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Two-dimensional localized vibrational modes of trans-(CH)„around a polaron
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We assess the influence of a polyacetylene configuration on the localized vibrational modes
around a polaron and find that the vibrations of carbon atoms normal to the chain is comparable to
that along the chain for most of the modes. Ten localized modes have been found, compared with
seven in the previous results.

A striking phenomenon, which has been observed in
experiments on a number of conjugated polymers, is that
the existence of nonlinear excitations either by doping'
or photoexcitation ' induces new features in the
infrared-absorption spectra. These features are believed
to result from localized vibrations of the polymers around
the defects. Theoretical analyses of the phenomenon
have mainly focused on polyacetylene as a simple proto-
typical system. The simple Su-Schrieffer-Heeger (SSH)
model and the continuum-version Takayama —Lin-
Liu —Maki (TLM) model' have been very successful in ex-
plaining many experimental results. Of these efforts in
explaining infrared-absorption spectra of polyacetylene,
the most successful one is the Alexander-McTague (AM)
formalism, which describes these vibrations as elementa-
ry excitations of the static distortion of the bond-
alternating amplitude. Theoretical research has been
carried out both on the basis of the discrete SSH model
and the continuum TLM model. Three localized vibra-
tional modes around a soliton' " and five modes
around a polaron " have been found with the coupling
constant A, =0.19 on the basis of the continuum models.
These three ir-active modes for the soliton have been
confirmed by experiment. ' As some authors have point-
ed out, the calculations based on the continuum models
will smear out additional ir-active modes, which are rap-
idly varying modes in configuration, called "staggered
modes. "' ' One staggered mode has been found for a
soliton and two for a polaron with the same coupling
constant as given above, based on the SSH model. Thus,
a total of four localized vibrational modes for a soliton
and seven for a polaron have been obtained. Recently
some authors considered the vibrational problem includ-
ing electron interactions within the one-dimensional mod-
els. ' ' The results show that the electron correlation
does not change the number of localized modes but
causes shifts of the frequencies.

As we know, the SSH model assumes that atoms only
move along the chain, neglecting the planar configuration
of polyacetylene shown in Fig. 1. One will naturally ask
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where to, a, k, M have the conventional meanings as they
have in the SSH model. k' is the spring constant of the
bond-bending term. 5r„„+,denotes the change of bond
length from the equilibrium position between the nth and
(n + l)th site. Introducing a dimensionless order param-
eter 5U„„+,, coupling constant k, spring constant k, and
time ~,
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where co& =(4k/M)'~ is the bare frequency, Eq. (1) can
be rewritten as
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FIG. 1. Configuration of trans-(CH)„. Bond lengths approxi-
0

mately equal 1.47 and 1.33 A, alternatively, and bond angles
equal 120', which change little in the case of dimerization and
undimerization.

whether atomic motion normal to the chain (y direction)
is negligible to that along the chain (x direction), and if
not what will happen? The argument seems irrelevant to
the static solution but relevant to the vibrational problem
as we will show later. In this paper our interest will con-
centrate on the theoretical aspects of the lattice vibration
around a polaron.

%'e start with the generalized SSH Hamiltonian:

H = —g (to tz5r„„+,)—(c„+,,c„,+H. c. )
n, s
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where U„=(dUn/dr). This shows that if the energy is
measured with tp and the frequency with co&, then the
properties of the system will only depend on k and k. We
first consider the case k ((1 and neglect the bond-
bending term, since the value of k is unclear at present.

A static solution for a polaron, which is irrelevant to
the bond-bending term and quite similar to previous re-
sults, ' can be determined by the following self-
consistent equations:

+ g P, (n)P, (n +1),
i, n

where periodic boundary conditions have been used. e.; is
the eigenvalue of the electron and P, (n) denotes the nth
component of the electron eigenfunction. Apparently all
previous static solutions can be preserved from Eq. (4).
To reproduce the results of the SSH model, we choose
the parameters as follows:

tp=2. 5eV, @=4.73 eVA ', k =28 eVA

which correspond to an energy gap 26=1.35 eV, dimeri-
zation 5y =0.07 A, and coupling constant A, =0.19. We
perform the calculation with 100 atoms, using the follow-
ing trial function to iterate:
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where 5r=0 07, L=. 7, and m=4. Finally one will obtain a set of {5Ur„+,I, which determine the polaron
configuration located in the center of the chain.

To consider the small lattice vibrations around a polaron, we expand 5U„„+~ near the equilibrium configuration
{5U„„+,):

5U„„+,=sin8(x„+, —x„)+(—1)"+'cos6(y„+,—y„)+5' „+, ,

where 8 is the bond angle, and the coordinate system is chosen as shown in Fig. 1. Thus, the Hamiltonian (3) can be
written as

H =H +H'+ g (5U„„+,—5U~ „+, ) + g (U„) (7)

where H~ is the Hamiltonian of a polaron, and H' is the perturbative term resulting from small vibrations,

H'= gq„+, (U„+,—U„)(c„+,,c„,+H. c. ),
n, s

TABLE I. Localized vibrational modes around a polaron for
A. =0.19. X' and Y' denote maximum amplitude of the ith
mode in the x and y directions, respectively.
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X(4)
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Localized
mode

Gl
G2
G3
G4
G)
G6
G7

G8
G9
Glo

Frequency
0,'/cog

0.000
0.122
0.196
0.220
0.279
0.301
0.425
0.470
0.573
0.480

Parity

odd
even
even
Qdd

odd
even
even
odd
odd
even

X'

0.218
0.313
0.189
0.122
0.129
0.139
0.222
0.249
0.168
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FIG. 2. Shape of the localized mode G4. The unit of abscissa
is site number n, and the ordinate is in an arbitrary unit.
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FIG. 3. Shape of the localized mode G&. The units of both
axes are the same as in Fig. 2.

FIG. 4. Shape of the localized mode G9. The units of both
axes are the same as in Fig. 1. The modes are plotted with
G, (2m + I) =( —1)'"G,(2m + I) where 1=0,1, m = 1,2, . . . , 25
for /=0 and m =0, 1, . . . , 24 for l=1.

in which U„=x„i+y„j,and q„+1 is the unit vector pointing from the nth to the (n + 1)th site. By calculating the ener-

gy of the system to the second order of H', we obtain the total energy of the system:

F. =a~+ ,
' y v p~-. qp+ y(U„)',

m, n n

where a,P=1,2 denote the x and y directions, respectively, and E is the energy of a polaron:
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c& =P;(n)P (n —1)+(() (n) t, (tn —1), (13)
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1
[sin 8 5 „+,5,5p, + sin 8 5 „,5, , 5p, ]2

1
[cos 85 „+,5,5p z+cos 85 „,5„z5p z]

2

[sin8cos8( —1)"+'5 „+)5,p5p, &+ '"8cos8 1) 5, —&5, i5pzl

[sin8cos8( —1)"+'5 „+&5, , 5pz+sin8cos8( —1)"5 „,5 z5p, ] . (14)

One obtains all vibrational modes by diagonalizing the
matrix V „. We arrange the sites of the atoms along the
chain in order [

—50, —49, . . . , —1, 1, . . . , 49, 50); thus
the vibrational amplitude G, corresponding to the fre-
quency 0;, can be expressed as

G; =—[X(i),Y(i)]=(X—so
' ' ' X+so Y —so

' Y+so) ~

X(10)

t
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(15)

G, =(X', Xso, YI Yso) (16)

where X' and Y' stand for vibrational amplitudes in the x
and y directions, respectively. Because of the conserva-
tion of parity in V, , the modes can be plotted as

~ ~

FIG. 5. Shape of the localized mode G,o. The modes are
plotted as in Fig. 4.
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by specifying the symmetry of the modes. Our calcula-
tion shows that among 200 modes, 101 modes have zero
frequency, one of which corresponds to a Goldstone
mode. Ten localized vibrational modes have been found,
and their main features can be summarized in Table I.

It is worth noting from Table I that the amplitudes of
both directions for a given mode are comparable except
for the modes G, (Goldstone mode) and G2. The corre-
sponding modes for G& to 68 can be found in the one-
dimensional case. ' ' By the corresponding modes, we
mean that the mode in the one-dimensional case and the
mode in the two-dimensional case have the same symme-
try and similar amplitude shapes in the x direction. An
interesting result is that G4 and G, have similar ampli-
tudes in the x direction and the same symmetry, but
different amplitudes in the y direction and frequency
(shown in Figs. 2 and 3). Hence, 64 and 6, correspond

to one mode in the one-dimensional case. |9 and G&0 do
not exist in the previous results (shown in Figs. 4 and 5).

When the bond angles approach m., amplitudes in the y
direction of all the modes will go to zero. G4 and G~ will
be merged into one mode and G9 and G,o will disappear.
Thus only seven localized modes are found in the one-
dimensional case, which just reduces to the previous re-
sult.

One can expect that the bond-bending term for large K
will change the result to some extent. We plan to investi-
gate the in problem in another paper.

The authors are grateful to Professor X. Sun and Pro-
fessor J. W. Halley for their helpful discussions. This
work was supported by the China National Natural Sci-
ence Foundation.

'C. R. Fincher, Jr. , M. Ozaki, A. J. Heeger, and A. G. MacDi-
armid, Phys. Rev. B 19, 4140 (1979).

2S. Etemad, A. Pron, A. J. Heeger, A. G. MacDiarmid, E. J.
Mele, and M. J. Mele, Phys. Rev. B 23, 5137 (1981).

3Z. Vardeny, J. Orenstein, and G. L. Baker, Phys. Rev. Lett. 50,
2032 (1983).

4G. B. Blanchet, C. R. Fincher, T. C. Chung, and A. J. Heeger,
Phys. Rev. Lett. 50, 1938 (1983).

5E. J. Mele and M. J. Rice, Phys. Rev. Lett. 45, 926 (1980).
W. P. Su, J. R. Schrieff, and A. J. Heeger, Phys. Rev. B 22,

2099 (1980).
7H. Takayama, Y. R. Lin-Liu, and K. Maki, Phys. Rev. B 21,

2388 (1980).
8B. Horovitz, Solid State Commun. 41, 29 (1982).
E. J. Mele and J. C. Hicks, Phys. Rev. B 32, 2704 (1985); J. C.

Hicks and E. J. Mele, ibid. 34, 1091 (1986).
' H. Ito, A. Terai, Y. Ono, and Y. Wada, J. Phys. Soc. Jpn. 53,

3520 (1984); A. Terai, H. Ito, Y. Ono, and Y. Wada, ibid. 54,
196 (1985).

"J.Hicks and G. Blaisdell, Phys. Rev. B 3j., 919 (1985).
' H. E. Schaffer, R. H. Friend, and A. J. Heeger, Phys. Rev. B

36, 7537 (1987).
'3X. Sun, C. Q. Wu, and X. Shen, Solid State Commun. 56, 1039

(1985).
' A. Terai, Y. Ono, and Y. Wada, J. Phys. Soc. Jpn. 55, 2889

(1986);A. Terai and Y. Ono, ibid. 55, 213 (1986).
K. A. Chao and Y. J. Wang, J. Phys. C 18, L1127 (1985).
J. Tinka Gammel and J. C. Hicks, Synth. Met. 17, 63 (1987).

'7C. Q. Wu and X. Sun, Phys. Rev. B 33, 8772 (1986).
' Richard J. Cohen and Arnold J. Glick, Phys. Rev. B 36, 2907

(1987).
'9J. C. Hicks and J. T. Gammel, Phys. Rev. B 37, 6315 (1988).

S. Stafstrom and K. A. Chao, Phys. Rev. B 29, 7010 (1984);30,
2098 (1984).


