
PHYSICAL REVIEW 8 VOLUME 42, NUMBER 4 1 AUGUST 1990

Quantum tunneling of surface-state electrons

S. Yucel and E. Y. Andrei
Department of Physics and Astronomy, R utgers Uni Uersity, Piscataway, New Jersey 08855

(Received 27 February 1990)

We have calculated quasi-bound-state energies and lifetimes of surface-state electrons above
liquid helium for two single-particie potentials. In the first case, the electric field due to other elec-
trons is taken to be that of a uniform charge sheet. The second is an effective one-particle potential
that includes correlation effects in a simple manner. We solved the Schrodinger equation numeri-

cally to determine the asymptotic amplitude and the phase of the wave function, from which reso-
nances and their widths are obtained. Tunneling rates and thermal activation energies are calculat-
ed as a function of correlation-hole radius, electron density, and pressing electric field amplitude.
We compare these results with recent experiments.

INTRODUCTION

Tunneling of a particle through a potential barrier is a
standard topic in quantum mechanics. But when the tun-
neling particle is coupled to an external environment the
picture changes drastically. In recent years work on this
problem has been stimulated by new developments in mi-
crostructures and devices such as the Josephson junc-
tions, ' the tunneling electron microscope, and the reso-
nant tunneling diode. The system of surface-state elec-
trons above liquid helium is particularly suited for a sys-
tematic study of the efFect of interactions on a tunneling
electron. This is a quasi-two-dimensional (2D) layer of
electrons that can be made to tunnel through an external-
ly adjustable barrier. The tunneling electron couples to
the environment via well-known electron-electron and
electron-ripplon interactions, both of which are experi-
mentally adjustable over a wide range of parameters.

An electron above liquid helium is attracted to it by an
image charge but at the surface it is prevented from
penetrating the liquid by a 1-eV repulsive barrier. If this
barrier is made infinitely high, then in the perpendicular
direction z, the potential is that of a one-dimensional hy-
drogen atom with a scaled nuclear charge
Z =(e—1)/4(a+1), where a=1.0572 is the dielectric
constant of the liquid helium. Solving the Schrodinger
equation for this weakly bound hydrogen atom in atomic
units, scaled to take into account the reduced charge, re-
sults in the usual Rydberg series of bound-state energies
and the corresponding radial wave functions. ' Tke
small scale of the resulting binding energies 1 meV &&1

eV, justifies the infinite-barrier approximation. In the
ground state the wave function describes an electron free
to move in a plane parallel to the liquid helium surface at
a distance of 114 A above it.

When many electrons are present, as is the case in most
experiments, they form a 20 layer of interacting charges.
Far above the surface, at large distances compared to the
interelectronic spacing a, this charge layer looks uniform
and the potential seen by an electron acquires a repulsive
contribution arising from the field of the uniform charge
sheet 8, =2ane, where n and e are the electron surface

density and the magnitude of the electron charge, respec-
tively. The total potential seen by the electron for large z
is thus U(z)= —1/z —@,z. We expressed the potential
in scaled atomic units (s.a.u. ), which we will be using for
the rest of this paper. This potential allows electrons to
escape from the surface by tunneling. To prevent their
escape, the electrons are confined vertically with a press-
ing field 8 ~ 6, created between two parallel plates. At
zero temperature, if the potential between the metal
plates is reduced so that 6'~ (8„the electrons can escape
from the liquid helium surface by tunneling from the
ground state. At finite temperatures, the total escape rate
will have contributions from thermally activated escape
as well as from tunneling out of excited states.

Near the surface the details of the charge distribution
and the interactions with the tunneling electron will re-
sult in a more complicated potential. Thus, escape from
the surface can no longer be viewed as a single-particle

problem and correlations between electrons need to be in-
cluded in any calculation of tunneling rates and thermal
activation energies. The strength of correlations between
the electrons is determined by the ratio of electronic po-
tential energy to thermal energy: I = (trn)'~ e /kT,
where T is the electronic temperature. When I & 50, the
electrons are localized within a correlation radius
ro--(m. n) '~ about their equilibrium positions.

The effects of correlations on the activation energies
were first demonstrated by Iye et al. who also intro-
duced a simple model to take them into account. Ac-
cording to this model, at sufficiently high densities and
low temperatures, each electron excludes a11 neighboring
electrons from a disk of radius ro around it. As the elec-
tron moves out of the surface, the correlation hole
shrinks and closes at a distance z =ro. This simple
effective one-particle potential approach gives good esti-
mates for the thermal activation energies in the presence
of correlations. This was also illustrated in a recent pa-
per by Goodkind et al. who measured escape rates and
the thermal activation energies of electrons in the density

regime of n =3 X 10 —5 X 10 crn, where correlation
effects are significant. The measured thermal activation
energies were in good agreement with calculations using
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the correlation-hole model of Eye et al. This suggests the
possibility of applying the same model to calculations of
tunneling rates. To observe tunneling, Goodkind et al.
monitored the temperature dependence of the escape
rates. At around 0.5 K, the escape rates became temper-
ature independent, and Goodkind et al. identified them
as tunneling rates out of the ground state. But the mea-
sured rates turned out to be many orders of magnitude
larger than those expected from a WKB calculation of
the tunneling rates.

METHODS FOR CALCULATING TUNNELING RATES

To estimate the tunneling rates Goodkind et al. multi-
plied the transmission probability of a free particle
through this barrier, by an attempt frequency that is tak-
en to be E, /(2A'), where E, is the ground-state energy.
Even though an electron above the liquid helium has a
continuous spectrum, the physically interesting states are
the quasi-bound-states or resonances which can be
characterized by a quasi-bound-state energy E„and an
associated width W. Since, on the liquid helium side of
the barrier, resonances look more like bound states rather
than a state that asymptotically becomes a plane wave,
such an oversimplification is difficult to justify. A proper
calculation of tunneling rates by the WKB approxima-
tion requires knowledge of both the wave function near
the origin and a good estimate for E,. After calculating
the wave function by WKB method and then matching to
the solution around the origin, the tunneling rates can be
determined from the probability current at resonant ener-

In the absence of correlations the problem reduces to
that of a 1D hydrogen atom in an external electric field,
the "Stark effect." Reasonable estimates for the reso-
nance energies can be obtained in this case by using first-
order perturbation theory. Nevertheless, for more com-
plicated potentials that include correlation effects, a per-
turbative approach needs to be justified. There are
several methods which can be used to calculate resonance
energies and lifetimes essentially exactly. Resonances can
be described by the phase shift of the asymptotic form of
the wave function or by the poles of the scattering ampli-
tudes, ' in which case they can be deduced from the
asymptotic solution of the wave function. Alternatively,
they can be described as poles of the resolvent operator
and obtained by directly solving a complex scaled Hamil-
tonian that has identifiable complex eigenvalues corre-
sponding to these resonant states. " Both methods have
been successfully applied in the past to the 3D hydrogen
atom.

In this paper we calculate tunneling rates and reso-
nance energies by using the asymptotic form of the wave
function, AFW. All the computational and mathemati-
cal details are given in the Appendix. In the simpler un-
correlated case, we compared these to calculations em-
ploying the complex scaling and the WKB approxima-
tion. The advantage of using the AFW approach is the
relative ease with which it can be applied not only to the
ordinary 1D Stark potential but also to more complicated
potentials, for determining resonance energies and life-

times. An additional advantage of this method is the
ability to calculate very narrow resonances, which may
require a large investment in code development if the
complex scaling method is used.

We carried out an accurate and systematic study of
tunneling rates and quasi-bound-state energies by using
the simple model of Iye et a1. to account for correlations.
Since its general features are shared by other potentials
obtained by more sophisticated treatments, ' it seems
sufficient for answering the central question of this paper,
that is, whether tunneling is the mechanism responsible
for the reported temperature-independent escape rates.
We find that the tunneling rates out of the ground state
are -25 —45 orders of magnitude slower than the ob-
served rates. Either the escape is not due to tunneling
from the ground state, or an effective single-particle po-
tential is inadequate to describe the interactions. We
conclude this paper by showing that at the temperatures
employed in the experiment, tunneling out of excited
states should be significant and could completely mask
the tunneling out of the ground state. The latter may not
be measurable unless the temperature is reduced below
200 mK.

RESULTS AND DISCUSSION

exp
3

(2)

When the unperturbed ground-state energy of the elec-
tron, E, = —

—,', is used in (2), the resulting rates are
roughly an order of magnitude larger than the correct
rates, while using the resonance energy E„ from Table I
produces rates that are smaller approximately a factor of
4. Therefore if the constant 2 in the prefactor of (2) is re-
placed by 4 and E„ is used, all the rates calculated from
this modified Geltman formula, given in Table I, ap-

In Table I, we tabulated the resonance energies and the
lifetimes for the ordinary Stark effect for a one-
dimensional hydrogen atom as calculated by the AFW
method. As a check, some of the data are also calculated
by the complex scaling method that employs the
nonorthogonal basis

$, (z) =z&2(s + 1)e 'F( —s, 2,2z),

where F (
—s, 2, 2z) is a confluent hypergeometric function

and s =0, 1,2, . . . . The details of the complex scaling
calculations and their applications to escape through
time-dependent potentials will be given in a forthcoming
publication. The agreement between the two methods is
excellent at low fields. At higher fields we note small de-
viations, which is not surprising since the AFW tech-
nique is less accurate for the description of broad reso-
nances. As expected, the shifts are accurately given by—36/2 which is the first-order correction to the energy.

We now compare these results to the ones obtained
with the WKB method. The tunneling rates for the 1s
state in the 3D hydrogen atom are well approximated by
the WKB formula. ' A one-dimensional version of this
formula was calculated by Geltman, '
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TABLE I. Resonance energies E„and the widths 8'for the 1D Stark effect. Also given is the result of the complex scaling method
which employs a Sturm basis and the widths obtained from the modified Geltman formula for the lifetimes of a 1D hydrogen atom.
x [y]=x X 1(P.

Field

0.050
0.045
0.040
0.035
0.030
0.025
0.020
0.015
0.010

AFW

—0.580 3124
—0.571 579 8
—0.563 067 240
—0.554 748 833
—0.546 591 510 8
—0.538 569 193 8
—0.530 663 983 5
—0.522 863 241 6
—0.515 157 301 3

2.89[—4]
9.00[—5]
1.92[—5]
2.47[—6]
1.49[—7]
2.66[—9]
5.56[—12]
1.55[—16]
8.16[—26]

Complex scaling

—0.580 316 157
—0.571 579 769 8
—0.563 067 242 9
—0.554 748 833 0
—0.546 591 510 8
—0.538 569 193 8

2.9696[—4]
9.0143[—5]
1.9215[—5]
2.4724[ —6]
1.4907[—7]
2.660[—9]

4.96[—4]
1.41[—4]
2.84[—5]
3.46[—6]
1.98[—7]
3.36[—9]
6.69[—12]
1.78[—16]
8.93[—26]

proach the exact results. It is instructive to note that E„
rather than the barrier height E„+2&8needs to be used
in (2) to get reasonable rates.

In Table II we )ist the calculated thermal activation en-
ergies Q in the presence of correlations for the field and
density values reported by Goodkind et al. They are in
reasonable agreement with almost all the data. The
agreement is best for high electron densities or small ro
and worst for the small density or large ro for which the
calculated values are higher by 1 —3 K. In a11 of these
calculations we took r o=1.38(nn) '~, which probably
overestimates ro at low densities and could be the source
of this discrepancy. ' ' We note that if one uses the
ground state of a one-dimensional hydrogen atom as the
unperturbed state, the calculated shift in energy, from
first-order perturbation theory, would be approximately—36, /(2ro)+38' /2. The exact shifts, as in the case of
ordinary Stark shifts, are close to the first-order shifts.

This is partly because U, (z) contributes very little to the
ground-state shifts for large ro.

The correlation radius and pressing field dependence of
the tunneling rates are plotted in Figs. 1 and 2 for three
sets of field and density values. An estimate for the tun-
neling rates when ro =1.38(mn) '~ can be obtained by a
simple extrapolation. The extrapolated values are in the
range 10 —10,and as expected, are extremely small
compared to experimental rates that are all of order
10 ' . The discrepancy is more than 25 orders of magni-
tude for the large density and more than 45 orders of
magnitude for the smallest density.

As illustrated in Fig. 3, the calculated tunneling rates
could be brought into agreement with the experimental
escape rates by reducing the width of the potential bar-
rier. This can be done by reducing the correlation radius
by a factor of 2 —3. But reducing ro would also reduce
the height of the barrier causing a discrepancy to appear

TABLE II. Quasi-bound-ground-state energies E„and activation energies Q for the experimentally
measured cases. Experimental activation energies Q,„~, are from Ref. 8. The cgs units for n can be ob-
tained by dividing 8, by 0.0524X10 '.

—0.442 124 701 8
—0.442 354 539 0
—0.460459 825 1

—0.460 076 804 4
—0.457 121 878 4
—0.455 755 176 7
—0.454 721 229 6
—0.451 913 862 4
—0.452 267 655 1
—0.473 620 712 0
—0.478 787 109 5
—0.482 083 040 5
—0.482 396 496 6
—0.470 733 726 2
—0.467 091 185 1
—0.464 136 781 2
—0.474 971 687 9
—0.488 497 853 1

f'p

92.21
89.36
87.05
89.69
88.34
86.74
87.69
86.74
88.67

134.28
147.61
165.90
159.71
107.20
109.02
104.92
128.84
193.26

0.0644
0.0686
0.0723
0.0681
0.0702
0.0728
0.0712
0.0728
0.0696
0.0303
0.0251
0.0199
0.0214
0.0476
0.0461
0.0497
0.0330
0.0146

0.0406
0.0405
0.0278
0.0280
0.0301
0.0311
0.0318
0.0338
0.0335
0.0181
0.0145
0.0122
0.0120
0.0203
0.0228
0.0249
0.0172
0.0078

1.60501
1.491 71
0.895 84
0.949 24
1.000 79
1.004 98
1.051 91
1.107 68
1.143 71
1.187 09
1.085 29
1.092 67
1.008 57
0.912 89
1.063 22
1.099 55
1.037 60
0.881 48

expt

1.57
1.51
0.97
0.96
1.04
0.85
1.04
1.10
1.13
0.96
0.94
0.96
0.58
0.69
1.04
1.00
0.78
0.71
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FIG. 1. Correlation radius ro dependence of tunneling rates
W from the ground state. 6, and C~ are (0) 0.052,0.143, (Cl)
0.105,0.236, ( 6 ) 0.029,0.075, respectively. The values for
ro = 1.38 (n.n) '~ are 62, 48, and 85, respectively.

with the measured thermal activation rates. Alternative-
ly, as seen from Fig. 2 for n =2.7X 10 cm and 8 =91
V/cm, the width of the barrier could be reduced by re-
ducing the external field by more than a factor of 3 while
keeping the correlation radius fixed. But again this
would substantially reduce the barrier height. Evidently

FIG. 3. The expected potential from the model of Iye et al.
and three other potentials that will result in a tunneling rate
comparable to experimentally reported rates. Each potential is
obtained from correlation-hole model by changing some of the
parameters. 8„@~,ro, W, and E are (solid line) 0.075, 0.029,
87.4, = 10 ', —0.47; (dashed line) 0.300, 87.4, 0.026,
4.8 X 10 ", —0.47; (dash-dotted line) 0.075, 0.029, 20.0,
3.2X10 ", —0.46, (dotted line) 0.075, 0.020, 30.0, 3.3X10
—0.47. The experimental rate for parameters of the solid line
would be =5.0X10

oo—
I

hQ0
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Pressing Field 8 (s. a. u.)

0.125

FIG. 2. External field @~ dependence of tunneling rates W
from the ground state. 6, and ro are (0) 0.143,34.0, ( )

28.0,0.236, (6 ) 30.0,0.075, (+) 0.143,61.8, respectively.

it is not possible to reconcile the measured rates and ac-
tivation energies with tunneling from the ground state
with a static effective one-particle potential. If we aban-
don the correlation-hole potential and construct a barrier
whose height and width are consistent with the measured
thermal activation energies and escape rates, we end up
with a potential whose width is 4-5 times smaller. Such
a narrow potential implies that the correlation hole closes
at distances much less than (mn) '~ . This means that,
to the tunneling electron, the charge sheet already looks
uniform very close to the liquid helium surface, at dis-
tances that are much smaller than the interelectronic
spacing. Obviously a static charge distribution will not
look uniform at such short distances when the correla-
tions are large, as they indeed are in these experiments.
For this to happen one may have to invoke some new
mechanism that would introduce the dynamics of the
electron sheet into the tunneling process. But this would
seem difficult in view of the preponderance of low fre-
quencies in the 2D plasmon spectrum, which give rise to
very slow response times of the electron sheet compared
to the characteristic tunneling times.

A simpler possibility is to consider tunneling out of ex-
cited states that, at the relatively high temperatures of
the experiment, should contribute to the observed escape
rates. We calculated the two lowest resonance energies
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TABLE III. Correlation radius dependence of lowest two resonance energies and their widths for an
experimentally studied case with 6, =0.143 and 6~ =0.052. x [y]=x X 10".

n=2
Tp

61.8
55.0
50.0
45.0
40.0

E,
—0.428 27
—0.428 63
—0.428 96
—0.429 36
—0.429 87

0.968 06
0.898 64
0.846 70
0.793 72
0.739 33

1.0[—46]
1.0[—41]
1.0[—37]
1.0[—33]
1.0[—28]

0.096 22
0.093 22
0.09047
0.087 04
0.082 68

0.443 58
0.376 78
0.327 27
0.277 31
0.226 77

6.53[—26]
4.63[—21]
1.00[—17]
1.34[—14]
1.07[—11]

'Estimated by extrapolation from Fig. 1.

as a function of ro for one value of density and field re-
ported in the Goodkind et al. experiment, n =2.7X10,
ez =91 V/cm. The results, which also include the
widths of first excited states and the estimated values for
the ground state, are given in Table III. We found that
the excitation energy to the second level is weakly depen-
dent on the correlation radius and is approximately 8 K.
This weak ro dependence is due to the small contribution
of U, (z) to shifts in energy as compared to those of press-
ing field. The lifetimes in Table III are calculated under
the assumption that electrons in the excited level remain
localized laterally within a correlation disk, as if they had
stayed in the 2D electron sheet. But in equilibrium the
wave function of an excited electron will probably spread
out and be less sensitive to the details of the distribution
of the ground-state electrons. Assuming that this spread-
ing takes much longer than the calculated lifetimes, we
find that the ratio of the tunneling rate from the ground
state 8'„ to that from the first excited state 8'2 is, as list-
ed in Table III, less than 10 ' . In the opposite case
when spreading occurs much faster than tunneling, the
lifetime will be determined by how fast this delocalization
takes place and the ratio W, / Wz will be even smaller.

At finite temperatures, electrons can escape from excit-
ed states as well as from the ground state. But only the
tunneling rate out of the ground state is temperature in-
dependent. Tunneling out of an excited state will appear
thermally activated with an energy equal to the excitation
energy. If the electrons are in thermal equilibrium, the
temperature below which the tunneling from the excited
states can be neglected is T( (E(2E&)/ln(W2/W, ).
Thus when Ez E, =8 K and—W2/W, =10', the
ground-state tunneling would only be observable for tem-
peratures below 200 mK. In the Goodkind et al. experi-
ment the temperature-independent escape rates were ob-
served around 0.5 K. If these rates are indeed due to tun-
neling out of the ground state, the ratio Wz/W, must be
1ess than 10. Such ratio would imply a much smaller
barrier than required by the activation energy. Another
explanation suggests itself by examining Fig. 3 of Ref. 8,
if we note that within the reported experimental error of
5%, the escape rates saturate at the same temperature of
=480 mK for all pressing fields. The temperature-
independent regime could be due to an electronic ternper-
ature that reaches its lowest limit at a slightly higher
temperature than the thermometer. For example, since

the electron-ripplon interaction is very weak, the elec-
trons could easily be heated above the temperature of the
helium bath with modest amounts of stay rf power. ' In
such a case the lowest electronic temperature attainable
would be limited by the radiation leak into the cell.

We must conclude that the escape rates measured by
Goodkind et al. cannot be due to tunneling from the
ground state if correlations are taken into account by us-

ing a single-particle potential. At the relatively high tem-
peratures of the experiment it is possible that an activat-
ed process such as tunneling out of excited states is re-
sponsible for the observed escape rates. Since the
thermally activated escape rate from an excited state, in
thermal equilibrium, is equal to the product of the proba-
bility of being in such a state and the escape rate from
that state, activation energies will be the same regardless
of the initial state. Therefore, measured activation ener-
gies do not rule out such a possibility, especially in view
of the very narrow temperature ranges over which con-
stant rates were observed.

Alternatively, a one-particle approach might be inade-
quate for dealing with tunneling from a strongly correlat-
ed system, in which case a more sophisticated many-body
theory is needed. Along this line Azbel and Platzrnan'
proposed a model in which local-density fluctuations in
the electron sheet are responsible for the unusually large
escape rates.

Thus to answer many questions arising from the
discrepancy between the experiment and the calculations,
both experiments and theory need to be developed. Ex-
perirnentally, it would be essential to reduce the electron-
ic temperature sufBciently so that tunneling from excited
states is negligible. In addition, it would be important to
develop a technique in which the electronic density is
measured directly. This would avoid many uncertainties
arising from the indirect capacitance measurements, such
as effects of stray charges, etc. To clarify the effects of
correlations, a wider range of electron densities would
have to be explored. In particular, investigating the very
low density regime could contribute to our understanding
of the transition between the simple uneorrelated case
and the correlated one. Experiments such as microwave
spectroscopy of excited states could be used in selecting a
realistic potential for calculating tunneling rates, since
the excited states are more sensitive to details of the po-
tential at large distances.
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APPENDIX: NUM ERICAL PROCEDURES
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B ( e, zt)= I [X(e,zt )+P(E,zt )] + [A(e, zg ) P(E,z.
g )] I

'~

where for z ~ z„A,(e,z, ) and P(e, z, ) are defined by

%(z) =A(e, z, )Ai( —co)+P(e,z, )Bi( —cu) . (A 10)

For narrow resonances the phase and the amplitude will

vary slowly when the energy is far from the resonance
value. But in the vicinity of the resonance energy, they
change rapidly and can be described by'

I (e,zt)
tan[5(e, z, )+50(e,z, )]= 2E —Eo e,z,

' ]/2
I (e,z, )

B (e,z, ) =Bo(e,z, ) [E ED(e—,z, )] +

(A 1 1)

In the correlation-hole model the electron contribution
to potential (Al) is modified by correlations between elec-
trons and becomes 0.0 10.0

I

20.0
z s. a. u.

I

30.0 40.0

U, (z) =

Z
z (ro

2fp

fpz-c 2
& — Pz~r

(A12)

ro is given by the condition that g (ro) =0.5, where g (r) is
the pair correlation function and ~ is the position of the
electron in the electron sheet. In general, rp depends on
density and temperature, but for the experimentally stud-
ied regimes it is roughly given ' by 1.38(mn) '~. For
z & rp, the resulting Schrodinger equation is the same as
above except that the energy is replaced by E —6', ro/2
When z & rp, the solution around the origin is given by

FIG. 5. Resonance (solid line) and nonresonance (dashed
line) wave functions as a function of z for ra=20, 6, =0.236,
and 6~ =0.105. Resonance energy E, and width are
0.367 684 289 351 337 920 543 and 3.40 X 10 ', respectively.
The resonance wave function is multiplied by 5X10 for z &20
to show the details of the tail of the wave function. Nonreso-
nance energy is taken to be E„+1.0X 10 '. The normalization
of the wave functions are chosen to bring their maximum ampli-
tudes to comparable values.

up=0,

a = —a2 1 ~

a3= —
—,'(az+Ea, ),

(A13)

2 Ca —i+Ean —z @pan —3+ an —4

and around a general nonzero zp it is

n (n —1)zo
(n —1)(n —2)

2
a„&+au„

CZ2
= aP,

Zp

a3 = —
—,
' (az+ a a, +bao),

1 (3a3+aaz+ba, +cao),
6Zp

(A14)

—10 0,0 1.0

E—E„(10 "s. a. u. )

C)
C)

2.0

+6(x~ 3+clx~ 4+ dcxn

where a, b, c, and d are now given by

FIG. 6. Amplitude B (solid line) and phase 6 (dash-dotted
line) of the resonance wave function as a function of energy
around the resonance energy for the resonance parameters of
Fig. 5 at z =z, =199.5.
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b, zo3

a =1+ —A' zo+Ezo,
270

2b = zo —2A' zo+E,0 p 0

3 ~c= 'zp —@
2rp

(A15)

C

2rp

The asymptotic values of the amplitude and the phase are
determined from these solutions. We first calculate the
wave function around the origin. Then we obtain the two
linearly independent solutions around a new point zp,
beyond which the first solution cannot be determined
with enough accuracy. A linear combination of these
two new solutions is matched at this point to the solution
around the origin. The new wave function is used to
determine the solution up to a point beyond which it can-
not be calculated with sufficient precision, and so on.
This process is usually continued until we calculate the
wave function up to a distance z =z, corresponding to
=200 or more scaled atomic units, at which point we
match the logarithmic derivative of the wave function to
that of a linear combination of Airy functions. From the
expansion coefficients, we determined the phase and the
amplitude. To obtain the upper and lower bounds of the

Q = U(z,„) E„, — (A16)

where z,„ is the point of maximum potential energy.
When the potential energy contains the contributions due
to the pressing field, the image potential, and the correla-
tion potential U, (z), then, to a very good approximation

6, roz,„= 1+
p

1

(C, ro/@ ) +2
(A17)

resonance width 8', we perform the calculation for @=0
and for e= —1/z„respectively. When z, =200 the two
limits differ by less than 5 X 10 8'for almost all the cal-
culated cases. Since both the Airy functions and the
wave functions can be calculated very accurately, by this
method, lifetimes as long as 10 can be obtained with
moderate accuracy on common mainframe computers.
As the uncertainty in the resonance energies is the same
as that in the width, they can be determined with unpre-
cedented accuracy. In a typical run we first detect the
resonances by sudden changes in the phase. Then we
determine the resonance energy 6', by locating the ampli-
tude minimum. Subsequently the energy is lowered until
the phase decreases from its resonance value by n /4 and
the reduction in energy is multiplied by 2 to obtain the
width. The wave function, and phase and amplitude for a
typical run are shown in Figs. 5 and 6, respectively.

The activation energies are given by
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