fourier transforms of g and h.
(2) If, as in our case, the range of the pinning potential

is much smaller than the intervortex spacing, the poten-
tial can only be correlated on identical lattice sites. Then
we have

(G(q)H(q') }sRp

X X X(S'
I

+ —,
' g g g(S, —S, +,) [n (S, —S, +,)]

I

+ t g g g[n (S, —S;+,)]
i n

(C2)

with

1 u„', (r) 1 u„",(r)f (r)= —— +—
8 r3 8

(C3)

The first summation is on the lattice sites i, whose dis-
placement is S;, the second summation is on the lattice
vectors v.

Let us put «.=rn (n being of length 1). The fourth-
order term in E"""'is

= f dr dr'e ""e

i

X g g (g(r —R )h(r' —R )),
R R,

(B5)

3 u («) 3 u„(r) 1 u „('r}
g(r)= +— —— +—

4 r3 4 r 4

g u„'„(r) 5 u,'„'(r)
h (r}= —— +—

8 r3 8

(C4)

which leads to

(G(q)H(q') &sRp

n (2m. ) 5(q+q') f g(k)h( —k) .
1 2, dk

n, (2n. )
(B6)

1 u,'„", (r)
4

+u,'„"'(«.) (C5)

In Fourier space, in the continuum limit and for q~ &&1
one finally gets

B~Pr) +2f(r)r(eP) r (5~P5rs+5 rSPs+5 s5P )+gg(r)(T( P)
rs P5

+ y
~'P'r ~'~r 5 + y

'~'P'r's'~s5 + Z
~'P'r'&'Pr 5 + Z.~'P'r's'P~5 + Z.~'P'r's'rs5 )+m h ( ) y

~'P'r's'~Pr~
(7) p5 (~) py (7 ) a5 (7) ay (7 ) ap ~ (r) (C6)

where the T(,)
tensors are defined as follows:

7 ~'p'&" = ~ n'n p'n&'n'
(~) (C7)

I

defined by

A pP =B pPg [5 s5 s ,'(5 s5 —s—+5s5 s+5 5ss)]

r~'p'&"~p= ~ n~ np n&n'n~np(t)

Z-~'p'r'&'~pr& = ~ n n p n ~ n ~ n n pn rn ~
(~)

(C8)

(C9)

is given by

A "="f (a)+ —"g (a)—+—"h (a)

(C10)

(Cl 1)

where the summtion is to be taken on the unit vectors n
linking a given site to its neighbors which are at a dis-
tance ~.

For a two-dimensional (2D) hexagonal lattice, with
only nearest-neighbor interactions, the tensor A pp

A„„="
, f (a)+ ', g (a)+ —', h (—a), —

A„"» = —',f (a}+,'g (a)+ —', h (a—) . —

(C12)

(C13)

It can be checked that elasticity remains isotropic (i.e.,
2A"» =A —A»» ).xy xx xx
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