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Damping of spin waves in a two-dimensional Heisenberg antiferromagnet at low temperatures
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The Dyson-Maleev formalism is used to calculate the damping of spin waves in the two-
dimensional Heisenberg antiferromagnet at asymptotically low temperatures and long wavelengths,
both in the quantum and in the classical case. The calculations are done self-consistently. Various
regimes are found for the decay rate depending on the relative size of the reduced temperature ~ and

the dimensionless wave vector ka. In all cases, the decay rate is found to be much smaller than the

frequency of the excitations, leading to well-defined spin waves, provided that kg)&1, where the
correlation length g is of order exp(const/r). At low but finite temperatures, we take into account
fluctuation renormalizations which tend to increase the damping. The result of simulations on the
classical lattice rotor model are presented and compared with the calculations. The agreement is

qualitatively good. The simulations are also used to test the scaling form for the decay rate in the
regime kg-1, which is outside the limit of validity of our direct spin-wave calculations.

I. INTRODUCTION

Since the discovery of high-temperature superconduc-
tivity, the two-dimensional (2D) quantum Heisenberg an-
tiferromagnet (QHAF) has been the focus of much atten-
tion. Some of the new superconductors (e.g. , La2Cu04)
display strong antiferromagnetic ordering in their insu-
lating (stoichiometric) phase which can be understood in
terms of a QHAF model. ' Inelastic neutron-scattering
experiments, which have been used to probe the antifer-
romagnetic ordering of La2Cu04, give a measure of the
order-parameter dynamic-correlation function S(k, co),
where the order parameter is the staggered magnetiza-
tion. Based on the results of renormalization-group
calculations, hydrodynamics, and scaling arguments,
Chakravarty, Halperin, and Nelson' (CHN) have pro-
posed a scaling form for the dynamic-correlation function
S(k, co) for the 2D QHAF, which exhibits well-defined
spin-wave peaks at low temperatures and long wave-
lengths provided that the wave vector k is large com-
pared to the inverse correlation length g '. CHN used
hydrodynamics to predict the spin-wave frequency co(k),
but they recognized that hydrodynamics could not be
used to evaluate the spin-wave damping I I, . Indeed, in
2D, the most important damping mechanism comes from
1ong-wavelength spin-wave scattering, rather than short-
wavelength fluctuations. More recently, Tyc, Halperin,
and Chakravarty' (THC) introduced a particular scaling
form for S(k, co), including parameters for the damping
of spin waves, based on the analysis of CHN and on gen-
eral considerations of analyticity and scaling behavior.
In order to set the unknown parameters in the scaling
form, they performed a numerical simulation of a classi-
cal system whose low-temperature long-wavelength be-
havior is believed to emulate exactly the QHAF. ' The
scaling form was found to work well in the limited tem-
perature range of the simulations.

It is natural to try to give a more rigorous derivation of

the damping, and since the main damping is believed to
come from magnon-magnon scattering, it should be pos-
sible to calculate I t, in perturbation theory. It is the pur-
pose of this paper to calculate exactly to lowest order the
inverse lifetime of the magnons —i.e., the width of the
spin-wave peaks in S(k, to)—for the 2D Heisenberg anti-
ferromagnet both in the classical and in the quantum
case. We will do this in the limit of low temperatures,
long wavelengths (T~0, k ~0), and when the spin is
large (S ))1). We believe that our results are also appli-
cable for small S however, including S=

—,', as long as the
correct quantum-fluctuation-renormalized values are
used for the zero-temperature spin-stilt'ness constant and
magnon frequencies.

The results are obtained for various regimes, which are
distinguished by the relative sizes of ka and r; respective-
ly, the dimensionless wave vector and the dimensionless
temperature. In the longest-wavelength regime, we make
contact with the scaling forms. All the calculations are
done in the case of the 2D Heisenberg antiferromagnet,
but the results should be applicable to rotor models as
well as to nonlinear sigma models (the correspondence
between the various models is given by CHN). These re-
sults are also applicable, in principle, to La2Cu04, but
they are beyond current capabilities to measure. ' Final-
ly these results are applicable to molecular-dynamics
simulations of the classical lattice rotor model (CLRM).

The analytic methods employed in this paper are simi-
lar to the methods used by Harris, Kumar, Halperin, and
Hohenberg (HKHH) (Ref. 6) in three dimensions, and, as
in three dimensions, their domain of validity is restricted
to the regions where the damping is dominated by two-
magnon scattering. In 3D, at low temperatures, it was
suScient that ka be small. In two dimensions, however,
we must take into account an additional restriction: As a
consequence of the Hohenberg-Mermin-Wagner
theorem, there is no long-range order at any finite tem-
perature. As long as there is long-range order at T=0,
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however, the spin-wave expansions can still be done local-
ly within regions much smaller than the correlation
length g. Thus, our calculations are confined to the re-
gion where the wave vector is much larger than the in-
verse correlation length (k »g '). With this extra re-
striction the lack of long-range order (LRO) should not
be critical. Moreover, since g ~0 very rapidly for
r~0 [ln(g/a ) ~ const/r], there remains a large range of
wave vectors where the calculations are valid.

The assumption of long-range order in the ground state
at T =0 is known rigorously to be correct for the quan-
tum Heisenberg antiferromagnet on a square lattice with
nearest-neighbor interactions, for all spins S ~ 1. There
is also strong evidence that this is correct for S=

—,'.
If one includes in the Hamiltonian frustrating interac-

tions, with second-nearest neighbors and further spins, it
may be possible for quantum fluctuations to destroy the
long-range antiferromagnetic order at T=O, in which
case our theory would no longer be applicable. Also, if
one chooses parameters such that LRO exists at T =0,
but the quantum fluctuations have almost destroyed the
LRO, then there may be a length scale g „,„, large com-

pared to the lattice constant a, such that it is necessary to
have k & g „,'„, for spin-wave theory to apply. There will

also be large renormalizations of the parameters of the
spin-wave Hamiltonian due to the quantum fluctuations.
For the nearest-neighbor model, however, even for S=

—,',
it appears that g~»„, is not very different from a.

In order to test our results, we compare them with
simulations of the CLRM. THC have performed simula-
tions of the CLRM in a range of temperatures where the
correlation length g is much smaller than the system size

L, and as a practical consequence they could not study
the region with 1n(kg)))1. The analytic expressions
developed in this paper, however, are more directly ap-
plicable to a lower temperature regime, at wave vectors
such that 1n(kg) is large. Therefore, we have carried out
additional simulations in this lower temperature regime.
Although the value of g is actually much larger than L, in
this regime, it is reasonable to hope that the spin-wave
damping for nonzero values of k, in the finite system, are
similar to the damping in an infinite system at the same
temperature and wave vector. This is because the damp-
ing I k in our spin-wave analysis comes primarily from
intermediate wave vectors which are & k.

In our analytic calculation, we follow HKHH and use
the Dyson-Maleev' (DM) formalism instead of the more
familiar Holstein-Primakoff" (HP) formalism. DM and
HP give identical results for the on-shell calculation of
the decay rate in the limit S~~, T~O. However, DM
is much simpler for the off-shell calculations, and, in

three dimensions, the self-consistency check works with
DM but not with HP. We perform the off-shell calcula-
tion mainly to ensure that the DM formalism is stable for
off-shell excitations. The off-shell calculation can, in

principle, provide the information necessary to determine
the shape of the dynamic-correlation function away from
the spin-wave peak. However, we do not discuss this
here.

Let us now summarize the results in terms of the physi-
cal parameters characterizing the model: p~ is the zero-

temperature spin-stiffness constant, c is the zero-
temperature spin-wave velocity, a is the lattice constant,
S is the length of the spin, T is the temperature in units of
energy, u„and us are constants of order unity, and f(k)
is a weak function of the direction of the wave vector k
[f(k)=—,'].

For the quantum system we find the following.
Regime 3 [k,„(r)«k «(TIps) (T/8Mc) «a ']:

2
T 2vrps 2+1n —+u„

2mps T
hack

k 2
21n

regime 8 [(T/ps) (T/8mkc) &(k (& T/hc «a ']:

hack
k 2 2m'ps

2

ln +u~
T

Ack
(1.2)

regime C [TIAc (&k «a '(TS/2ps)'~ &&a ']:
1 I'2 2

0.662m Tck T
k

2nps
(1.3)

regime D [a '(TS I2ps)'~ &&k &&a ']:

1.80m.
k 2

'2
T T

2~ps Rka tIf(k )

(1.4)

The existence of a lower bound k;„(T) for the applica-
bility of regime A is a consequence of the fact that, at any
finite temperature the long-range order is destroyed by
thermal fluctuations, and hence the calculations, which
rely on a perturbation of an ordered ground state, cannot
be valid for infinitely small k at fixed temperature T. The
value of k;„will be discussed later.

The results given above are derived below explicitly in
the limit TIJS~O and S~~. However, we believe
that one can relax the condition S~ 00 provided that one
takes into account the renormalization of ps and c due to
quantum fluctuations. We argue that the scattering of
long-wavelength magnons is a purely geometrical process
and that the short-wavelength quantum fluctuations can
be taken into account by renormalizing the parameters of
an effective long-wavelength Hamiltonian; the fact that
the damping in regimes A, B, and C only depends on pa-
rameters defined at long wavelengths is a consistency
check of the argument. In this spirit, we expect that the
formulas for the damping should be valid even at small
values of the spin S (in particular for S=—,'), provided
that the correct zero-temperature values of the spin
stiffness ps and the spin-wave velocity c are used' (since
these are the physical parameters describing the effective
long-wavelength Hamiltonian). This prescription is valid
for regimes A, 8, and C because, in these regimes, the
damping can be expressed solely in terms of the long-
wavelength parameters. By contrast, in regime D, one
cannot express the damping without reference to the
short-wavelength parameters of the system, either
through a or through S. Also, the damping depends on
the curvature of the spectrum —via the dimensionless
function f(k)—only in regime D. Presumably, the quan-
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turn fluctuations will also renormalize the curvature in a
way not related to the renormalization of the slope c. We
have not attempted to compute the effects of quantum re-
normalization in regime D.

For the classical system we find the following results:
Regime A „[k;„(T )a « ka « e ~

( T /ps ) /v'2m ]:
2

hack
k 2

T
2&ps

[2 ln(2vrps /T )+ ln(2/m ) + u z ],
(1.5)

Regime B,~
[e (T/ps) /&2m &&ka &&1]:

'2

r, = [ln(1/ka)+In(&32e ~ )+us ].
cl

hack

2 2+ps

p (k, T)= I5+ —,'in[1+(kg)']I,T (1.7)

where 5 is a constant. In a previous paper (THC), we

(1.6)

Similar results are expected for the classical rotor mod-
el, except that the constant us in Eq. (1.6) will be

cl

different than for the antiferromagnet.
We note that the equations of motion for the classical

antiferromagnet are identical to those of the quantum an-
tiferromagnet, if one takes the limit S—+ ~ in the QHAF,
and suitably rescales the coupling constant J and the tem-
perature T. Our formulas for the damping may differ, in
principle, in the two cases because the classical formulas
are supposed to be valid in the limit where first S~~,
and then (T/ps) —+0, whereas the formulas for the
QHAF are derived in the limit where (T/ps) —+0 faster
than S

We see that, in fact, there is a difference in the argu-
ment of the logarithm in the formulas (1.2) and (1.6) for
the damping in the intermediate-wavelength regimes 8
and B,~

By co. ntrast, formulas (1.1) and (1.5) for the
damping in the long-wavelength regimes A and A, ~

are
identical, regardless of the value of S in the QHAF.

Thus far, we have omitted from our formulas the
effects of renormalization of the spin-stiffness constant
and magnon velocity due to thermal fluctuations. At low
temperatures, these effects become important only at very
long wavelengths, specifically for k & k;„, where
k;„~0faster than any power of T, for T~O. Thus, for
T~O, this renormalization becomes important only at
the long-wavelength end of regime A or A„. We argue
below that the correct way to include the renormalization
at long wavelengths is to replace the quantity ck in Eqs.
(1.1) or (1.5) by the actual, temperature-renormalized
spin-wave frequency co& ( T), and to replace ps by the re-
normalized stiffness constant ps(k, T) at wave vector k
and temperature T. According to the renormalization-
group analysis, the value of ps(k, T) may be written in
the asymptotic form p~(k, T) —(T/2m )ln(kg) for kg ))1,
provided that k is small compared to the upper limits
quoted above for regime 8 or B,~. A somewhat better
formula for ps(k, T), proposed in CHN, which appears to
work for values of kg down to kg= 1, is

where q =kg. This formula should be valid at low tem-
peratures for k g ) 1 and k less than the upper bounds
quoted above for regime A or A,~.

Although renormalization of the spin stiffness should
be negligible in regime 8 or 8,~

at low temperatures, Eq.
(1.7) does give significant renormalization of ps(k, T) in
this wavelength regime at the higher temperatures used
in our computer simulations of the CLRM. Even though
from a theoretical point of view we cannot rule out the
importance of other corrections at these higher tempera-
tures, we do find that there is a significant improvement
in the agreement between theory and simulation if we use
Eq. (1.7) in the formula for I I, /coI, in regime B,~.

The remainder of this paper will be organized as fol-
lows. In Sec. II, we shall first present the salient aspects
of the formalism (the reader is referred to HKHH for a
more extensive discussion of it). Then, in Sec. III, we
perform the quantum calculation without imposing self-
consistency. We do the calculation in four regimes 8&,
82, C, and D with different approximations in each. The
results of 8, and 82 are identical and we call the merged
regime 8'. In Sec. IV we impose self-consistency and
check for the off-shell stability of the calculation. The
self-consistency condition splits regime 8 in two regimes
A and 8, and we end up with four different regimes as
presented above. In Sec. V we take the classical limit by
letting the spin S go to infinity; then we refine the classi-
cal expressions somewhat, by using the detailed mapping
of CHN between the static properties of the quantum and
classical systems. We thus obtain the results for the de-
cay rate in the two classical regimes: A, j and 8,&. We
also make some further observations on the expected
effects of renormalization due to thermal fluctuations.
Finally, in Sec. VI we compare the results of our calcula-
tions with a simulation of the CLRM. The summary,
given in Sec. VII, includes comparison with the work of
other authors.

II. FORMALISM

The model that we study is defined by

H=Jg S, S, ,
&i,j)

where the definition of J differs from that of Ref. 6 by a
factor of 2. The sum (ij ) runs over bonds in a square
lattice whose lattice spacing is a. Sites "i ' belong to the
sublattice "a" ("up") and sites "j"belong to the sublat-
tice "b" ("down"). Sublattices a and 6 are both square
1attices tilted at an angle of 45' from the original lattice,
their lattice spacing is d =&2a, and each sublattice con-
sists of N sites. The units are such that the positive quan-
tity J has dimensions of energy and that the spin opera-

(2.1)

found that the spin-wave frequency was given most accu-
rately when 5 is chosen to be 5= 1.7. If Eq. (1.7) is now
used for pz in our formulas for the spin-wave damping,
we find in regime 3 or A,], the scaling formula

~ I 2 in[6+ —,'ln(1+q )]+in(2/m )+u„}r„/~„=—
2 [5+—,'ln(1+q )]
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tors S, and Sj are dimensionless.
The Dyson-Maleev transformation expresses the spin

Hamiltonian (2.1) in terms of boson operators. In the
case of nonfrustrated antiferromagnetic coupling, the
correspondence is

S,-'=S —a, a, , (2.2a)

the Hamiltonian Ho with the transformation

a =ia+m p

bpm pap+ ipPp

where

(2.7a)

(2.7b)

S+ =(2S)'"a —(2S)-'"a'a a,
(2g )1/2

(2.2b)

(2.2c)

I = [( I + e ) /2E ]'/

mp= —[(1—e )/2ep]'

with

(2.8a)

(2.8b)

S'= —S+b b. ,

g.+ =(2g) bt —(2g)J J J J J

S =( 2~)' bJ J

(2.2d)

(2.2e)

(2.2f)

—N
—1/2y (2.3a)

bi, =N '/
Q e 'b
J

(2.3b)

where each summation is restricted to the relevant sub-
lattice. The quadratic part of the Hamiltonian is then
given by

where a; and b; are boson annihilation operators. The
Hamiltonian (2.1) is written in terms of the boson opera-
tors by substituting the spin operators as in Eq. (2.2).
The resulting non-Hermitian Hamiltonian has a zeroth-
order term E0, a second-order term H0, a fourth-order
term V', and no higher-order term. It was established by
Dyson' that the expectation value of spin operators was
equal to the expectation value of the corresponding boson
operators if one was careful not to count the "unphysi-
cal" boson states. The unphysical boson states are those
where there exists a site in the lattice populated by more
than 2S bosons. Within this constraint, the correspon-
dence is exact. However, in order to do the calculations,
HKHH were compelled to make the two following ap-
proximations. The first one was to treat the quartic
terms in a perturbation expansion. The second one was
to ignore the requirement to project out the unphysical
states. We refer the reader to HKHH for a full discus-
sion of the consequences of these approximations.

In order to simplify the Harniltonian, one introduces
the Fourier transforms of the boson operators,

y2 )1/2
P P

(2.9)

G„(k,t ) = i ( T(a—k( t )ak(0) ) ),
G p(k, t ) = i ( T(ak—(t)p i,(0)}),
Gp (k, t ) = i ( T(p i,(—t)ak(0) ) ),
Gpp(k, t)= —i(T(P i,(t)P i,(0))),

(2.11a)

(2.11b)

(2.11c)

(2.11d)

where the angular brackets denote an average over an en-
semble at a temperature (p) ', and here T is the time-
ordering operator. The frequency-dependent functions
are defined by Fourier transforms

G„„(k,z)=Pi ' f G„„(k,t)e"'dt, (2.12)
0

for z=2irni(piii) ', with n an integer. For other values
of z, G„,(k, z) is defined by the usual analytic continua-
tion procedure.

HKHH go on to define the self-energy X„,(k, z)
through the Dyson equation, in the usual way, and show
that it is small compared to the unperturbed energy so
that to leading order the Green's function can be written
as

denoting a dimensionless energy. The quadratic Hamil-
tonian is then simply given by

Ho=ficoFQ sp(apap+PP ) . (2.10)
P

The quartic Hamiltonian is very complicated and has
nine interaction vertices; it is given in full detail by Eq.
(2.17b) of HKHH.

HKHH then introduce thermodynamic Green's func-
tions for the a and p magnons similar to the Nambu ma-
trices for superconductors,

A~E ——JzS, (2.5)

and z is the number of nearest neighbors, and for the
square lattice we have

7 =cos(p„d/2)cos(p d/2) . (2.6)

Ho=iricozg (apap+b bp+ypa b +@pa b ), (2.4)
P

where

G (k, z }=[iriz —Rco~s„—X (k,z )]

Gpp(k, z)=[—Rz fico~Ei, —Xpp(k, z—)]

G p(k, z)= —X p(k, z)[iriz —iricoEEi, —X (k, z}]
X [fiz+A'cuss„+ Xpp(k, z )]

Gp (k,z)= —
Xp (k, z)[iriz —iria~~s„—X (k, z)]

X [fiz+AcoEE„+Xpp(k, z)]

(2.13a}

(2.13b)

(2.13c)

(2.13d)
In the remainder of this section and the following two,
unless otherwise noted, the wave vectors will be dimen-
sionless quantities. The quantity k will always be under-
stood to represent the product kd.

Then one goes on to diagonalize the quadratic part of

Thus the damping of the a magnon is determined by

X" (k, co) —= ImX (k, co —i0+ ) =iril (k, co) . (2.14)

If cok is the center frequency of the magnon with wave
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vector k, then the quantity I &, defined by

(2.15)

enters the expression for the correlation function of the
staggered magnetization as the half width at half max-
imurn of the Lorentzian shape. Of course, co&, to lowest
order in the perturbation, is equal to cozck. We shall
refer to I's as the on-shell magnon damping. (Note that
I z is actually one-half the decay rate for magnon occupa-
tion number or intensity. } The form of I (k, co) for
coAcozes, which we shall sometimes refer to as the off-

shell magnon damping, can also be of some interest be-
cause it enters, indirectly, into a calculation of the form
of the tails of the staggered-spin correlation function
S(k, co), far from the spin-wave peaks. Calculations of
the off-shell magnon damping will be used in the present
paper, however, only as an intermediate step in the calcu-
lations when we wish to include self-consistently the
effects of magnon damping in our scattering states.

In order to calculate X" (k, co), HKHH set up a pertur-
bation expansion. The expansion parameters are the tem-
perature T, the inverse of the number of nearest neigh-
bors 1/z, and the inverse of the length of the spin 1/S.
To lowest nonvanishing order, the decay rate is given by

KCOE
I (k, co)= (1—e " ')g n (1+n, )(1+n, )

(4XS) p,
X [5(id+ ep

—e,—s, )M22 (k, p, r, s)+ e '5( —id+ s~
—e,—e, )M3, (k, p, r, s)], (2.16)

where co is the dimensionless frequency of the incoming
magnon,

Ui, ——1 —k f(k), (2.23)

With this definition, Uk tends to unity as k tends to zero,

i'd =Ci) /Ci) E,
and ~ is the dimensionless temperature,

r=2T/JzS,

and f(k) is given by

f(k)=[3+6k„k /k +4(k„+k4)/k
—(k„+k )/3k ]/32 . (2.24)

and momentum conservation is understood, so that
k+ p =r+ s. The occupation numbers are given by

2E /V
n =(e ~ —1)1 (2.17)

The squared matrix elements M22 and M» correspond,
respectively, to processes with two magnons in and two
magnons out (Mz2), and processes with three magnons in
and one out —or the converse —(M» ). They are given,
in the long-wavelength limit, by

M22 =2[(1—k p)(1 —r s)+(1—k r)(1 —p s)

+(1—k s)(1 —p r)],

The angle dependence of f is very weak; f= —,
' for all an-

gles.

III. LOW-TEMPERATURE LONG-WAVELENGTH
APPROXIMATION IN THE QUANTUM REGIME

In this section we will calculate the first Born approxi-
mation for the decay rate of an on-shell magnon neglect-
ing the finite lifetime of intermediate magnons. By "on-
shell" we mean that co=ok. The scattering process that
we will study is

M» = —2[(1+k p)(1 —r s)+(1+k r)(l —p.s)

+(1+k s)(l —p r)] .

Before starting the calculation, let us set up some nota-
tion that will be useful throughout the next section.

The spectrum is linear at small wave vectors and we
can write

p+k~s+r
and the momentum transfer q is defined by

and

(3.1)

(3.2)

(3.3)

Ek =—[1—k g(k)/32],
2

(2.20)
The scattering surface is a surface in the momentum
transfer plane defined by the conservation of energy,

where the dependence on angle is given by

g(k) = 1+2k k /k + (k„+k )/3k (2.21)

v„=2Vkcz . (2.22)

and g has a weak angle dependence, —', ~g ~ —', . We also
need to define the gradient of ck to perform expansions,

k+~p ~k+q ~p —q=O . (3.4)

There is a center of inversion symmetry at I=(p —k)/2
such that if q belongs to the surface, then q' =2I—q also
belongs to the surface. We will refer the reader to
HKHH for an extensive discussion of the scattering sur-
face; we will only present their main conclusions.

Depending on the relative size of p and q, there exist
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different types of scattering surfaces. For instance, when
the two momenta are of "comparable size" (more
specifically, when k &p &k'~ ), then one can expand to
first order each term in Eq. (3.4) and the scattering sur-
face can be described as an ellipse:

Il +ql+ Ip
—

ql =p+k . (3.5)

This description is valid for all the momenta p in this in-

terval except for an infinitesimal range such that p k-1.
For our purpose the description by an ellipse Eq. (3.5) is
accurate enough.

By contrast, when either of the two momenta is much

5(e&+s —e„—s, ) =25(p —s v&—(pp sv—)), (3.6)

where p =—vt, -p and v=vt, s.
In the low-temperature long-wavelength regime, the

quantity that we have to evaluate is, in the lowest Born
approximation,

greater than the other one (p & k or k' &p), then the
scattering surface consists of two disjoint parts. In the
case where p & k', the two disjoint parts correspond to ei-
ther q- —k or q-0. For the part where q- —k, one
can do a Taylor expansion of c.z

—c.„and use only the
linear term for c and c., ; one gets

(3.7)

(1—e "
)f d qd pn (1 +n, )(1 +n, )M 22(k, p, r, s) 5(b, c.),

16S (2n)
(3.8)

(3.9)

we will see that the dominant contribution to the decay
rate comes from values of the incoming magnon p such
that k &p & v.. For these values of p, the scattering sur-
face consists alternatively of a single ellipse and of two
disjoint pieces.

In regime Bz, defined by

«E, I, «v« 1 ) (3.10)

we find that, as in regime 8&, the dominant momenta for

p occur in the range k &p &~. For all these values the
scattering surface is an ellipse and the temperature is still
large enough (~))sl, ) so that the reverse processes can-
not be neglected, i.e., exp( —2s~ /r) is of order unity.

In regime C, defined by

where b c=ca+ cp Br ~s'
For on-shell scattering, the matrix element M» does

not give any contribution because it cannot conserve en-

ergy and momentum at the same time (this is due to the
fact that a convex spectrum does not allow spontaneous
decay of one magnon into three; see HKHH Appendix E
for more details).

We now proceed to evaluate the lowest Born approxi-
mation for the on-shell magnon decay rate I I, . For each
value of k and r there will be a range of values for p that
will give the major contribution to I I, . Depending on
how these values compare with k, most of the scattering
will come from surfaces with very different shapes. As a
first guess, one may think that the major contribution al-

ways comes from thermal magnons, p =~. This is actual-
ly the case in three dimensions (Ref. 6) and in some of the
regimes in two dimensions. As a direct consequence of
the preeminence of thermal momenta in three dimen-

sions, HKHH were led to define four regimes, it will be
convenient for the calculations to follow their definition
as follows (their regime A and B correspond to our re-

gimes B, and B2, respectively).

7 «CI, «7 « 1 (3.11)

the important momenta for p are not anymore in a whole
range as in 8& or 82 but rather only around the thermal
momentum p =v. The scattering surface is as in 82 an
ellipse, but the reverse processes can now be neglected.

In regime D, defined by

7 «CI, «1 ) (3.12)

as in regime C, only the thermal momenta contribute to
the leading term in I I, . The relevant scattering surface is

disjoint, and we will see that this is the only regime in
which the scattering rate depends on the orientation of k
in the Brillouin zone.

In three dimensions HKHH find four different forms
for the decay rate corresponding to the four regimes. In
two dimensions, however, regimes 8& and B2 will yield
the same form for the decay rate. We will consolidate
them into regime 8',

regime 8': c.j, «z«1 . (3.13)
The lack of difference between regime 8, and regime 82
in two dimensions originates in the fact that the momenta

p which give the leading-order contribution to I I, are
spread out in a whole range which spans the different
types of scattering surfaces, whereas in three dimensions
only the thermal momenta are important. Another
difference between two dimensons and three dimensions
is that the first Born approximation is self-consistent in
each of the four regimes in three dimensions, whereas in
two dimensions the self-consistency condition will come
in to split regime B' in two parts, and will leave the other
regimes unchanged. The self-consistent calculation will
be done in Sec. IV.

We will now present the calculation of I I, in each of
the regimes. Even though regime 8, and regime 82 will
turn out to be equivalent in the first Born approximation,
we still keep the distinction because we use a slightly
different approximation to compute the decay in each
one.
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A. Regime 8&, sI, &&v3&&1

One can expand the exponential involving c.I, in Eq.
(3.8) and write

The condition IvoI & 1 then imposes restrictions on the ra-
dial integral, s' & s &s, where

KcoE E,II I,
=

2 4 Jd qd pn (1+n„)(l+n, )
8S (2~) r

XM~2(k, p, r, s)5(be) . (3.14)

and

s
1+Up

s
We can divide the p integral in different regions within
which the scattering surface can be easily approximated.
The three regions are

region 1: 0 &p & A, 2k

region 2: X2k &p & k, k '

region 3: A, ,k
'~ &p & 2v'm,

(3.15)

M2z(k, p, r, s ) =4(1—p)(1 —v),
the integral for the decay rate becomes

I ()) ~ f d2 d2 (1 v)(1 P)
2S (2n. ) ps

(3.17)

where X, and X2 are numerical constants which we are
free to adjust so that this arbitrary partitioning be op-
timally chosen. Final results must be independent of any
reasonable (finite and fixed) choice of A, ) and A, z. The
value 2v n. in region 3 is chosen so as to conserve the area
of the Fermi surface when one replaces the original
square by a disk (this approximation should be valid in
the limit of long wavelengths).

In region 1 (0&p &A2k ), the scattering surface con-
sists of two disjoint parts, one where q =0, and one where
q= —k. These two parts are the symmetric of one anoth-
er with respect to the center of symmetry I=(p —k)/2.
This symmetry transforms r into s and vice versa. Since
the integrand of Eq. (3.14) is unchanged under this trans-
formation, the integration over the part of the surface

q =0 is equal to the integration over the other part. We
can then take twice the contribution of the surface
q= —k. For this surface, we have s =0 and r =k, so that
we can expand the argument of the energy-conserving 5
function as in Eq. (3.6}:

5(e&+ a~
—e„—e, ) =25(p —s —U„(pp —sv}}, (3.16)

where p=vt, .p and v=vt, s. We can also expand all the
exponentials because all the momenta are small com-
pared to the thermal momentum ~. Finally, if we use the
long-wavelength expression for M&2 valid for r =k ))s,q,
1.e.,

The radial s integration can be done exactly leaving only
a simple integration for p. The result for the contribution
of region 1 in regime 8& is

2Q)Eel, T A 2p(1 j—
~S

(3.19)

c=(p+k)/2 .

One then introduces elliptical coordinates in the classical
way:

q' =c coshu cosv,

q'=c sinhu sinv,

(3.20a)

(3.20b)

where the new parameters u and v have for range:
0& u & ~ and 0& v &2m. The advantage of this repre-
sentation is that the 5 function simply corresponds to a
fixed value of u, and that r and s have the following sim-

ple expressions:

r=c(coshu —cosu)=Ic —q I,
s =c(coshu+cosu ) = Ic+q'I;

(3.21a}

(3.21b)

This contribution will be negligible compared to the con-
tribution coming from the second region, which we
proceed to compute now.

In region 2 (A, zk &p & A, ,k' ), all the exponentials can
again be expanded, but now the scattering surface is well
described by an ellipse. We will introduce elliptical coor-
dinates in order to do the integrations. Let us first make
a change of variable (q~q') in the momentum-transfer
plane —a simple shift of the origin —so that the center of
the ellipse lies at the origin in the new coordinates:

q'=q —I .

Then one chooses the x axis to lie along the major axis of
the ellipse. The separation between the foci is given by 2c
where

5(p s U) (pP sv) } (3.18} also, the volume element becomes

One can then use the 6 function to perform the angular s
integration; one writes

5(p —s —
Uz (pp —s v) ) =5(v —vo ) /svz,

where

s —p(1 —v p)

d q'=c (coshu —cosv )du du .

One can then write

5( b, e ) =5( cosh u —a /c )/c,
and a is the average of the lengths of p and k,
a =(p+k)/2. We use for M22 an expression valid for
on-shell scattering in the limit of long wavelengths:
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Mzz(k, p, r, s)=2(eke~e„e, } '[eke~(1 —k p) +Eke„(1—k.r) +eke, (1—k.s) ] . (3.22)

In this form the u integration is trivially done, and it is
possible to do all the v integrations. The result for the
first term in M22 is particularly simple and gives a contri-
bution to the decay which is

E ek ~ ~i" dp

4mS J~,k' k +p
(3.23)

It is transparent to see in Eq. (3.23) that the leading
contribution comes from momenta in the range k &p
&A, ,k' . The second and third terms in M22 are more
diScult to evaluate exactly, but their leading contribution
can be shown to be just half that of the first term and to
come from the same range of momenta. So, to leading
order, the total decay rate due to scattering of magnons
with momentum p such that 0 &p & A, ~k

' is

NEEkT Xlk
r',"=

2
ln

2mS
(3.24)

This is independent of the choice of A, 2.
In region 3 (A, ,k' &p &2&m. },the contribution can be

calculated in a manner similar to region 1. The two
disconnected parts of the scattering surface give the same
contribution to the scattering rate so that we need to do
the integration only for one of them. We choose the one
corresponding to q-0 which implies (p-r ))k,s). In
this region the expression for Mzz in Eq. (3.22) simplifies
and gives [we could also use Eq. (3.17) and get the same
result]

4&k
Mzz= (1—k p)

S

The expression for I k is then

and the main contribution has been shown to some from
the momenta p such that k &p & ~.

B. Regime B&, v «az«~«1
As for regime B, we look at the contribution from

different regions corresponding to different scattering sur-
faces.

In reg&'on 1, p & A,2k, the scattering surface consists of
two disjoint pieces and the calculation goes exactly as in
the preceding case. The decay rate contributed by this
region is equal to Eq. (3.19), which will again be negligi-
ble compared to the leading-order contribution.

In region 2, A.zk &p & A, ,k'~, the scattering surface is

approximated by an ellipse. We must compute the decay
rate given by Eq. (3.14) where Mzz is given by Eq. (3.22).
In region 2, we cannot expand the exponentials in n, and
n, for all values ofp. However, it turns out that the main
contribution to I I, comes from the values of p in the
range k &p & ~, and in this range one can do the follow-
ing replacements: 1+n„=r/2e„and 1+n, = r/2e,
Rather than going through the full justification, we sim-

ply assume that the replacement can be made, and we see
that indeed the main contributions come from the mo-
menta in the range k &p & ~. This, in turn, justifies a pos-
teriori the simplifications. The calculation now proceeds
exactly as in Bl. We will write the integrals only for the
first term in M&& [Eq. (3.22)] for which the algebra is
simpler. Once the integrations over the elliptical coordi-
nates are done, we are left with an expression similar to
Eq. (3.23) for the decay rate,

(2) COERCE'T ~, k '" nPP dP
I (2)— (3.29)

4~S2 a,k' k +p

d sd pn (I+n )
COE Ck (1—

)

2S (2m) P P ~2

X5(k —s —v (kp —sv)), (3.25)

cps ek T X dX

4mS o (x +k /r)(e' —1)
(3.30)

Let us change variables to x =p /r; the decay rate is then

where p =v .k and v =v s. The s integration can now
be performed as in the first case, and the remaining p in-
tegral is

(3.26)

which can then be evaluated in the limit k «~ to give
r

Ik = 1n(3) E k 'T

2~S2 klk 1/3 (3.27}

67EEI 1
I „= ln(~/k) .

2mS
(3.28)

This final result is independent of the constants A, , and k2

Hence we have for regime 8, the sum of the contribu-
tions for the three regions:

which can easily be asymptotically evaluated as k « ~,

~EskerI I,
'= ln(r/k) .

4mS
(3.31)

2
COECk 7

I „= ln(~/k) .
2vrS

(3.32)

As in BI, the evaluation of the last two terms in Mzz [Eq.
(3.22)] is more diScult, but can be done and leads to the
same simple result, namely that they each contribute half
as much as the first.

The contribution of region 3 (p) A, , k' ) is negligible
in this case because of the overa11 occupation factor n

which is exponentially small. Therefore the expression of
the decay rate for region B2 is the same as that for region
Bl.

In sum, in the lowest Born approximation, for regime
B'(k «r},
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C. Regime C, v«k «w I, b &4m(1 —p)r (3.40)

In this regime, the reverse processes can be neglected—2c, /~
(1—e ) —1. Again, we study the scattering contri-
bution from three different ranges of incoming momen-
tum p as defined in Eq. (3.15).

In region i (p &A,~k ), the calculation is exactly the
same as in regime 8,—region 1, but it comes from
different approximations. The approximation in regime
8& was

I p= p n Ii+2I2
8(2n. ) S

(3.33)

now we have the same result with
—2c, /~

((1—e " )(1+n„)—1X1-1 .

The expression for the decay rate from this region is
therefore the same as Eq. (3.19), which is smaller than the
first-order contribution.

In region 2 (Azk &p & A, &k'~ ), the major contribution
to the integral is simply gotten if one replaces 1+n, and
1+n, by 1. In order to prove this, we simply need to
bound the contributions of n„and n, in the integral; we
will show this for the first term in M22 and give the result
for the other two terms. We write the decay rate as

and

I'dz 25(k+p —r —s)
p p 2 2

T s

( 4m(1 p—)r
p+k

(3.41)

(3.42)

At this stage, it is easy to perform exactly the p integra-
tions to prove that indeed the contribution from I, , is
the largest. Alternatively, one can notice that since the
contribution to the decay rate will come from thermal
momenta, one needs only compare Eqs. (3.38), (3.40), and
(3.42) when p -r.

For the second integral I2 in Eq. (3.33), the same ap-
proximation can be made —we can neglect n, and n,
compared to 1. All the integrals can then be evaluated
exactly, and it turns out that

I2 —
—,'I i (3.43)

This is different from regime 8' where the second and the
third terms in M22 yield just one half the contribution of
the first.

The contribution of region 3 (p) A, ,k' ) is negligible
because of the exponential in n~. So, in regime C, the de-

cay is mainly due to thermal magnons as is the case in
3D. The final result for the decay rate in regime C is

where I, corresponds to the contribution of the first in

M22 [Eq. (3.22)] and Iz corresponds to either the second
or the third term in M22, which give equal contributions.
Specifically, let us look at the first term,

5 )1/2

I „= . . . g(5/2) .
8(2n ) S

D. Regime D, v' '«a„«1

(3.44)

I, =f d q(1+n„)(1+n, ) (1—p) 5(k+p r —s), —

(1+n„)(1+n,) =1+n„+n, +n„n, , (3.35)

and the contribution to I, is divided in three parts; I&,
corresponds to the first term in Eq. (3.35), I» corre-
sponds to the second and third terms, and I, , corre-
sponds to the last term,

(3.34)

with p=k. p. One gets an upper bound for the contribu-
tion of n„and n, by replacing them by a bigger quantity
using the inequality e"—1~x for all x ~0. So we com-
pute the integrals where we have replaced 1+n„~1
+r/r and 1+n, —+1+x/s We write.

I k= fd sd pn (1—v)(1 —p)
2S (2vr)

X5(p —s —vk(pp —sv)) . (3.45}

The s and p integrations can be done as in regime 8 &, and
one finds

3' r g( 3 )
I q=

4v'2mS & 1 —
vk

(3.46)

In this regime, only region 1 (p «k ) will contribute,
because for the other values of p the exponential in n is

very small. Here again we can replace 1+n, and 1+n,
by 1. The expression for the decay rate is then

Ii —Ii +Ii b+I) (3.36) or

We use the elliptical coordinates described in Eqs. (3.20)
to perform the calculations, and we find

3co~r g(3)

8v'2n. S e„'}/f( k }
(3.47)

5(k+p —r —s )

Ts
(3.37) where f is defined by Eq. (2.24).

I, , =~v 2kp (1—p) ~

likewise,

(3.38) IV. SELF-CONSISTENCY OF THE
BORN APPROXIMATIONS

In the foregoing calculation of the damping of long-
wavelength magnons we have treated the intermediate

(3.39)
2r5(k+p r —s)—

&b — P P 3 q 2Ts
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magnons as free particles, i.e., we have completely
neglected their damping. To attain self-consistency, one
must take into account the finite lifetime of all the mag-
nons involved in the scattering process. Qualitatively,
one may draw a distinction between the magnons whose
inverse lifetime I is greater than the frequency of the in-
coming magnon ~Em.k, and those for which I is smaller.
One thus defines a cutoff momentum p such that

I =coEckim (4.1)

For the contribution to the damping coming from mo-
menta p such that p &p, one would intuitively think
that the calculation is already self-consistent, whereas for
the rnomenta such that p &p, the situation is unclear.
It is thus important to test the stability of the Born ap-
proximation with respect to the inclusion of damping in
intermediate states.

We will show that the magnons with p)p do not
contribute to the leading order of I I, . It is interesting to
note that this is contrary to what happens in three dimen-
sions where HKHH have shown self-consistently that it
is always the thermal magnons that dominate the scatter-
ing, even when v)p

In fact, we also need to consider the stability of the
Born approximation when the incoming magnon is not
exactly on shell, i.e., when the condition co=coEc.k is not
satisfied. In this case the expression for the decay is more
complicated than in Eq. (3.8); it must include the contri-
bution of graphs that were identically zero for on-shell in-
coming magnons but that are different from zero for off-
shell magnons as given in Eq. (2.16).

Let us define a reduced frequency co=co/co@. The ar-
gument of the energy-conserving 5 function becomes
co+a~ —e„—s„' for an off-shell incoming magnon coAek.
We must notice, for instance, that the expression for the
matrix element M&2 given in Eq. (3.22) is no longer valid
because it used the fact that the incoming magnon was on
shell.

We will now proceed and do the self-consistent analysis
for off-shell magnons. The self-consistency condition will
only affect the regimes where the important momenta p
which give the main contribution to the decay are greater
that the cutoff momentum p . This is not the case in re-

gimes C and D (where r &(ek) because in these cases, the

important momentum, the thermal momentum p -~, has
a decay rate approximately given by

I,-zE~ /S (4.2)

On the other hand, when c.k ((~, we have seen that the
dominant contributions come from a range of momenta
k &p &r. In this regime Eq. (4.1) combined with Eq.
(3.32) defines the cutoff momentum as

p =2nS klan (4.4)

We have neglected the effect of the logarithm in Eq.
(3.32) because it would only give a small logarithmic mul-
tiplicative correction to the definition of p which would
in turn produce only a negligible additive correction to
the self-consistent decay rate. It is clear that one should
start to worry about self-consistency as soon as p be-
comes smaller than the upper end of the important inter-
val, i.e., when p (~. This defines a new regime A

(p « r ) where we must do the calculation self-

consistently,

regime A: k «r /2mS (4.5)

Intuitively one may think that the only effect of
self-consistency is to replace the upper end of the inte-
gral in Eq. (3 26) or (3 23) by p [in regime A,

p (((2nS k)'i ] so that the logarithm in Eq. (3.28) gets
transformed to

1n(elk)~ln(p /k)=in(2mS /r ) .

This is exactly what happens, as we are going to demon-
strate.

First we must write the equivalent of Eq. (3.8) in the
case of off-shell, self-consistent scattering. To this effect
we follow HKHH and rewrite the mass operator with the
fully dressed propagator s in the intermediate states.
From Eq. (4.12) in HKHH we have

which is much smaller than the frequency of the incom-
ing magnon,

(4.3)

n coF (1—e ')
I (k, co)=

16S

X n co2 1+n co3 1+n co4 A p, co2 3 s, &3 A r, &4
dC02 dC03 dQ4 d p d q
2n 2' 2' (2' )2 (2m )2

X [6(co+ co2 co3 co4)M2~ +e—r'5—( co+ co2 co3 co4)M—3, ], —(4.6)—

where co; =co;/coE and

A(k, , co, )=2%Co& lim ImG (k;, co; ig)—
q~o

is the spectral weight function. For undamped spin waves we have

A (k;, co; ) =2m.5(co; —e; ),

(4.7)

(4.8)
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in which case Eq. (4.6) reduces to Eq. (3.8).
In order to evaluate the decay rate we must solve Eq. (4.6) self-consistently, since the spectral weights are themselves

functions of the mass operator X. Let us take A (k;, co; ) to be a function sharply peaked about co; =s;, whose dominant
contribution occurs within a characteristic width y, which is assumed to be of order k;v /S . In particular, we are as-
suming here that any collective effects of the magnon interactions such as possible bound states or "second magnons"
may be neglected in the spectral weight function at long wavelengths. If we now perform the co; integrations in Eq.
(4.6), we may replace the frequencies co,. in the occupation numbers by the corresponding energies e;, since the occupa-
tion numbers vary on a scale ~&&y;. The integrations over frequency then reduce to

d c02 d F03 d c04
A (p, cu 2) A (s, co 3) A (r, co4)5(co+e32 $—

3 N4) =p—(co e —e,—e, ) (4.9)

where the function P(x) is sharply peaked at x =0, with a width y equal to the sum of the widths y, ,

y-(p+r+s )T IS
and P(x } obeys the approximate sum rule

f P(x)dx = 1 . (4.10)

This sum rule is exact when the fluctuations tend to zero (i.e., when S~ 00 and T~O}; at finite S, we believe that the
effect of the fluctuations can be incorporated by using the right long-wavelength parameters for the expression of the
damping as stated in the Introduction. Let us de6ne p as the ratio of the frequency of the incoming magnon to the
equivalent on-shell magnon: co =pe„. We can now write (4.6} in the form

~~EPk
I (k, co)= fd p d q dan (I+n„)(1+n, )P(a)

16S (27T} r
X [5(pek+e~ —e„—s, —a)Mzz+5( —pek+ez —s„—e, —a)M3i ] . (4.11)

In regime A we need only worry about the contribution coming from momenta p such that k &p & r, but this contribu-
tion will come in two parts, one where the scattering surface is approximately an ellipse and one where the scattering
surface comprises two disjoint parts. We will compute separately the effect of self-consistency in the two cases. From
the definition of regime A, one can see that (at least if S is not too large) the cutoff momentum p falls into the region
where the scattering surface is elliptical, since p «(27TS k)'r . Therefore we expect the second region not to contrib-
ute to the leading term as a consequence of taking into account the lifetime of intermediate magnons.

Let us first examine the elliptical region, A2k &p & A, ,
k'r . We can expand the exponentials to get

I (k, co)= f d p da f [5(pe7, +e —e„—e, —a)M&3+5( —pek+e —e„—s, —a)M»], (4.12)

where we can write the matrix elements in the long-wavelength limit as in Eqs. (2.18) and (2.19). Let us define the in-
tegrations over the elliptical surface coming, respectively, from the matrix elements M22 and M» to be I, and Ib.

1(k,co)=
2 4 fd pda [I +Ib].

7TCdEpk7 p(a)
16S (27T)

Then we use the elliptical coordinates introduced in Eq. (3.20) to write the integral I„
I, —= 5(peak + e —e, —s, —a)M22,

d'q

(4.13)

(4.14)

in terms of the variables u and v as

I, =2f du du5(2g, 2c coshu )M2—2,
where g& —=pc&+cz —e. We must express the matrix element M22 in terms of u and u. To do that, we write

(1—coshu cosu )x —sinhu sinuyr=
coshu —cosU

and

(4.15)

(4.16)

(1+coshu cosu)x+sinhu sinuys=
coshu +cosU

(4.17)

We inust also introduce the following notations: k p =p, k x =y, k.y =y, p x =p, p.y =I7', where, as before, x=c. The
u and U integrations can be done exactly and yield
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[(1—p)sinh uo+(coshuo —y)(coshuo —P)
c sinh uocoshuo

+(1—
y coshuo)(P coshuo —1)coshuo(coshuo —sinhuo) —ygsinh uo(coshuo —sinhuo)], (4.18)

where uo is defined by coshuo =g, /c. Since the major contribution only comes from k &p & A, ,k ', we can expand I,
to lowest order in k/p, otherwise the p integration is too difftcult to do. To lowest order the result is simple and

8(k(p —
p, )

—2a),32m(1 —p)
p

(4.19)

where the 6 function is equal to 1 when its argument it positive and 0 otherwise and expresses the condition that
g, /c ~ 1, i.e., k (p —

p, ) —2a ~ 0.
The same manipulation can be performed for Ib with the result that

—32m(1+@,) 8( —k(p+p) —2a),
p

which enters wheng~ =— pk/2—+p/2 —a c; i.e., k(p+p)+2a 0.
Putting this back into Eq. (4.13) we find that

r(k, ~)=
n.coEPkr d 2p(1 p)
S (2~) p

f fda P(a)[8(k(p —p) —2a) —8( —k(p —p) —2a)] .

(4.20)

(4.21)

At this point, we can approximate the contribution of the momenta p &p and show that it is negligible to first or-
der. For the values ofp such that y »k, i.e., p »p, then the a integral is going to be approximately equal to

fda P(a)[8(k(p —p) —2a) —8( —k(p —p) —2a)] ~ k /y ~ kS /pr (4.22)

provided that we assume that the function P is slowly varying on frequency scales much smaller than y. Let us now
compute the contribution of the range p &p &A, ,k'~,

r(k, ~)-

r(k, a))-

~co~pkH
I

~, '"
d p(1 p)kS

S'(2~)' p

cosk Ngk

pm S

(4.23)

(4.24)

This value is asymptotically negligible compared to the first-order contribution.
By contrast, for the values ofp such that y « k, i.e., p «p, then the integral becomes

fda P(a)[8(k(p —p) —2a) —8( —k(p —p) —2a)] —1, (4.25)

because most of the weight of P(x) corresponds to values of x of order y. In this case, the expression for the decay rate
is the same as in regime B', with the only difference that the upper limit of the integral is changed from being A, &k

' in
regime B to being p in the self-consistent calculation. Equation (4.21) can be written as

ecozPkr JP dpI (k, co)=
S'(2~)' k p

which yields for the self-consistent regime:

(4.26)

peE Ek v.

I (k, co)=
2

1n(2nS /r ) .
2~S

(4.27)

As promised, the only effect of introducing self-consistency is to diminish the scattering by the magnons which are not
well defined at an energy scale of order e„. It is also apparent in Eq. (4.27) that the only effect of considering off-shell
magnons is to replace cok by co (i.e., cozei, ~pcozE& ) in the expression of the decay rate so that we recover the on-shell
result trivially when p =1.

We must now investigate the contribution from the region A, ]k' &p & ~. As in regime B, we know that the major
contribution will come from replacing 1+n„and 1+n, by 1+n and ~/s, respectively. Also, we can still integrate over
one of the two disjoint surfaces and multiply this contribution by 2. We choose the surface such that p -r »k, s. For
this choice, the matrix elements given by Eqs. (2.18) and (2.19) have simple expressions,

M2~ =4(1—p)(1 —v),

M3, =4(1+p)(1—v),

(4.28)

(4.29)
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where p —=vz. k and v—=v~ s. We can write Eq. (4.11) for the decay as

Epk (a)(1—v)r(k, ~)= f d pd sdan (1+n )
S2(2 )3 0 P P

X[5(pk+u sv —v kp —s —a)(1—p) —5( pk—+u sv —u kp s ——a)(1+@)]. (4.30)

In the term corresponding to the second matrix element we make the change of variable p~ —p and we use the a in-
tegral to satisfy the 6 functions,

I (k, ru)=
2 3 f d p d s n~(1+nz) [P(pk+u~sv v~k—p s) ——P( pk+—uzsv+u kp s)]—.
~FPk q 2 (a)(1—v)(1 —p, )

(4.31)

Since in this regime k is very small compared to y, we can do a Taylor series expansion for P(x) and write

2co~pk (1 —v)(I —p)1(k,co)= f d p d s n (1+n ) (p —p)kP'((v —1)s),
S'(2m )' S

(4.32)

(4.33)

and for a reasonable weight function P, we must have
P(0) ~ I/y so that we can get an estimate of the contribu-
tion of this term:

coE k
r(k, ~) (4.34)

where we have replaced U by one. The s integration is
then easy to do and

2~Epk
1(k,~)= f d p n (1+n )P(0)(1—p)(p —p),

3a)s~ g(3)r, =
8v'2mS ek'(/f(k)

(4.39)

In regimes A and 8 the first correction to the logarith-
mic term is a constant, which should be of order one. In
order to restore the dimensions of the wave vectors, one
should replace, in the equations given above, k by V'2ka,
where a is the lattice constant of the original QHAF.
Also, to make contact with the results as quoted in the
Introduction, Eqs. (1.1)—(1.4), one should express the re-
sults in terms of the physically relevant parameters, the
spin-sti6'ness constant ps and the spin-wave velocity c. In
the large-S limit, one writes

We are in a regime where k «w /2nS, so Eq. (4.34)
gives and

ps JS (4.40)

Ct)E k 7 2

I (k, ci)) (
S

(4.35)

v'8JSaC= (4.41)

Once these replacements are made, one gets the formulas
quoted in the Introduction.

CdEskT
I „= [In(2m.S /r )+u„],

2mS
(4.36)

which is, as promised, smaller than the leading term with
the logarithm given by Eq. (4.27).

If we now introduce a lower bound k;„(T), as yet to
be specified, for the validity of regime A, we can summa-
rize the results obtained so far as follows:

regime A [k;„(r)&(k «~ /2~S &&1]:

V. DAMPING OF SPIN WAVES
IN THE CLASSICAL REGIME

A. Large-8 limit

One can obtain the classical Heisenberg antiferromag-
net from the QHAF by taking the following limits:

A~O, J~O, S~~,
regime 8 (r /2nS « k « r « 1):

COEEkt
[In( r/k ) +us ],2~S

regime C(r«k «r' &(1):

7coF(skr )'
I k

= g(5/2),8(2~)'"S'
regime D (r'~ (&k &(1):

(4.37)

(4.38)

while holding the spin stiffness and the spin-wave velocity
constant:

po= JS
&8JSa

Co—

(5.1)

(5.2)

In this limit the Bose occupation numbers for the classi-
cal low-temperature regime become arbitrarily large since
~= TS /2po is going to infinity,
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n —TS/4Epo —+ co .

In order to get rid of that divergence, we define the classi-
cal operators:

n =s-'"a p =s '"-p
P P' P p

with finite occupation number

n&=T/4Epo .

We can then write the Hamiltonian as in the quantum
case, the perturbation expansion is the same, and we ob-
tain an expression for the decay equivalent to Eq. (2.16)
(see Ref. 6 for details)

~v'2coev
(Tlpo)'

(16N) a

xg
Fgf PC~as

~(ek+sp E ss)M22(k p

(5.3)

The computation of the on-shell decay rate in the Born
approximation is almost exactly the same as for regimes
8& and 82. The only difference is that the sums are not
cut off by the exponential decay of the occupation fac-
tors. So, in principle, we should integrate out to the edge
of the Brillouin zone. Since the upper cutoff comes in a
logarithm, we can choose any finite upper cutoff that we
want and correct for it in the unknown constant term.
The result is similar to Eqs. (4.36) and (4.37):

cok
I k

= (Tlpo) [ln(1/ka )+const],
8~

(5.4)

where the constant is a priori different.
The result of the first Born approximation is altered by

the self-consistency condition exactly in the same manner
as in Sec. IV. We define a cutoff momentum p as in Eq.
(4.1) and we find for p

p =8nk(ps/T) (5.5)

m.ck
2 2&ps

where the constant is the same as in quantum regime A
in Eq. (1.1), const=ln(2/n. )+ u„, as we shall see below.

The second regime is defined as follows:
regime B„[(Tips) /8m «ka «1]:

as in Eq. (4.4).
Therefore, the classical case is split in two regimes de-

pending on whether p is greater or smaller than the
zone edge. In the first regime, the self-consistency condi-
tion cuts off the contribution of the zone edge and we
have a long-wavelength expression for I k independent of
the short-wavelength cutoff and identical to quantum re-
gime A:

regime A„[k;„a«ka «(Tips) /8n. ]:
T

[2 ln(2vrps /T ) +const], (5.6)

B. Mapping between the classical and quantum systems

Although we have not attempted to calculate the con-
stant after the logarithm in Eq. (5.7), it is possible to
make an educated guess or estimate its magnitude, based
on previous experience. CHN have discussed in detail
the correspondence between the short-wavelength cutoff
of the renormalization-group equations for the spin-
stiffness constant ps(k, T) in the quantum Heisenberg an-
tiferromagnet and the classical Heisenberg system. (For
the static quantity, it does not matter whether the classi-
cal system is a ferromagnet, antiferromagnet, or CLRM. )

They found that formulas in the two cases become identi-
cal if the lattice constant a of the classical model is re-
placed, in the QHAF, by the temperature-dependent
quantity

a,tr=v'32e ~(Pic/T). (5.8)

Note the large numerical factor (/32e ~ =27.2), which
was also found previously by Parisi' in the transforma-
tion between the lattice cutoff and the Pauli-Villars regu-
larization of the 2D nonlinear sigma model. One effect of
this large factor is that when expressed in terms of the
variable ( T/2nps ), the formula for the correlation length

g in the classical model contains a coefficient of order
0.01, as was first noted by Shenker and Tobochnik, '

whereas the expression in the QHAF contains a
coefficient of order unity. Specifically the formula ob-
tained by CHN for the spin- —,

' QHAF was

exp(2@ps /T)
/=0. 5a 1+( T/2m ps )

while in the classical model, one has

(5.9)

where, a priori, the constant is different from quantum re-
gime B in Eq. (1.2). However, we can estimate it if we
use the mapping of the QHAF onto the CLRM as will be
shown shortly.

The formulas for the damping must be the same in re-
gimes A and A, &

because the integrals for the damping
are essentially the same. Suppose that the value of k is
near the upper bound of the region A or Ad. Then the
wave vectors p that are most important for the intermedi-
ate magnon will be in the regime 8 or 8,&. The damping
I of the intermediate magnon is the same in the two
cases (assuming that Tips and c are chosen to be the
same) except for a difference in the arguments of the loga-
rithm and the additive constants which appear in the
brackets as the final factors of Eqs. (5.7) and (1.2). How-
ever, the damping at wave vector k depends only loga-
rithmically on I z, so the difference between the formulas
(5.7) and (1.2) will be negligible in the limit of interest,
where ( T Ips )~0. By iteration of the above arguments,
we see that I. k becomes even less sensitive to the
difference between the classical and quantum cases if k is
sufficiently small that the intermediate magnon p is itself
in the wave vector region of A or A,&.

hack
k 2

T
27TpS

[ln(1/ka )+const], (5.7) exp(2@ps /T )(=0.01a
(2mps/T)+ 1. (5.10)
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hack
k 2 2~ps

'2

[2 ln( 2m ps /T ) + ln( 2/n. ) + u „],
(5.11)

regime 8:
~ck

k 2
T

2~ps
[ln( T/Ack )+uz ], (5.12)

regime 8,~

..
2

I k
= [ln( 1/ka ) + ln( &32e ~

) + uz ],2 27Tpg cl

(5.13)

where u~, uz, and u~ are constants that we assume
cl

small.
It is also convenient to slightly revise the definition of

(c&)the crossover point kzz between regimes A, ~
and 8,]. If

we require the expressions (5.11) and (5.13) for I k be
(cl)

equal at kz&, we find

2

(cl) l ~ m/2k(cl) V'8ne exp(us —u„) .
a 2+ps cl

(5.14)

In Sec. VI, when we compare our results with simula-
tions on the CLRM, we shall treat u~ and uz as adjust-

cl

able parameters, and assume a sharp crossover from Eq.
(5.11) to Eq. (5.13) at k„~.

C. Remarks on the classical lattice rotor model

In the present paper, we have not performed an expli-
cit microscopic calculation of the damping of excitations
in the CLRM, nor have we introduced the formalism ap-
propriate for such a calculation. It is clear, however, as
discussed in CHN, that the properties of the CLRM and

The integrals which enter the spin-wave damping in
the regime 8,] are not identical to the integrals which
were evaluated to obtain the conversion factor for the re-
normalization of p&. Nevertheless there is a certain simi-
larity in the physics; because the frequencies of the zone-
boundary magnons or vibrational modes are considerably
smaller than one would guess by a linear extrapolation of
the spectrum at small k, the short-wavelength fluctua-
tions are considerably enhanced. Therefore, the effects of
these fluctuations in reducing the value of pz, or in
scattering magnons of longer wavelength, should be
significantly larger than one would expect by simply us-

ing a Debye approximation where the linear spectrum is
cut off abruptly at the boundary of the Brillouin zone,
i.e., by setting p,„=&2ma ' for the classical antifer-
romagnet or p,„=2&ma ' for the CLRM. By contrast,
the quantum mechanical cutoff which occurs when the
magnon frequency exceeds T/A is rather well approxi-
mated by a simple truncation at p,„=T/Ac.

In this spirit, we may write the spin-wave damping in
the various regimes as follows:

regime 3 or A,~..

the classical Heisenberg antiferromagnet at wavelengths
long compared to the lattice constant are identical in the
limit T~O. The symmetries and excitation spectra are
the same, and the interactions between the long-
wavelength excitations are physically determined by
geometric considerations which are identical in the two
models. ' ' Moreover, the static equilibrium statistical
properties of the CLRM and classical Heisenberg antifer-
romagnet are equivalent at all wave vectors.

As a consequence of these considerations, we expect
that the damping in regime A,&, at low temperatures and
long wavelengths, should be identical in the CLRM and
the Heisenberg model. In region 8,&, where the inter-
mediate excitations responsible for damping extend to
wave vectors close to the zone boundary, there may be a
slight difference between the two systems. In particular,
the small constant us which enters Eq. (5.13) may be

cl

different in the CLRM and the classical Heisenberg mod-
el.

D. Renormalization due to thermal excitations

As was discussed in the Introduction, the effective
spin-stiffness constant p& and the excitation frequency ck
are strongly renormalized at very long wavelengths in the
two-dimensional Heisenberg systems, quantum or classi-
cal, because of the infrared divergence arising from
thermal excitations.

The simplest way to take these effects, at least approxi-
mately, into account, is to simply replace ck in the for-
mulas for I I, by the actual frequency cok(T), and to re-
place pz by the function ps(k, T) given by Eq. (1.7). To
test the consistency of this assumption, we may return to
the basic integral for I"k in regime A or A,], and ask
what happens if we take into account the renormalization
of the spin stiffness and frequencies of the intermediate
state magnons responsible for the damping. The fluctua-
tion reduction of the spin stiffness will lead to an increase
in the occupation numbers and an enhancement of the
scattering which will depend, in principle, on the wave
vectors p, r, and s, and therefore will change the form of
the integrand. (There are also changes in the matrix ele-
mented, resulting from the change in p&, which must also
be included. ) However, in the limit of T~O, if kg is
fixed but very large, one finds that the value of ps(p, T)
for the contributing intermediate states is not very
different from the value of ps(k, T). In this regime, then,
the value of the integral is simply obtained by replacing
ps by ps(k, T) in the final result. By contrast, the re-
placement is not well justified if the temperature is too
high, or if one goes to wave vectors which are too small
(kg= 1).

VI. NUMERICAL SIMULATIONS

CHN have argued that the dynamic properties of the
Heisenberg antiferromagnet at sufficiently low tempera-
tures and frequencies, and wave vectors close to the anti-
ferromagnetic Bragg peak, may be related directly to the
low-frequency long-wavelength behavior of a classical lat-
tice rotor model (CLRM) [defined by Eq. (6.1) below],
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which can be studied by molecular dynamics simulations.
In this section we will first describe the simulations of

the CLRM and discuss their reliability in different re-
gimes. Then we will compare the results of the simula-
tions with the expressions for the damping in the classical
case including the renormalization due to finite tempera-
tures.

We now present the results of a molecular dynamics
simulation of the CLRM. To that effect let us first de-
scribe the equations and the parameters of the CLRM.
The model is described by a classical Lagrangian of the
form

z. =—yea, Q, [+, „y Q, Q, ,
I p K

a
(6.1)

+Q; Xrl;(t), (6.2)

where y is the coupling constant to the heat bath, the
sum is restricted to nearest neighbors of i, and the ran-
dom force g; obeys

(g, (r)q~(r') ) =2@T5,,5(r r')5.
&

. — (6.3)

We use units such that E =1, I =1, and a =1. In these
units, the zone-edge magnon has a frequency co=2&2.
In order to integrate the equations of motion, we use a
modified version of the algorithm used by Morf and
Stoll:I8

Q(r +5)=Q,(r +b, )+(e' ~~' 1)[Qo(t+6)—Q(t)]-
6, e' rF(t)+0(—— (6.4)

where IQ; I are a set of three-dimensional unit vectors,
representing the orientations of the rotors associated with
the sites I i I of a 2D square lattice with lattice constant a,
and the second sum is over nearest-neighbor pairs (i,j ).
The coeScient K is a stiffness constant which we may
identify with the constant p„while the moment of inertia
I of the rotors is related to the perpendicular susceptibili-
ty y~ by g~=—Ia ". Each site represents a rotor which
can be thought of as a point mass constrained to stay on
the surface of a unit three-dimensional sphere. The in-
teraction between neighbors is such that they want to be
aligned.

In order to obtain a canonical ensemble we couple the
system to a heat bath, which introduces a random force
and a damping on each rotor. The equations of motion
are then Langevin equations:

Q, xQ, = — ~
„Q,xy (Q, Q, ) —)Q, X—Q,

ly. The data are recorded only when the sample evolves
freely. In order to conserve energy along the run, we
choose a small time step for integrating the equations of
motion (b,t=0.02). The total energy is well conserved,
indeed, for a run of total time t =2600, the energy lost is
only about 1.5%, this induces a systematic variation of
temperature which is smaller than the statistical fluctua-
tions due to the finiteness of the sample. Along with en-
ergy, in the absence of external damping, the total angu-
lar momentum of the system is also conserved:

L=QQ;XQ; .
I

(6.5)

This represents an overall rotation of the system at a rate
co„=L/N, where N is the number of rotors. At low tem-
peratures this frequency scales as

co„~&T/N, (6.6)

which rapidly becomes greater —as the temperature goes
to zero —than the width that we are trying to observe
(I &

~ T ). For this reason we actually perform our mea-
surements in a rotating frame where L =0. Namely, be-
fore recording the positions of the rotors at time t, we
operate on them with a rotation of angle —co, t about the
axis defined by L. This eliminates some spurious widen-
ing of the spin-wave peaks at low temperatures and long
wavelengths.

For a given run, after every interval of time of to =2.5,
the positions of the rotors are rotated, Fourier
transformed in space, and stored. At the end of the run
they are Fourier transformed in time, and we can com-
pute the correlation functions S(k, co),

S(k,co)=( iQ(k, co)i ) . (6.7)

Pre Prj,
S(k,co)=

~ ~
+

(~ ~~)'+rk (~+~k) +)'k
(6.8)

S(k, co) is calculated for runs which corresponds to 2'
time steps, or a total time t =2621. At the end of a run a
configuration of the system is preserved and is then used
as the seed of the next run. At equilibrium, positions and
velocities are independent; hence a new thermalized sam-
ple is obtained by starting from the positions at the end of
the previous run and giving the rotors a set of new veloci-
ties according to a two-dimensional Maxwellian distribu-
tion at the given temperature. At each temperature ten
runs are made and the quantities of interest are averaged.

We then extract the location coI, and width y& of the
spin-wave peaks by fitting the sum of two Lorentzians to
the dynamic-correlation function,

where Qo(t+b, ) is the position the rotor would have at
time t+6 if there were no forces and no friction. The
force F(t) is the combination of the forces derived from
the Hamiltonian computed at time t and a random force
which represents g, .

At the beginning of the program the rotors start from a
random position with zero initial velocity and are strong-
ly coupled to the heat bath (y = 1) for 1200 iterations; the
coupling is then gradually reduced to zero. We then keep
the damping equal to zero and let the system evolve free-

where P is a normalization constant and P, coj„and yj,
are fitting parameters. The fit is performed by minimiz-
ing the y; we weight the region of the spin-wave peaks
much more than the tails.

The assumption of Lorentzian line shapes is justified
theoretically when the magnon damping is small, so that
the peaks are well separated, and we are looking at fre-
quencies that are not too far from one of the magnon
peaks. For co far from ~I„or when the magnon peaks
overlap strongly, Eq. (6.8) is merely a convenient form
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which has a minimum number of adjustable parameters,
but cannot be justified theoretically. Indeed, it appears
from our numerical simulations that in the intermediate
damping regime there is more weight at small frequencies
than predicted by (6.8), but we have not attempted a sys-
ternatic analysis of this point.

We have made runs at very low temperatures (down to
T=O. 179) where the correlation length is vastly greater
than the system size [g(T=0.179)=5X10"]. This is
not, by itself, a problem for the validity of our calcula-
tions because, when kg is large, there is no contribution
to the integral for I I, from intermediate wave vectors p of
order g '. In fact, the important values of p are large
compared to k, when k and ~ become small. Eventually,
however, when the damping of the intermediate magnons
is sufficiently small, it will become necessary in a finite
system to replace the integral over intermediate states by
a sum, and finite size complications will then set in.

In order to test the size dependence of our simulations,
we have performed the measurements on different size
lattices (64X64, 128X128, and 256X256}. When the
size was increased, the spin-wave peaks became narrower
at long wavelengths and were little affected at short wave-
lengths. For instance, going from 64 to 128 at a tempera-
ture T=0.29 gave peaks about 20—30% narrower at
wave vector k =0. 1 and about 5 —10% narrower at
k =0.5.

The smallest frequency that we can measure is

co =2m /T =0.0024, (6.9)

which is of the order of the smallest widths that we ob-
tain from the fit. The widths of the order of co must be
taken with caution. At the lower temperatures —where
the lack of LRO is insignificant —the fact that some of
our data seem not to tend to zero as k goes to zero is not
significant and may be an artifact of the lack of precision
both due to the finite size of the lattice and the finite run
time. Another issue is that, for the values of the wave
vector k small enough that the spin-wave peaks are not
well separated, the precise form of the fitting function be-
comes important. The form that we have chosen, i.e., the
sum of two Lorentzians, presents two distinct peaks as
soon as co„&y„/v'3; by contrast, if we had chosen the
product of two Lorentzians instead, we would have two
distinct peaks only when coI, &yI, . The widths thus ex-
tracted would be sensibly different. However, this only
concerns the smallest wave vectors at our highest temper-
atures; at the lower temperatures ( T SO.6), the spin-wave
peaks are well separated for the smallest value of k rnea-
sured, other than k =0, which we exclude from our
analysis.

Let us now compare the widths extracted from the fit
with the expressions for the damping in the classical case
given by Eqs. (5.11) and (5.13). As discussed above, we
use Eq. (1.7) evaluated at k for the renorrnalized value of
pz in both regimes. We should also use a scaling form for
the velocity c, but the renormalized spin-wave frequency
col, is also extracted from the fit and we use this value in
the formulas. There are two adjustable parameters in the
formulas, the constants uz and uz . In Fig. 1 we plot

cl
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the widths as a function of k for three different tempera-
tures and two sets of parameters u „and uz . The agree-

cl

ment is qualitatively good with both sets and would still
be good up to the higher temperature ( T=0.589} which
we have omitted for clarity. In particular, the tempera-
ture dependence of the damping in this region comes
from the cumulative effects of the T term and the soften-
ing of pz. Without the thermal renormalization of pz,
the temperature dependence predicted would be much
too weak.

In Fig. 2, we plot the logarithm of the ratio yl, /co„as a
function of log(kg). In the scaling regime (regime A,~),
the ratio depends only on q =kg, as given by Eq. (1.8).
As previously stated, we use 5= 1.7, which was found to
accurately predict the location of the spin-wave peaks.
The two dashed lines correspond to different values of the
constant u „.They are in qualitative agreement with the
low-temperature data and deviate strongly from the
high-temperature data. This is to be expected, since for-
mula (1.8) is only valid for In(q) »1. At smaller values

FIG. 1. The damping rate I'I, for the CLRM is plotted at
three different temperatures as a function of wave vector k (k is

in units of one over the lattice spacing a). The points represent
the simulations (+: T=0.395; 0: T=0.289; X: T=0.179)
and the curves are given by Eqs. (5.11)and (5.13) where the tem-

perature renormalization of the spin stiffness and the spin-wave

velocity have been taken into account. The two curves corre-
spond to different values of the correction parameters u& and

uz . The dashed line corresponds to u& =0, u = —0.9 and
cl cl

the solid line to u& = —1, uB = —1. At the lowest tempera-
cl

ture, the two lines fall on top of each other and at the intermedi-
ate temperature they are barely distinguishable. In these units

the spin-wave velocity is approximately equal to 1; and the spec-
trum is roughly linear. Thus, at k=1 and T=0.289, the ratio
of the spin-wave frequency to the spin-wave width is approxi-
mately 100. W'e have not made an attempt to find the best set of
fitting parameters u & and uz, but simply give reasonable ones

cl

that show a qualitatively good agreement.
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X
1

v'3 /2q[ 5+—,'ln(1+q )]'
(6.10)

with three adjustable parameters. In THC, the pararne-
ters were determined by a fit of the whole dynamical
correlation function; it was not a direct fit of Eq. (6.10) to
the Lorentzian linewidths. The best parameters for the
overall fit were

yo=0. 8, @=2.0, 8=0.15 . (6.11)

The solid line represents Eq. (6.10). One sees in Fig. 2
that the data points at high temperature obey scaling
very well; indeed, the points corresponding to different
temperatures but the same value of q fall on top of each
other. In order to find the right scaling formula, one

10
I i i 1 I i 1

i l 1 I I

of ln(q), we compare the data points with a scaling for-
mula that was used in Ref. 5. The scaling form was
chosen there to be

yo(1+pq )'
3/2

1+—ln(1+q )
2

should interpolate between the high-temperature data
points and the low-temperature dashed lines.

The fact that the data from the lower temperatures do
not fit quantitatively on a single scaling curve is most
likely due to a combination of difficulties: The data at
short wavelengths are outside of the expected scaling re-
gion, while the data at the longest wavelengths may suffer
from inaccuracies due to finite-size effects and our limited
frequency resolution.

VII. CONCLUSION

In this paper, we have calculated the damping of spin
waves in the 2D Heisenberg antiferromagnet at low tern-
peratures and long wavelengths. The primary conclusion
is that, in all regimes, as long as kg&) 1, where k is the
wave vector and g is the correlation length, the spin
waves are well-defined excitations. They are well defined
in the sense that, for any finite positive x, if k ~0 and
T~O with ka ~(T/ps)', then the ratio of the spin-wave
width to the spin-wave frequency tends to zero
(yk/~k

This is different, however, from the situation in three
dimensions. In three dimensions, hydrodynamics pre-
dicts that the magnons are well defined in a stronger
sense: At any finite temperature (T & TN,,~), in the limit
of long wavelengths (k —+0), the ratio of the spin-wave
width to the spin-wave velocity tends to zero
(yk/cok 0). Indeed, regardless of dimension, the pre-
diction of hydrodynamics for the damping rate is'

I k=Dk (7.1)

io'

IO
X =

X:

io' io'

FIG. 2. The ratio of the damping to the spin-wave frequency
is plotted as a function of the scaling variable q =kg, where k is
the wave vector and g the correlation length. The data points
correspond to nine temperatures: El, T=0.889, (=2.6; "~",
T=0.845, g= 3.0; "

E ", T=0.773, (=4.3; C', T=0.654, (= 14;
T=0.589, )=38; g„, T=0.478, /=370; +, T=0.395,

g'=4900; 8, T=0.289, g= 1.2 X 10; X, T=0.179,
(=5.0X 10". At each temperature four data points are shown

corresponding to different values of k. At the higher tempera-
tures, the data points scale well, while at the lower tempera-
tures, they are out of the scaling regime (regime A„). The solid
curve is a simple scaling form that was used in a previous paper
in the region of high temperatures (0.6~ T~1); it is given by
Eq. (6.10). The dashed curves represent the low-temperature
scaling function derived from the analytic damping calculations
of the present paper, as given by Eq. (1.8) for two values of the
parameter u„. The upper dashed curve has u„=0 and the
lower u„=—1.

But the hydrodynamic damping is given by the short-
wavelength fluctuations and neglects completely the
damping due to the interaction of long-wavelength mag-
nons. It is a good approximation in high dimensions
where the phase space available for these processes is
small ( ~ k 'dk), but as one lowers the dimension d,
one reaches a point where the long-wavelength modes be-
come dominant: This is the case in two dimensions ac-
cording to our calculation.

It is interesting to remark that, in the similar calcula-
tion in three dimensions, the damping was always dom-
inated by thermal magnons (p-r). This validates the
assumption of hydrodynamics in three dimensions (the
dominant damping occurs at comparatively short wave-
lengths). By contrast, in two dimensions at long wave-
lengths, the damping is dominated by the rnomenta p in
the interval k &p & k /T, which cannot be treated by hy-
drodynamics. Another difference between the calculation
in three dimensions and in two dimensions, is that, in
three dimensions, the curvature of the spectrum sets the
crossover between regimes A and 8, while, in two dirnen-
sions, the crossover is given by the condition of self-
consistency.

In sum, we have calculated the damping of spin waves
in four different quantum regimes and two classical re-
gimes. When properly renorrnalized, our quantum re-
sults should be valid for any finite S, in the limit of low

temperatures and long wavelengths. We have given a
scaling form for the damping valid in the region where
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1 « kg & ~ which applies identically to the quantum and
classical scaling regimes. We have performed simulations
of the classical lattice rotor model to test the results for
the damping in different temperature ranges. At low

temperatures (T &0.6), we have found that the depen-
dence of the damping on temperature and wave vector
was qualitatively well predicted by the calculations when
we include the renormalization of the parameters due to
thermal fluctuations. This is an important consistency
check of our results.

We must note that our results are in contradiction with
a recent publication by Becher and Reiter where they
obtained a damping rate for spin waves in the 2D QHAF
that is proportional to k and independent of tempera-
ture, in the limit T~O for fixed small k. Reiter has also
suggested ' that the spin-wave damping rate is propor-
tional to T, and independent of k, in the limit where
k-+0 more rapidly than T, but k ))g ', which disagrees
with our own calculations in both the classical- and
quantum-mechanical cases. A more recent analysis by
Becher and Reiter has revealed an error in the previous
work, however, and they conclude that at least to order
1/S, the damping of spin waves does vanish at T =0, for
small values of k, and there is no damping of order T at
finite temperatures for k =0, in agreement with our re-
sults. In fact, we believe that the magnons should have
zero damping in this limit, as long as the zero-
temperature magnon spectrum has a negative curvature
at small k. If the spin-wave expansion converges, the
curvature must be negative at least for large values of S,
and most likely even for S =

—,'.
We are also in contradiction with Grempel, who has

calculated the damping in the limit A'co) T (correspond-
ing to either regime C or regime D). Grempel finds in
this limit that

(7.2)

which is considerably smaller than our results for either

regime. However, Grempel states that he is neglecting
the effect of long-wavelength magnon scattering, which
probably accounts for the discrepancy.

In 1986, Kosevich and Chubukov calculated the Auc-
tuation corrections to the frequency spectrum of a 2D
Heisenberg antiferromagnet using the Dyson-Maleev for-
malism. They quote an estimate for the damping in the
long-wavelength regime, I &-c&T, which differs from
our results of regimes A and 8 by a multiplicative loga-
rithmic correction. They do not give a derivation of their
results, however.

Our formula (1.4) for the damping in regime D of the
quantum-mechanical case is in agreement with the results
of Kopietz, who has independently calculated the mag-
non damping of the 2D quantum antiferromagnet at
short wavelengths, including ka of order unity. We are
grateful to Kopietz for pointing out an omission of a fac-
tor of 2 in the formula for regime D, which appeared in
an earlier version of our paper.

Wysin, Bishop, and Gouvea have reported simula-
tions of a two-dimensional classical Heisenberg antifer-
romagnet wherein the damping of spin waves was ob-
tained. Results of these calculations have not yet been
published, however, and we are at present unable to make
a comparison with our analytic formulas or our own
simulations of the CLRM.
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